

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M7
Core Size	32-Bit Single-Core
Speed	300MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	114
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamv71q21b-cbt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Power Management Controller (PMC)

31.20.24 PMC Peripheral Clock Disable Register 1

Name:	PMC_PCDR1
Offset:	0x104
Property:	Write-only

This register can only be written if the WPEN bit is cleared in the PCM Write Protection Mode Register

Bit	31	30	29	28	27	26	25	24
[PID62		PID60	PID59	PID58	PID57	PID56
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
[PID53	PID52	PID51	PID50	PID49	PID48
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
ſ	PID47	PID46	PID45	PID44	PID43	PID42	PID41	PID40
Access		•						
Reset								
Bit	7	6	5	4	3	2	1	0
[PID39		PID37		PID35	PID34	PID33	PID32
Access								
Reset								

Bits 0:3,5,7:28,30 - PID Peripheral Clock x Disable

Value	Description
0	No effect.
1	Disables the corresponding peripheral clock.

Note: "PIDx" refers to identifiers as defined in the section "Peripheral Identifiers".

Parallel Input/Output Controller (PIO)

32.6.1.53 PIO Parallel Capture Interrupt Mask Register

Name:	PIO_PCIMR
Offset:	0x015C
Reset:	0x00000000
Property:	Read-only

The following configuration values are valid for all listed bit names of this register:

- 0: Corresponding interrupt is not enabled.
- 1: Corresponding interrupt is enabled.

Bit 3 - RXBUFF Reception Buffer Full Interrupt Mask

- **Bit 2 ENDRX** End of Reception Transfer Interrupt Mask
- Bit 1 OVRE Parallel Capture Mode Overrun Error Interrupt Mask
- Bit 0 DRDY Parallel Capture Mode Data Ready Interrupt Mask

38.8.23 GMAC Specific Address n Top Register

Name:	GMAC_SATx
Offset:	0x8C + x*0x08 [x=03]
Reset:	0x0000000
Property:	Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific Address Register Bottom is written. They are activated when Specific Address Register Top is written.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Dit	00	00	04	00	10	10	47	40
BIT	23	22	21	20	19	18	17	16
.								
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				ADDF	R[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - ADDR[15:0] Specific Address n

The most significant bits of the destination address, that is, bits 47:32.

USB High-Speed Interface (USBHS)

39.5.2.12 Management of IN Endpoints

Overview

IN packets are sent by the USB device controller upon IN requests from the host. All data which acknowledges or not the bank can be written when it is full.

The endpoint must be configured first.

The USBHS_DEVEPTISRx.TXINI bit is set at the same time as USBHS_DEVEPTIMRx.FIFOCON when the current bank is free. This triggers a PEP_x interrupt if the Transmitted IN Data Interrupt Enable (USBHS_DEVEPTIMRx.TXINE) bit is one.

USBHS_DEVEPTISRx.TXINI is cleared by software (by writing a one to the Transmitted IN Data Interrupt Clear bit (USBHS_DEVEPTIDRx.TXINIC) to acknowledge the interrupt, which has no effect on the endpoint FIFO.

The user then writes into the FIFO and writes a one to the FIFO Control Clear

(USBHS_DEVEPTIDRx.FIFOCONC) bit to clear the USBHS_DEVEPTIMRx.FIFOCON bit. This allows the USBHS to send the data. If the IN endpoint is composed of multiple banks, this also switches to the next bank. The USBHS_DEVEPTISRx.TXINI and USBHS_DEVEPTIMRx.FIFOCON bits are updated in accordance with the status of the next bank.

USBHS_DEVEPTISRx.TXINI is always cleared before clearing USBHS_DEVEPTIMRx.FIFOCON.

The USBHS_DEVEPTISRx.RWALL bit is set when the current bank is not full, i.e., when the software can write further data into the FIFO.

The data is written as follows:

- When the bank is empty, USBHS_DEVEPTISRx.TXINI and USBHS_DEVEPTIMRx.FIFOCON are set, which triggers a PEP_x interrupt if USBHS_DEVEPTIMRx.TXINE = 1.
- The user acknowledges the interrupt by clearing USBHS_DEVEPTISRx.TXINI.

Serial Peripheral Interface (SPI)

41.8.10 SPI Write Protection Mode Register

Name:	SPI_WPMR
Offset:	0xE4
Reset:	0x0
Property:	Read/Write

See section Register Write Protection for the list of registers that can be write-protected.

Bit	31	30	29	28	27	26	25	24
				WPKE	Y[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WPKE	Y[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	
				WPKI	EY[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
						WPCREN	WPITEN	WPEN
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 31:8 - WPKEY[23:0] Write Protection Key

Value	Name	Description
0x53504	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit.
9		Always reads as 0.

Bit 2 – WPCREN Write Protection Control Register Enable

Value	Description
0	Disables the write protection on the Control register if WPKEY corresponds to 0x535049.
1	Enables the write protection on the Control register if WPKEY corresponds to 0x535049.

Bit 1 – WPITEN Write Protection Interrupt Enable

Value	Description
0	Disables the write protection on Interrupt registers if WPKEY corresponds to 0x535049.
1	Enables the write protection on Interrupt registers if WPKEY corresponds to 0x535049.

Bit 0 – WPEN Write Protection Enable

Quad Serial Peripheral Interface (QSPI)

• Wait for QSPI_SR.INSTRE to rise.

Figure 42-19. Instruction Transmission Waveform 9

Example 10:

Instruction in Quad SPI, without address, without option, with data read in Quad SPI, without dummy cycles, without fetch, read launched through APB interface.

Command: HIGH-SPEED READ (05h)

- Set SMRM to '1' in QSPI_MR
- Write 0x0000_0005 in QSPI_ICR.
- Write 0x0100_0096 in QSPI_IFR (will start the transfer).
- Wait flag RDRF and Read data in the QSPI_RDR register Fetch is disabled.
- Write a '1' to QSPI_CR.LASTXFR.
- Wait for QSPI_SR.INSTRE to rise.

Figure 42-20. Instruction Transmission Waveform 10

42.6.6 Scrambling/Unscrambling Function

The scrambling/unscrambling function cannot be performed on devices other than memories. Data is scrambled when written to memory and unscrambled when data is read.

Synchronous Serial Controller (SSC)

Figure 44-5. Time Slot Application Block Diagram

44.6 Pin Name List

Table 44-1. I/O Lines Description

Pin Name	Pin Description	Туре
RF	Receive Frame Synchronization	Input/Output
RK	Receive Clock	Input/Output
RD	Receive Data	Input
TF	Transmit Frame Synchronization	Input/Output
ТК	Transmit Clock	Input/Output
TD	Transmit Data	Output

44.7 Product Dependencies

44.7.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC receiver I/O lines to the SSC Peripheral mode.

© 2018 Microchip Technology Inc.

Synchronous Serial Controller (SSC)

Bit 5 – OVRUN Receive Overrun Interrupt Enable

Value	Description
0	No effect.
1	Enables the Receive Overrun Interrupt.

Bit 4 – RXRDY Receive Ready Interrupt Enable

Value	Description
0	No effect.
1	Enables the Receive Ready Interrupt.

Bit 1 – TXEMPTY Transmit Empty Interrupt Enable

Value	Description
0	No effect.
1	Enables the Transmit Empty Interrupt.

Bit 0 – TXRDY Transmit Ready Interrupt Enable

Value	Description
0	No effect.
1	Enables the Transmit Ready Interrupt.

Inter-IC Sound Controller (I2SC)

45.8.3 I2SC Status Register

	Name: Offset: Reset: Property:	I2SC_SR 0x08 0x00000000 Read-only						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
			TXUR	CH[1:0]				
Access		-	R	R				
Reset			0	0				
Bit	15	14	13	12	11	10	9	8
							RXORCH[1:0]	
Access							R	R
Reset							0	0
Bit	7	6	5	4	3	2	1	0
		TXUR	TXRDY	TXEN		RXOR	RXRDY	RXEN
Access		R	R	R		R	R	R
Reset		0	0	0		0	0	0

Bits 21:20 - TXURCH[1:0] Transmit Underrun Channel

Value	Description
0	This field is cleared when I2SC_SCR.TXUR is written to '1'.
1	Bit i of this field is set when a transmit underrun error occurred in channel i (i = 0 for first
	channel of the frame).

Bits 9:8 - RXORCH[1:0] Receive Overrun Channel

This field is cleared when I2SC_SCR.RXOR is written to '1'.

Bit i of this field is set when a receive overrun error occurred in channel i (i = 0 for first channel of the frame).

Bit 6 – TXUR Transmit Underrun

Value	Description
0	This bit is cleared when the corresponding bit in I2SC_SCR is written to '1'.
1	This bit is set when an underrun error occurs on I2SC_THR or when the corresponding bit in
	I2SC_SSR is written to '1'.

Bit 5 – TXRDY Transmit Ready

USART Pin	V24	ССІТТ	Direction
RXD	3	104	From modem to terminal
CTS	5	106	From terminal to modem
DSR	6	107	From terminal to modem
DCD	8	109	From terminal to modem
RI	22	125	From terminal to modem

Universal Synchronous Asynchronous Receiver Transc...

The control of the DTR output pin is performed by writing a '1' to US_CR.DTRDIS and US_CR.DTREN. The disable command forces the corresponding pin to its inactive level, i.e., high. The enable command forces the corresponding pin to its active level, i.e., low. The RTS output pin is automatically controlled in this mode.

The level changes are detected on the RI, DSR, DCD and CTS pins. If an input change is detected, the bits RIIC, DSRIC, DCDIC and CTSIC in US_CSR are set and can trigger an interrupt. The status is automatically cleared when US_CSR is read. Furthermore, the CTS automatically disables the transmitter when it is detected at its inactive state. If a character is being transmitted when the CTS rises, the character transmission is completed before the transmitter is actually disabled.

46.6.8 SPI Mode

The Serial Peripheral Interface (SPI) mode is a synchronous serial data link that provides communication with external devices in Master or Slave mode. It also enables communication between processors if an external processor is connected to the system.

The Serial Peripheral Interface is a shift register that serially transmits data bits to other SPIs. During a data transfer, one SPI system acts as the "master" which controls the data flow, while the other devices act as "slaves" which have data shifted into and out by the master. Different CPUs can take turns being masters and one master may simultaneously shift data into multiple slaves. (Multiple master protocol is the opposite of single master protocol, where one CPU is always the master while all of the others are always slaves.) However, only one slave may drive its output to write data back to the master at any given time.

A slave device is selected when its NSS signal is asserted by the master. The USART in SPI Master mode can address only one SPI slave because it can generate only one NSS signal.

The SPI system consists of two data lines and two control lines:

- Master Out Slave In (MOSI): This data line supplies the output data from the master shifted into the input of the slave.
- Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of the master.
- Serial Clock (SCK): This control line is driven by the master and regulates the flow of the data bits. The master may transmit data at a variety of baud rates. The SCK line cycles once for each bit that is transmitted.
- Slave Select (NSS): This control line allows the master to select or deselect the slave.

46.6.8.1 Modes of Operation

The USART can operate in SPI Master mode or in SPI Slave mode.

SPI Master mode is enabled by writing 0xE to US_MR.USART_MODE. In this case, the SPI lines must be connected as described below:

Universal Synchronous Asynchronous Receiver Transc...

46.7.40 USART LON Beta1 Tx Register

Name:	US_LONB1TX
Offset:	0x0074
Reset:	0x0
Property:	Read/Write

This register is relevant only if USART_MODE = 0x9 in the USART Mode Register.

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Bit	31	30	29	28	27	26	25	24
[
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				BETA1T	X[23:16]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Γ				BETA11	⁻ X[15:8]			
Access								
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ				BETA1	TX[7:0]			
Access								
Reset	0	0	0	0	0	0	0	0

Bits 23:0 - BETA1TX[23:0] LON Beta1 Length after Transmission

Value	Description
1-	LON beta1 length after transmission in t _{bit} .
1677721	
5	

Figure 47-4. Character Reception

47.5.2.3 Receiver Ready

When a complete character is received, it is transferred to the Receive Holding Register (UART_RHR) and the RXRDY status bit in the Status Register (UART_SR) is set. The bit RXRDY is automatically cleared when UART_RHR is read.

Figure 47-5. Receiver Ready

47.5.2.4 Receiver Overrun

The OVRE status bit in UART_SR is set if UART_RHR has not been read by the software (or the DMA Controller) since the last transfer, the RXRDY bit is still set and a new character is received. OVRE is cleared when the software writes a 1 to the bit RSTSTA (Reset Status) in UART_CR.

Figure 47-6. Receiver Overrun

47.5.2.5 Parity Error

Each time a character is received, the receiver calculates the parity of the received data bits, in accordance with the field PAR in the Mode Register (UART_MR). It then compares the result with the received parity bit. If different, the parity error bit PARE in UART_SR is set at the same time RXRDY is set. The parity bit is cleared when UART_CR is written with the bit RSTSTA (Reset Status) at 1. If a new character is received before the reset status command is written, the PARE bit remains at 1.

50.7.6 TC Counter Value Register

Name:	TC_CVx
Offset:	0x10 + x*0x40 [x=02]
Reset:	0x0000000
Property:	Read-only

Bit	31	30	29	28	27	26	25	24
				CV[3	1:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
	00	00		00	10	10	47	40
Bit	23	22	21	20	19	18	17	16
				CV[2	3:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CV[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CV	[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – CV[31:0] Counter Value

CV contains the counter value in real time.

•

Important:

For 16-bit channels, CV field size is limited to register bits 15:0.

Pulse Width Modulation Controller (PWM)

51.7.5 PWM Interrupt Enable Register 1

Name:PWM_IER1Offset:0x10Reset:-Property:Write-only

This register can only be written if bits WPSWS1 and WPHWS1 are cleared in the PWM Write Protection Status Register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
					FCHID3	FCHID2	FCHID1	FCHID0
Access					W	W	W	W
Reset					0	0	0	-
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					CHID3	CHID2	CHID1	CHID0
Access					W	W	W	W
Reset					0	0	0	_

Bits 16, 17, 18, 19 – FCHIDx Fault Protection Trigger on Channel x Interrupt Enable

Bits 0, 1, 2, 3 – CHIDx Counter Event on Channel x Interrupt Enable

Analog Front-End Controller (AFEC)

Figure 52-14. AFE Digital Signal Processing

52.6.16 Buffer Structure

The DMA read channel is triggered each time a new data is stored in AFEC_LCDR. The same structure of data is repeatedly stored in AFEC_LCDR each time a trigger event occurs. Depending on the user mode of operation (AFEC_MR, AFEC_CHSR, AFEC_SEQ1R, AFEC_SEQ2R) the structure differs. When TAG is cleared, each data transferred to DMA buffer is carried on a half-word (16-bit) and consists of the last converted data right-aligned. When TAG is set, this data is carried on a word buffer (32-bit) and CHNB carries the channel number, thus simplifying post-processing in the DMA buffer and ensuring the integrity of the DMA buffer.

52.6.17 Fault Output

The AFEC internal fault output is directly connected to the PWM fault input. Fault output may be asserted depending on the configuration of AFEC_EMR, AFEC_CWR, AFEC_TEMPMR and AFEC_TEMPCWR and converted values.

Two types of comparison can trigger a compare event (fault output pulse). The first comparison type is based on AFEC_CWR settings, thus on all converted channels except the last one; the second type is linked to the last channel where temperature is measured. As an example, overcurrent and temperature exceeding limits can trigger a fault to PWM.

When the compare occurs, the AFEC fault output generates a pulse of one peripheral clock cycle to the PWM fault input. This fault line can be enabled or disabled within the PWM. If it is activated and asserted by the AFEC, the PWM outputs are immediately placed in a safe state (pure combinational path).

Note that the AFEC fault output connected to the PWM is not the COMPE bit. Thus the Fault Mode (FMOD) within the PWM configuration must be FMOD = 1.

52.6.18 Register Write Protection

To prevent any single software error from corrupting AFEC behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the AFEC Write Protection Mode Register (AFEC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the AFEC Write Protection Status Register (AFEC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS flag is automatically cleared by reading the AFEC_WPSR.

The protected registers are:

- AFEC Mode Register
- AFEC Extended Mode Register

Analog Front-End Controller (AFEC)

Offset	Name	Bit Pos.								
		31:24		TEMPCHG				COMPE	GOVRE	DRDY
		7:0	EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0
		15:8					EOC11	EOC10	EOC9	EOC8
0x2C	AFEC_IMR	23:16								
		31:24		TEMPCHG				COMPE	GOVRE	DRDY
		7:0	EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0
		15:8					EOC11	EOC10	EOC9	EOC8
0x30	AFEC_ISR	23:16								
		31:24		TEMPCHG				COMPE	GOVRE	DRDY
0x34										
	Reserved									
0x4B										
		7:0	OVRE7	OVRE6	OVRE5	OVRE4	OVRE3	OVRE2	OVRE1	OVRE0
0x4C	AFEC OVER	15:8					OVRE11	OVRE10	OVRE9	OVRE8
UX TO		23:16								
		31:24								
		7:0				LOWTH	RES[7:0]			
0x50	AFEC CWR	15:8	LOWTHRES[15:8]							
		23:16	HIGHTHRES[7:0]							
		31:24	HIGHTHRES[15:8]							
		7:0	GAIN3[1:0]		GAIN	GAIN2[1:0] GAIN		1[1:0]	GAIN	0[1:0]
0x54	AFEC CGR	15:8	GAIN7[1:0]		GAIN	GAIN6[1:0]		5[1:0]	GAIN4[1:0]	
		23:16	GAIN11[1:0]		GAIN10[1:0]		GAIN9[1:0]		GAIN8[1:0]	
		31:24								
0x58										
	Reserved									
0x5F		7.0	01557	DIFES	DIFFE		DIFFO	DIFES	DIFE	DIEEO
		7:0	DIFF7	DIFF6	DIFF5	DIFF4	DIFF3	DIFF2	DIFF1	DIFF0
0x60	AFEC_DIFFR	15.0					DIFFII	DIFFIU	DIFF9	DIFFO
		23.10								
		7:0						CSE	1 [3:0]	
		15.8						032	L[J.U]	
0x64	AFEC_CSELR	23.16								
		31.24								
		7:0				DATA	A[7:0]			
		15:8				DATA	[15:8]			
0x68	AFEC_CDR	23:16					[]			
		31:24								
		7:0				AOFI	=[7:0]			
		15:8							AOFI	-[9:8]
0x6C	AFEC_COCR	23:16								
		31:24								
		7:0			TEMPCM	PMOD[1:0]				RTCT
0x70	AFEC_TEMPMR	15:8				_				
		23:16								
L	1									

Analog Comparator Controller (ACC)

54.6.2 Analog Settings

The user can select the input hysteresis and configure two different options, characterized as follows:

- High-speed: shortest propagation delay/highest current consumption
- Low-power: longest propagation delay/lowest current consumption

Refer to ACC Analog Control Register.

54.6.3 Output Masking Period

As soon as the analog comparator settings change, the output is invalid for a duration depending on ISEL current.

A masking period is automatically triggered as soon as a write access is performed on the ACC_MR or ACC Analog Control Register (ACC_ACR) (regardless of the register data content).

When ISEL = 0, the mask period is $8 \times t_{peripheral clock}$.

When ISEL = 1, the mask period is $128 \times t_{peripheral clock}$.

The masking period is reported by reading a negative value (bit 31 set) on the ACC Interrupt Status Register (ACC_ISR).

54.6.4 Fault Mode

In Fault mode, a comparison match event is communicated by the ACC fault output which is directly and internally connected to a PWM fault input.

The source of the fault output can be configured as either a combinational value derived from the analog comparator output or as the peripheral clock resynchronized value. Refer to Analog Comparator Controller Block Diagram.

54.6.5 Register Write Protection

To prevent any single software error from corrupting ACC behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the ACC Write Protection Mode Register (ACC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the ACC Write Protection Status Register (ACC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the ACC_WPSR register.

The following registers can be write-protected:

- ACC Mode Register
- ACC Analog Control Register

Electrical Characteristics for SAM ...

Figure 58-11. Single-ended Mode AFE

Figure 58-12. Differential Mode AFE

58.8.1 AFE Power Supply

58.8.1.1 Power Supply Characteristics Table 58-29. Power Supply Characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
I _{VDDIN}	Analog Current Consumption	Sleep mode (see Note 2)		2		μA
		Fast wake-up mode (see Note 3)	m	0.4		mA
		Normal mode, single sampling		3.4	-	mA
		Normal mode, dual sampling	m	4.2		mA
L	Digital Current Consumption	Sleep mode (see Note 2)		1		
VDDCORE		Normal mode	-	80	-	μΑ

Note:

1. Current consumption is measured with AFEC_ACR.IBCTL=10.

Electrical Characteristics for SAM ...

Master Read Mode

Slave Read Mode

In slave mode, SPCK is the input clock for the SPI. The max SPCK frequency is given by setup and hold timings SPI_7/SPI_8 (or SPI_{10}/SPI_{11}). Since this gives a frequency well above the pad limit, the limit in slave read mode is given by SPCK pad.

Slave Write Mode

58.13.1.6.2 SPI Timings

Timings are given in the following domains:

- 1.8V domain: V_{DDIO} from 1.7V to 1.95V, maximum external capacitor = 20 pF
- 3.3V domain: V_{DDIO} from 2.85V to 3.6V, maximum external capacitor = 40 pF

Table 58-56. SPI Timings

Symbol	Parameter	Conditions	Min	Max	Unit
SPI0	MISO Setup time before SPCK rises (master)	3.3V domain	Min Max Unit n 12.4 - ns n 14.6 - ns n 14.6 - ns n 0 - ns n 0 - ns n 0 - ns n 0.1 - ns n -3.7 2.2 ns n -3.8 2.7 ns n 12.6 - ns n 15.13 - ns n 0 - ns n 0.3.6 2.0 ns n -3.3 2.8 ns n 3.0 11.9 ns n 3.5 13.9 ns n 1.5 - ns n 0.6 - ns n 0.8 - ns n 0.8 - ns	ns	
		1.8V domain	14.6	Max Unit .4 ns .6 ns .6 ns .6 ns .6 ns .7 2.2 ns 7 2.2 ns 8 2.7 ns .6 - ns .13 11.9 ns .13.9 ns	ns
SPI1	MISO Hold time after SPCK rises (master)	3.3V domain	0	Max Ur - ns - ns - ns - ns - ns 2.2 ns 2.2 ns 2.7 ns 2.7 ns 2.7 ns - ns 2.7 ns 2.7 ns 2.7 ns 2.7 ns 2.1 ns - ns 13 - ns 11.9 ns 13.9 ns - ns 13.9 ns 13.9 ns 12.0 ns 13.7 ns 13.7 ns - ns	
		1.8V domain	0	-	ns
SPI ₂	SPCK rising to MOSI Delay (master)	3.3V domain	-3.7	2.2	ns
		1.8V domain	-3.8	2.7	ns
SPI ₃	MISO Setup time before SPCK falls (master)	3.3V domain	12.6	-	ns
		1.8V domain	15.13	-	ns
SPI4	MISO Hold time after SPCK falls (master)	3.3V domain	0	-	ns
		1.8V domain	0	-	ns
SPI5	SPCK falling to MOSI Delay (master)	3.3V domain	-3.6	2.0	ns
		1.8V domain	-3.3	2.8	ns
SPI ₆	SPCK falling to MISO Delay (slave)	3.3V domain	3.0	11.9	ns
		1.8V domain	3.5	13.9	ns
SPI7	MOSI Setup time before SPCK rises (slave)	3.3V domain	1.2	-	ns
		1.8V domain	1.5	-	ns
SPI ₈	MOSI Hold time after SPCK rises (slave)	3.3V domain	0.6	-	ns
		1.8V domain	0.8	-	ns
SPI ₉	SPCK rising to MISO Delay (slave)	3.3V domain	3.0	12.0	ns
		1.8V domain	3.4	13.7	ns
SPI ₁₀	MOSI Setup time before SPCK falls (slave)	3.3V domain	1.2	-	ns
		1.8V domain	1.5	-	ns
SPI ₁₁	MOSI Hold time after SPCK falls (slave)	3.3V domain	0.6	-	ns

Electrical Characteristics for SAM E70/S70

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	Allowable Voltage Ripple	rms value 10 kHz to 20 MHz	_	-	20	mv
	PLL A and Main Oscillator Supply	_	1.08	1.2	1.32	V
V _{DDPLL}	Allowable Voltage	rms value 10 kHz to 10 MHz	_	_	20	mV
	Ripple	rms value > 10 MHz	-	-	10	
V _{DDUTMIC}	DC Supply UDPHS and UHPHS UTMI+ Core	_	1.08	1.2	1.32	V
	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	_	TypMaxUnit $-$ 20mv 1.2 1.32 V $-$ 20 $_{MV}$ $-$ 10 $_{MV}$ 1.2 1.32 V $-$ 10 $_{MV}$ $-$ 10 $_{MV}$ 3.3 3.6 V $-$ 10 $_{MV}$		
V _{DDUTMII}	DC Supply UDPHS and UHPHS UTMI+ Interface	_	3.0	3.3	3.6	V
V _{DDPLL} V _{DDUTMIC} V _{DDUTMII}	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	-	-	20	mV
	DC Supply UTMI PLL	-	3.0	3.3	3.6	V
V _{DDPLLUSB}	Allowable Voltage Ripple	rms value 10 kHz to 10 MHz	_	_	10	mV

Note:

1. V_{DDIO} voltage must be equal to V_{DDIN} voltage.

Table 59-4. DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Low-level Input Voltage	GPIO_MLB	-0.3	-	0.7	V
		GPIO_AD, GPIO_CLK	-0.3	_	0.8	
		GPIO, CLOCK, RST, TEST	-0.3	_	$V_{DDIO} \ge 0.3$	