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2 – Low Power Modes in ProASIC3/E and 
ProASIC3 nano FPGAs

Introduction
The demand for low power systems and semiconductors, combined with the strong growth observed for
value-based FPGAs, is driving growing demand for low power FPGAs. For portable and battery-operated
applications, power consumption has always been the greatest challenge. The battery life of a system
and on-board devices has a direct impact on the success of the product. As a result, FPGAs used in
these applications should meet low power consumption requirements.
ProASIC®3/E and ProASIC3 nano FPGAs offer low power consumption capability inherited from their
nonvolatile and live-at-power-up (LAPU) flash technology. This application note describes the power
consumption and how to use different power saving modes to further reduce power consumption for
power-conscious electronics design.

Power Consumption Overview
In evaluating the power consumption of FPGA technologies, it is important to consider it from a system
point of view. Generally, the overall power consumption should be based on static, dynamic, inrush, and
configuration power. Few FPGAs implement ways to reduce static power consumption utilizing sleep
modes.
SRAM-based FPGAs use volatile memory for their configuration, so the device must be reconfigured
after each power-up cycle. Moreover, during this initialization state, the logic could be in an indeterminate
state, which might cause inrush current and power spikes. More complex power supplies are required to
eliminate potential system power-up failures, resulting in higher costs. For portable electronics requiring
frequent power-up and -down cycles, this directly affects battery life, requiring more frequent recharging
or replacement.

SRAM-Based FPGA Total Power Consumption = Pstatic + Pdynamic + Pinrush + Pconfig 

EQ 1

ProASIC3/E Total Power Consumption = Pstatic + Pdynamic 

EQ 2
Unlike SRAM-based FPGAs, Microsemi flash-based FPGAs are nonvolatile and do not require power-up
configuration. Additionally, Microsemi nonvolatile flash FPGAs are live at power-up and do not require
additional support components. Total power consumption is reduced as the inrush current and
configuration power components are eliminated.
Note that the static power component can be reduced in flash FPGAs (such as the ProASIC3/E devices)
by entering User Low Static mode or Sleep mode. This leads to an extremely low static power
component contribution to the total system power consumption.
The following sections describe the usage of Static (Idle) mode to reduce the power component, User
Low Static mode to reduce the static power component, and Sleep mode and Shutdown mode to achieve
a range of power consumption when the FPGA or system is idle. Table 2-1 on page 22 summarizes the
different low power modes offered by ProASIC3/E devices.
Revision 5 21
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standard for CLKBUF is LVTTL in the current Microsemi Libero® System-on-Chip (SoC) and Designer
software. 

The current synthesis tool libraries only infer the CLKBUF or CLKINT macros in the netlist. All other
global macros must be instantiated manually into your HDL code. The following is an example of
CLKBUF_LVCMOS25 global macro instantiations that you can copy and paste into your code: 

VHDL
component clkbuf_lvcmos25

port (pad : in std_logic; y : out std_logic);
end component

begin
-- concurrent statements
u2 : clkbuf_lvcmos25 port map (pad =>  ext_clk, y => int_clk);
end

Verilog
module design (______);

input _____;
output ______;

clkbuf_lvcmos25 u2 (.y(int_clk), .pad(ext_clk);

endmodule

Table 3-9 • I/O Standards within CLKBUF

Name Description

CLKBUF_LVCMOS5 LVCMOS clock buffer with 5.0 V CMOS voltage level

CLKBUF_LVCMOS33 LVCMOS clock buffer with 3.3 V CMOS voltage level

CLKBUF_LVCMOS25 LVCMOS clock buffer with 2.5 V CMOS voltage level1

CLKBUF_LVCMOS18 LVCMOS clock buffer with 1.8 V CMOS voltage level

CLKBUF_LVCMOS15 LVCMOS clock buffer with 1.5 V CMOS voltage level

CLKBUF_LVCMOS12 LVCMOS clock buffer with 1.2 V CMOS voltage level 

CLKBUF_PCI PCI clock buffer

CLKBUF_PCIX PCIX clock buffer

CLKBUF_GTL25 GTL clock buffer with 2.5 V CMOS voltage level1

CLKBUF_GTL33 GTL clock buffer with 3.3 V CMOS voltage level1

CLKBUF_GTLP25 GTL+ clock buffer with 2.5 V CMOS voltage level1

CLKBUF_GTLP33 GTL+ clock buffer with 3.3 V CMOS voltage level1

CLKBUF_ HSTL _I HSTL Class I clock buffer1

CLKBUF_ HSTL _II HSTL Class II clock buffer1

CLKBUF_SSTL2_I SSTL2 Class I clock buffer1

CLKBUF_SSTL2_II SSTL2 Class II clock buffer1

CLKBUF_SSTL3_I SSTL3 Class I clock buffer1

CLKBUF_SSTL3_II SSTL3 Class II clock buffer1

Notes:
1. Supported in only the IGLOOe, ProASIC3E, AFS600, and AFS1500 devices
2. By default, the CLKBUF macro uses the 3.3 V LVTTL I/O technology.
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You can control the maximum number of shared instances allowed for the legalization to take place using
the Compile Option dialog box shown in Figure 3-17. Refer to Libero SoC / Designer online help for
details on the Compile Option dialog box. A large number of shared instances most likely indicates a
floorplanning problem that you should address. 

Designer Flow for Global Assignment 
To achieve the desired result, pay special attention to global management during synthesis and place-
and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default.
Thus, the default flow will not assign any signal to the quadrant global network. However, you can use
attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2
supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will
make the choice to assign the correct signals to global. However, you can also utilize PDC and perform
manual global assignment to overwrite any automatic assignment. The following step-by-step
suggestions guide you in the layout of your design and help you improve timing in Designer:

1. Run Compile and check the Compile report. The Compile report has global information in the
"Device Utilization" section that describes the number of chip and quadrant signals in the design.
A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of
nets listed by fanout, and net candidates for local clock assignment. Review this information. Note
that YB or YC are counted as global only when they are used in isolation; if you use YB only and
not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global
Utilization report. 

2. If some signals have a very high fanout and are candidates for global promotion, promote those
signals to global using the compile options or PDC commands. Figure 3-18 on page 54 shows the
Globals Management section of the compile options. Select Promote regular nets whose
fanout is greater than and enter a reasonable value for fanouts. 

Figure 3-17 • Shared Instances in the Compile Option Dialog Box
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CLKDLY Macro Usage 
When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the 
clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location 
integrated with a PLL, but use the programmable delay that is associated with the global network by 
instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC 
location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between 
the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured 
to use the programmable delay elements in accordance with the macro instantiated by the user.
As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to 
three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment 
options. If the PLL core is used, assuming output to only one global clock network, the other two global 
clock networks are free to be used by either connecting directly from the global inputs or connecting from 
one or two CLKDLY macros for programmable delay.
The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-6 
on page 71. Note that any CCC locations with no PLL present contain only the programmable delay 
blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay 
Adjustment" section on page 86 for a description of the programmable delay types used for the PLL. Also 
refer to Table 4-14 on page 94 for Programmable Delay Type 1 step delay values, and Table 4-15 on 
page 94 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can be 
configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the 
global networks A, B, and C. 
Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the 
PLL is not used in the design. Figure 4-6 on page 71 shows a block diagram of the PLL, where the 
programmable delay elements are used for the global networks (Programmable Delay Type 2). 
66 Revision 5
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This section outlines the following device information: CCC features, PLL core specifications, functional 
descriptions, software configuration information, detailed usage information, recommended board-level 
considerations, and other considerations concerning global networks in low power flash devices. 

Clock Conditioning Circuits with Integrated PLLs
Each of the CCCs with integrated PLLs includes the following:

• 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltage-
controlled oscillator

• 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the 
global networks

• 6 programmable delays and 1 fixed delay for time advance/delay adjustments
• 5 programmable frequency divider blocks to provide frequency synthesis (automatically 

configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs
There are two types of simplified CCCs without integrated PLLs in low power flash devices.

1. The simplified CCC with programmable delays, which is composed of the following: 
– 3 global multiplexer blocks that steer signals from the global pads and the programmable 

delay elements onto the global networks
– 3 programmable delay elements to provide time delay adjustments

2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is 
composed of the following: 
– A global multiplexer block that steer signals from the global pads onto the global networks
Revision 5 79
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Table 4-18 • Fusion Dynamic CCC Division by Half Configuration

OADIVHALF / 
OBDIVHALF / 
OCDIVHALF

OADIV<4:0> / 
OBDIV<4:0> / 
OCDIV<4:0> 
(in decimal) Divider Factor

Input Clock 
Frequency

Output Clock 
Frequency (MHz)

1 2 1.5  100 MHz RC 
Oscillator

66.7

4 2.5 40.0

6 3.5 28.6

8 4.5 22.2

10 5.5 18.2

12 6.5 15.4

14 7.5 13.3

16 8.5 11.8

18 9.5 10.5

20 10.5 9.5

22 11.5 8.7

24 12.5 8.0

26 13.5 7.4

28 14.5 6.9

0 0–31 1–32 Other Clock Sources Depends on other 
divider settings

Table 4-19 • Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families

Voltage

VCOSEL[2:1]

00 01 10 11

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

IGLOO and IGLOO PLUS

1.2 V ± 5% 24 35 30 70 60 140 135 160

1.5 V ± 5% 24 43.75 30 87.5 60 175 135 250

ProASIC3L, RT ProASIC3, and Military ProASIC3/L

1.2 V ± 5% 24 35 30 70 60 140 135 250

1.5 V ± 5% 24 43.75 30 70 60 175 135 350

ProASIC3 and Fusion

1.5 V ± 5% 24 43.75 33.75 87.5 67.5 175 135 350

Table 4-20 • Configuration Bit <74> / VCOSEL<0> Selection for All Families

VCOSEL[0] Description

0 Fast PLL lock acquisition time with high tracking jitter. Refer to the corresponding datasheet for specific 
value and definition.

1 Slow PLL lock acquisition time with low tracking jitter. Refer to the corresponding datasheet for specific 
value and definition.
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Using internal feedback, we know from EQ 4-1 on page 86 that the maximum achievable output 
frequency from the primary output is 

fGLA = fCLKA × m / (n × u) = 2 MHz × 128 / (1 × 1) = 256 MHz

EQ 4-5
Figure 4-35 shows the settings of the initial PLL. When configuring the initial PLL, specify the input to be 
either Hardwired I/O–Driven or External I/O–Driven. This generates a netlist with the initial PLL routed 
from an I/O. Do not specify the input to be Core Logic–Driven, as this prohibits the connection from the 
I/O pin to the input of the PLL. 

A second PLL can be connected serially to achieve the required frequency. EQ 4-1 on page 86 to EQ 4-3 
on page 86 are extended as follows:

fGLA2 = fGLA × m2 / (n2 × u2) = fCLKA1 × m1 × m2 / (n1 × u1 × n2 × u2) – Primary PLL Output Clock 

EQ 4-6

fGLB2 = fYB2 = fCLKA1 × m1 × m2 / (n1 × n2 × v1 × v2) – Secondary 1 PLL Output Clock(s)

EQ 4-7

fGLC2 = fYC2 = fCLKA1 × m1 × m2 / (n1 × n2 × w1 × w2) – Secondary 2 PLL Output Clock(s)

EQ 4-8
In the example, the final output frequency (foutput) from the primary output of the second PLL will be as 
follows (EQ 4-9):

foutput = fGLA2 = fGLA × m2 / (n2 × u2) = 256 MHz × 70 / (64 × 1) = 280 MHz

EQ 4-9
Figure 4-36 on page 111 shows the settings of the second PLL. When configuring the second PLL (or 
any subsequent-stage PLLs), specify the input to be Core Logic–Driven. This generates a netlist with the 
second PLL routed internally from the core. Do not specify the input to be Hardwired I/O–Driven or 
External I/O–Driven, as these options prohibit the connection from the output of the first PLL to the input 
of the second PLL.

Figure 4-34 • Cascade PLL Configuration

Figure 4-35 • First-Stage PLL Showing Input of 2 MHz and Output of 256 MHz
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Figure 5-2 • Fusion Device Architecture Overview (AFS600) 

Figure 5-3 • ProASIC3 and IGLOO Device Architecture 
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Figure 6-2 • Fusion Device Architecture Overview (AFS600) 
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Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, ADDRB
should be tied to ground. 

DINA and DINB
These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all
configurations. When a data width less than nine is specified, unused high-order signals must be
grounded (Table 6-4).
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, DINB should

be tied to ground.
DOUTA and DOUTB
These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA
and DINB, high-order bits may not be used (Table 6-4). The output data on unused pins is undefined. 

RAM512X18 Macro
RAM512X18 is the two-port configuration of the same RAM block (Figure 6-5 on page 140). Like the
RAM4K9 nomenclature, the RAM512X18 nomenclature refers to both the deepest possible configuration
and the widest possible configuration the two-port RAM block can assume. In two-port mode, the RAM
block can be configured to either the 512×9 aspect ratio or the 256×18 aspect ratio. RAM512X18 is also
fully synchronous and has the following features:

• Dedicated read and write ports
• Active-low read and write enables
• Selectable pipelined or nonpipelined read
• Active-low asynchronous reset
• Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion

to previous stages.

Table 6-3 • Address Pins Unused/Used for Various Supported Bus Widths

D×W

ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.

Table 6-4 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

D×W
DINx/DOUTx

Unused Used
4k×1 [8:1] [0]

2k×2 [8:2] [1:0]

1k×4 [8:4] [3:0]

512×9 None [8:0]

Note: The "x" in DINx or DOUTx implies A or B.
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Example of RAM Initialization
This section of the document presents a sample design in which a 4×4 RAM block is being initialized
through the JTAG port. A test feature has been implemented in the design to read back the contents of
the RAM after initialization to verify the procedure.
The interface block of this example performs two major functions: initialization of the RAM block and
running a test procedure to read back the contents. The clock output of the interface is either the write
clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the
interface block is included in the "Sample Verilog Code" section on page 151. 
For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in
the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis.
If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input
buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.
Figure 6-10 shows the simulation results for the initialization step of the example design.
The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output
of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data
Register Update state) for the write address and data to become stable before loading them into the RAM
block.
Figure 6-11 presents the test procedure of the example. The data read back from the memory block
matches the written data, thus verifying the design functionality.

Figure 6-10 • Simulation of Initialization Step

Figure 6-11 • Simulation of the Test Procedure of the Example
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I/O Structures in nano Devices
Table 7-8 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are
powered down, and the card is plugged into the
system. Then the power supplies are turned on for
the system but not for the FPGA on the card.

Compliance of nano Devices Compliant 

Table 7-9 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control
circuitry isolates the card busses until the card
supplies are at their nominal operating levels and
stable.

Compliance of nano Devices Compliant
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Input Support for DDR
The basic structure to support a DDR input is shown in Figure 9-2. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock. Each
I/O tile supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 9-1 on page 205. New data is presented to the output
every half clock cycle. 
Note: DDR macros and I/O registers do not require additional routing. The combiner automatically

recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip.
The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR
macro.

Figure 9-2 • DDR Input Register Support in Low Power Flash Devices
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DDR Input Register

The corresponding structural representations, as generated by SmartGen, are shown below:

Verilog
module DDR_InBuf_SSTL2_I(PAD,CLR,CLK,QR,QF);

input   PAD, CLR, CLK;
output  QR, QF;

wire Y;

INBUF_SSTL2_I INBUF_SSTL2_I_0_inst(.PAD(PAD),.Y(Y));
DDR_REG DDR_REG_0_inst(.D(Y),.CLK(CLK),.CLR(CLR),.QR(QR),.QF(QF));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
--The correct library will be inserted automatically by SmartGen 
library proasic3; use proasic3.all; 
--library fusion; use fusion.all; 
--library igloo; use igloo.all; 

entity DDR_InBuf_SSTL2_I is 
port(PAD, CLR, CLK : in std_logic;  QR, QF : out std_logic) ;

end DDR_InBuf_SSTL2_I;

architecture DEF_ARCH of  DDR_InBuf_SSTL2_I is

component INBUF_SSTL2_I
port(PAD : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

signal Y : std_logic ;

begin

INBUF_SSTL2_I_0_inst : INBUF_SSTL2_I
port map(PAD => PAD, Y => Y);
DDR_REG_0_inst : DDR_REG
port map(D => Y, CLK => CLK, CLR => CLR, QR => QR, QF => QF);

end DEF_ARCH;

Figure 9-5 • DDR Input Register (SSTL2 Class I)
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11 – Security in Low Power Flash Devices

Security in Programmable Logic
The need for security on FPGA programmable logic devices (PLDs) has never been greater than today.
If the contents of the FPGA can be read by an external source, the intellectual property (IP) of the system
is vulnerable to unauthorized copying. Fusion, IGLOO, and ProASIC3 devices contain state-of-the-art
circuitry to make the flash-based devices secure during and after programming. Low power flash devices
have a built-in 128-bit Advanced Encryption Standard (AES) decryption core (except for 30 k gate
devices and smaller). The decryption core facilitates secure in-system programming (ISP) of the FPGA
core array fabric, the FlashROM, and the Flash Memory Blocks (FBs) in Fusion devices. The FlashROM,
Flash Blocks, and FPGA core fabric can be programmed independently of each other, allowing the
FlashROM or Flash Blocks to be updated without the need for change to the FPGA core fabric. 
Microsemi has incorporated the AES decryption core into the low power flash devices and has also
included the Microsemi flash-based lock technology, FlashLock.® Together, they provide leading-edge
security in a programmable logic device. Configuration data loaded into a device can be decrypted prior
to being written to the FPGA core using the AES 128-bit block cipher standard. The AES encryption key
is stored in on-chip, nonvolatile flash memory. 
This document outlines the security features offered in low power flash devices, some applications and
uses, as well as the different software settings for each application.  

Figure 11-1 • Overview on Security
Revision 5 235



ProASIC3 nano FPGA Fabric User’s Guide
Cortex-M1 Device Security
Cortex-M1–enabled devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted Write and Verify
• Fusion Embedded Flash Memory enabled for AES-encrypted Write

AES Encryption of Programming Files
Low power flash devices employ AES as part of the security mechanism that prevents invasive and
noninvasive attacks. The mechanism entails encrypting the programming file with AES encryption and
then passing the programming file through the AES decryption core, which is embedded in the device.
The file is decrypted there, and the device is successfully programmed. The AES master key is stored in
on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure
programming environment (such as the Microsemi In-House Programming center), and then "blank"
parts can be shipped to an untrusted programming or manufacturing center for final personalization with
an AES-encrypted bitstream. Late-stage product changes or personalization can be implemented easily
and securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over
public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-
encrypted data.
The AES key protects the programming data for file transfer into the device with 128-bit AES encryption.
If AES encryption is used, the AES key is stored or preprogrammed into the device. To program, you
must use an AES-encrypted file, and the encryption used on the file must match the encryption key
already in the device. 
The AES key is protected by a FlashLock security Pass Key that is also implemented in each device. The
AES key is always protected by the FlashLock Key, and the AES-encrypted file does NOT contain the
FlashLock Key. This FlashLock Pass Key technology is exclusive to the Microsemi flash-based device
families. FlashLock Pass Key technology can also be implemented without the AES encryption option,
providing a choice of different security levels.
In essence, security features can be categorized into the following three options:

• AES encryption with FlashLock Pass Key protection
• FlashLock protection only (no AES encryption)
• No protection 

Each of the above options is explained in more detail in the following sections with application examples
and software implementation options.

Advanced Encryption Standard 
The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and
Technology) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to
protect sensitive government information well into the 21st century. It replaces the aging DES, which
NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (securely) in low power flash devices in nonvolatile flash
memory. All programming files sent to the device can be authenticated by the part prior to programming
to ensure that bad programming data is not loaded into the part that may possibly damage it. All
programming verification is performed on-chip, ensuring that the contents of low power flash devices
remain secure. 
Microsemi has implemented the 128-bit AES (Rijndael) algorithm in low power flash devices. With this
key size, there are approximately 3.4 × 1038 possible 128-bit keys. DES has a 56-bit key size, which
provides approximately 7.2 × 1016 possible keys. In their AES fact sheet, the National Institute of
Standards and Technology uses the following hypothetical example to illustrate the theoretical security
provided by AES. If one were to assume that a computing system existed that could recover a DES key
in a second, it would take that same machine approximately 149 trillion years to crack a 128-bit AES key.
NIST continues to make their point by stating the universe is believed to be less than 20 billion years
old.1
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Figure 11-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

Figure 11-11 • All Silicon Features Selected for Fusion
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Microprocessor Programming of Microsemi’s Low Power Flash Devices
Microprocessor Programming Support in Flash Devices 
The flash-based FPGAs listed in Table 14-1 support programming with a microprocessor and the
functions described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 14-1. Where the information applies to only one device or limited devices, these exclusions will
be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 14-1. Where the information applies to only one device or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 14-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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17 – Power-Up/-Down Behavior of Low Power 
Flash Devices

Introduction
Microsemi’s low power flash devices are flash-based FPGAs manufactured on a 0.13 µm process node. 
These devices offer a single-chip, reprogrammable solution and support Level 0 live at power-up (LAPU) 
due to their nonvolatile architecture. 
Microsemi's low power flash FPGA families are optimized for logic area, I/O features, and performance. 
IGLOO® devices are optimized for power, making them the industry's lowest power programmable 
solution. IGLOO PLUS FPGAs offer enhanced I/O features beyond those of the IGLOO ultra-low power 
solution for I/O-intensive low power applications. IGLOO nano devices are the industry's lowest-power 
cost-effective solution. ProASIC3®L FPGAs balance low power with high performance. The ProASIC3 
family is Microsemi's high-performance flash FPGA solution. ProASIC3 nano devices offer the lowest-
cost solution with enhanced I/O capabilities.
Microsemi’s low power flash devices exhibit very low transient current on each power supply during 
power-up. The peak value of the transient current depends on the device size, temperature, voltage 
levels, and power-up sequence. 
The following devices can have inputs driven in while the device is not powered:

• IGLOO (AGL015 and AGL030)
• IGLOO nano (all devices)
• IGLOO PLUS (AGLP030, AGLP060, AGLP125)
• IGLOOe (AGLE600, AGLE3000)
• ProASIC3L (A3PE3000L)
• ProASIC3 (A3P015, A3P030)
• ProASIC3 nano (all devices)
• ProASIC3E (A3PE600, A3PE1500, A3PE3000)
• Military ProASIC3EL (A3PE600L, A3PE3000L, but not A3P1000)
• RT ProASIC3 (RT3PE600L, RT3PE3000L)

The driven I/Os do not pull up power planes, and the current draw is limited to very small leakage current, 
making them suitable for applications that require cold-sparing. These devices are hot-swappable, 
meaning they can be inserted in a live power system.1 

1. For more details on the levels of hot-swap compatibility in Microsemi’s low power flash devices, refer to the "Hot-Swap 
Support" section in the I/O Structures chapter of the FPGA fabric user’s guide for the device you are using.
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