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1 – FPGA Array Architecture in Low Power Flash 
Devices

Device Architecture

Advanced Flash Switch
Unlike SRAM FPGAs, the low power flash devices use a live-at-power-up ISP flash switch as their
programming element. Flash cells are distributed throughout the device to provide nonvolatile,
reconfigurable programming to connect signal lines to the appropriate VersaTile inputs and outputs. In
the flash switch, two transistors share the floating gate, which stores the programming information
(Figure 1-1). One is the sensing transistor, which is only used for writing and verification of the floating
gate voltage. The other is the switching transistor. The latter is used to connect or separate routing nets,
or to configure VersaTile logic. It is also used to erase the floating gate. Dedicated high-performance
lines are connected as required using the flash switch for fast, low-skew, global signal distribution
throughout the device core. Maximum core utilization is possible for virtually any design. The use of the
flash switch technology also removes the possibility of firm errors, which are increasingly common in
SRAM-based FPGAs.

Figure 1-1 • Flash-Based Switch
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Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Table 2-2 • Using ULSICC Macro*

VHDL Verilog
COMPONENT ULSICC
       port (
              LSICC         : in     STD_ULOGIC);
END COMPONENT;

Example:
COMPONENT ULSICC
       port (
              LSICC         : in     STD_ULOGIC);
END COMPONENT;

attribute syn_noprune : boolean;
attribute syn_noprune of u1 : label is true;
u1: ULSICC port map(myInputSignal);

module ULSICC(LSICC);
 input LSICC;
endmodule

Example:
ULSICC U1(.LSICC(myInputSignal)) 
/* synthesis syn_noprune=1 */;

Note: *Supported in Libero® software v7.2 and newer versions.

Figure 2-2 • User Low Static (Idle) Mode Application—Internal Control Signal
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Global Resources in Low Power Flash Devices
Global Resource Support in Flash-Based Devices
The flash FPGAs listed in Table 3-1 support the global resources and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO products as
listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 3-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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ProASIC3 nano FPGA Fabric User’s Guide
VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global). 
Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 3-2 and Figure 3-3 on page 34 show simplified VersaNet global networks. 
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 41. 
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 3-1 • Overview of VersaNet Global Network and Device Architecture
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Global Buffers with No Programmable Delays
Access to the global / quadrant global networks can be configured directly from the global I/O buffer, 
bypassing the CCC functional block (as indicated by the dotted lines in Figure 4-1 on page 61). Internal 
signals driven by the FPGA core can use the global / quadrant global networks by connecting via the 
routed clock input of the multiplexer tree.
There are many specific CLKBUF macros supporting the wide variety of single-ended I/O inputs 
(CLKBUF) and differential I/O standards (CLKBUF_LVDS/LVPECL) in the low power flash families. They 
are used when connecting global I/Os directly to the global/quadrant networks. 
Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
When an internal signal needs to be connected to the global/quadrant network, the CLKINT macro is 
used to connect the signal to the routed clock input of the network's MUX tree.
To utilize direct connection from global I/Os or from internal signals to the global/quadrant networks, 
CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are used (Figure 4-2). 

• The CLKBUF and CLKBUF_LVPECL/LVDS1 macros are composite macros that include an I/O 
macro driving a global buffer, which uses a hardwired connection.

• The CLKBUF, CLKBUF_LVPECL/LVDS1 and CLKINT macros are pass-through clock sources 
and do not use the PLL or provide any programmable delay functionality.

• The CLKINT macro provides a global buffer function driven internally by the FPGA core.
The available CLKBUF macros are described in the IGLOO, ProASIC3, SmartFusion, and Fusion 
Macro Library Guide.

Global Buffer with Programmable Delay
Clocks requiring clock adjustments can utilize the programmable delay cores before connecting to the 
global / quadrant global networks. A maximum of 18 CCC global buffers can be instantiated in a device—
three per CCC and up to six CCCs per device. 
Each CCC functional block contains a programmable delay element for each of the global networks (up 
to three), and users can utilize these features by using the corresponding macro (Figure 4-3 on page 65). 

1. B-LVDS and M-LVDS are supported with the LVDS macro.

Note: IGLOO nano and ProASIC nano devices do not support differential inputs.
Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Core Logic Clock Source
Core logic refers to internal routed nets. Internal routed signals access the CCC via the FPGA Core 
Fabric. Similar to the External I/O option, whenever the clock source comes internally from the core itself, 
the routed signal is instantiated with a PLLINT macro before connecting to the CCC clock input (see 
Figure 4-12 for an example illustration of the connections, shown in red). 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-12 • Illustration of Core Logic Usage
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ProASIC3 nano FPGA Fabric User’s Guide
This section outlines the following device information: CCC features, PLL core specifications, functional 
descriptions, software configuration information, detailed usage information, recommended board-level 
considerations, and other considerations concerning global networks in low power flash devices. 

Clock Conditioning Circuits with Integrated PLLs
Each of the CCCs with integrated PLLs includes the following:

• 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltage-
controlled oscillator

• 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the 
global networks

• 6 programmable delays and 1 fixed delay for time advance/delay adjustments
• 5 programmable frequency divider blocks to provide frequency synthesis (automatically 

configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs
There are two types of simplified CCCs without integrated PLLs in low power flash devices.

1. The simplified CCC with programmable delays, which is composed of the following: 
– 3 global multiplexer blocks that steer signals from the global pads and the programmable 

delay elements onto the global networks
– 3 programmable delay elements to provide time delay adjustments

2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is 
composed of the following: 
– A global multiplexer block that steer signals from the global pads onto the global networks
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ProASIC3 nano FPGA Fabric User’s Guide
Phase Adjustment
The four phases available (0, 90, 180, 270) are phases with respect to VCO (PLL output). The 
VCO is divided to achieve the user's CCC required output frequency (GLA, YB/GLB, YC/GLC). The 
division happens after the selection of the VCO phase. The effective phase shift is actually the VCO 
phase shift divided by the output divider. This is why the visual CCC shows both the actual achievable 
phase and more importantly the actual delay that is equivalent to the phase shift that can be 
achieved.

Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register 
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and 
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits 
The flash configuration bits are the configuration bits associated with programmed flash switches. These 
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits 
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration. 
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control 
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be 
dynamically changed through shift and update operations in the serial register interface. Access to the 
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs. 
Figure 4-21 illustrates a simplified block diagram of the MUX architecture in the CCCs. 

The selection between the flash configuration bits and the bits from the configuration register is made 
using the MODE signal shown in Figure 4-21. If the MODE signal is logic HIGH, the dynamic shift 
register configuration bits are selected. There are 81 control bits to configure the different functions of the 
CCC.

Note: *For Fusion, bit <88:81> is also needed. 
Figure 4-21 • The CCC Configuration MUX Architecture
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FlashROM in Microsemi’s Low Power Flash Devices
SmartGen allows you to generate the FlashROM netlist in VHDL, Verilog, or EDIF format. After the
FlashROM netlist is generated, the core can be instantiated in the main design like other SmartGen
cores. Note that the macro library name for FlashROM is UFROM. The following is a sample FlashROM
VHDL netlist that can be instantiated in the main design:
library ieee;
use ieee.std_logic_1164.all;
library fusion;

entity FROM_a is 
port( ADDR : in std_logic_vector(6 downto 0); DOUT : out std_logic_vector(7 downto 0));

end FROM_a;

architecture DEF_ARCH of  FROM_a is

component UFROM
generic (MEMORYFILE:string);
port(DO0, DO1, DO2, DO3, DO4, DO5, DO6, DO7 : out std_logic;

ADDR0, ADDR1, ADDR2, ADDR3, ADDR4, ADDR5, ADDR6 : in std_logic := 'U') ;
end component;

component GND
port( Y : out std_logic);

end component;

signal U_7_PIN2 : std_logic ;

begin

GND_1_net : GND port map(Y => U_7_PIN2);
UFROM0 : UFROM
generic map(MEMORYFILE => "FROM_a.mem")
port map(DO0 => DOUT(0), DO1 => DOUT(1), DO2 => DOUT(2), DO3 => DOUT(3), DO4 => DOUT(4),

DO5 => DOUT(5), DO6 => DOUT(6), DO7 => DOUT(7), ADDR0 => ADDR(0), ADDR1 => ADDR(1),
ADDR2 => ADDR(2), ADDR3 => ADDR(3), ADDR4 => ADDR(4), ADDR5 => ADDR(5),
ADDR6 => ADDR(6));

end DEF_ARCH;

SmartGen generates the following files along with the netlist. These are located in the SmartGen folder
for the Libero SoC project.

1. MEM (Memory Initialization) file 
2. UFC (User Flash Configuration) file 
3. Log file 

The MEM file is used for simulation, as explained in the "Simulation of FlashROM Design" section on
page 127. The UFC file, generated by SmartGen, has the FlashROM configuration for single or multiple
devices and is used during STAPL generation. It contains the region properties and simulation values.
Note that any changes in the MEM file will not be reflected in the UFC file. Do not modify the UFC to
change FlashROM content. Instead, use the SmartGen GUI to modify the FlashROM content. See the
"Programming File Generation for FlashROM Design" section on page 127 for a description of how the
UFC file is used during the programming file generation. The log file has information regarding the file
type and file location.
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. Automotive ProASIC3 devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of

phase (inverted) between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent
errors during compile. This warning applies only to automotive ProASIC3 parts of certain revisions and earlier.
Contact Technical Support at soc_tech@microsemi.com for information on the revision number for a particular lot
and date code.

2. For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be used.
Figure 6-3 • Supported Basic RAM Macros
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ProASIC3 nano FPGA Fabric User’s Guide
recommended, since it reduces the complexity of the user interface block and the board-level JTAG
driver.
Moreover, using an internal counter for address generation speeds up the initialization procedure, since
the user only needs to import the data through the JTAG port.
The designer may use different methods to select among the multiple RAM blocks. Using counters along
with demultiplexers is one approach to set the write enable signals. Basically, the number of RAM blocks
needing initialization determines the most efficient approach. For example, if all the blocks are initialized
with the same data, one enable signal is enough to activate the write procedure for all of them at the
same time. Another alternative is to use different opcodes to initialize each memory block. For a small
number of RAM blocks, using counters is an optimal choice. For example, a ring counter can be used to
select from multiple RAM blocks. The clock driver of this counter needs to be controlled by the address
generation process.
Once the addressing of one block is finished, a clock pulse is sent to the (ring) counter to select the next
memory block.
Figure 6-9 illustrates a simple block diagram of an interface block between UJTAG and RAM blocks. 

In the circuit shown in Figure 6-9, the shift register is enabled by the UDRSH output of the UJTAG macro.
The counters and chip select outputs are controlled by the value of the TAP Instruction Register. The
comparison block compares the UIREG value with the "start initialization" opcode value (defined by the
user). If the result is true, the counters start to generate addresses and activate the WEN inputs of
appropriate RAM blocks.
The UDRUPD output of the UJTAG macro, also shown in Figure 6-9, is used for generating the write
clock (WCLK) and synchronizing the data register and address counter with WCLK. UDRUPD is HIGH
when the TAP Controller is in the Data Register Update state, which is an indication of completing the
loading of one data word. Once the TAP Controller goes into the Data Register Update state, the
UDRUPD output of the UJTAG macro goes HIGH. Therefore, the pipeline register and the address
counter place the proper data and address on the outputs of the interface block. Meanwhile, WCLK is
defined as the inverted UDRUPD. This will provide enough time (equal to the UDRUPD HIGH time) for
the data and address to be placed at the proper ports of the RAM block before the rising edge of WCLK.
The inverter is not required if the RAM blocks are clocked at the falling edge of the write clock. An
example of this is described in the "Example of RAM Initialization" section on page 150.

Figure 6-9 • Block Diagram of a Sample User Interface
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7 – I/O Structures in nano Devices 

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V,
1.5 V, 1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO® and ProASIC3 nano devices
support standard I/Os with the addition of Schmitt trigger and hot-swap capability.
Users designing I/O solutions are faced with a number of implementation decisions and configuration
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing
challenges of their many diverse applications. The Microsemi Libero® System-on-Chip (SoC) software
provides an easy way to implement I/O that will result in robust I/O design. 
This document describes Standard I/O types used for the nano devices in terms of he supported
standards. It then explains the individual features and how to implement them in Libero SoC. 

Figure 7-1 • I/O Block Logical Representation for Single-Tile Designs (10 k, 15 k, and 20 k devices)
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I/O Structures in nano Devices
Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k, and 250 k Devices)
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I/O Structures in nano Devices
I/O Architecture

I/O Tile
IGLOO and ProASIC3 nano devices utilize either a single-tile or dual-tile I/O architecture (Figure 7-1 on
page 159 and Figure 7-2 on page 160). The 10 k, 15 k, and 20 k devices utilize the single-tile design and
the 60 k, 125 k and 250 k devices utilize the dual-tile design. In both cases, the I/O tile provides a
flexible, programmable structure for implementing a large number of I/O standards. In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired. For single-tile designs, all I/O registers share both the CLR and CLK ports,
while for the dual-tile designs, the output register and output enable register share one CLK port. For the
dual-tile designs, the registers can also be used to support the JESD-79C Double Data Rate (DDR)
standard within the I/O structure (see the "DDR for Microsemi’s Low Power Flash Devices" section on
page 205 for more information). 

I/O Registers
Each I/O module contains several input and output registers. Refer to Figure 7-3 on page 165 for a
simplified representation of the I/O block. The number of input registers is selected by a set of switches
(not shown in Figure 7-2 on page 160) between registers to implement single-ended data transmission to
and from the FPGA core. The Designer software sets these switches for the user. For single-tile designs,
a common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. The I/O
register combining requires that no combinatorial logic be present between the register and the I/O.
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Rules for the DDR I/O Function
• The fanout between an I/O pin (D or Y) and a DDR (DDR_REG or DDR_OUT) macro must be

equal to one for the combining to happen on that pin.
• If a DDR_REG macro and a DDR_OUT macro are combined on the same bidirectional I/O, they

must share the same clear signal.
• Registers will not be combined in an I/O in the presence of DDR combining on the same I/O. 

Using the I/O Buffer Schematic Cell
Libero SoC software includes the ViewDraw schematic entry tool. Using ViewDraw, the user can insert
any supported I/O buffer cell in the top-level schematic. Figure 8-5 shows a top-level schematic with
different I/O buffer cells. When synthesized, the netlist will contain the same I/O macro.

Figure 8-5 • I/O Buffer Schematic Cell Usage
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• Programming Centers
Microsemi programming hardware policy also applies to programming centers. Microsemi 
expects all programming centers to use certified programmers to program Microsemi devices. If a 
programming center uses noncertified programmers to program Microsemi devices, the 
"Noncertified Programmers" policy applies. 

Important Programming Guidelines

Preprogramming Setup
Before programming, several steps are required to ensure an optimal programming yield.

Use Proper Handling and Electrostatic Discharge (ESD) Precautions 
Microsemi FPGAs are sensitive electronic devices that are susceptible to damage from ESD and other 
types of mishandling. For more information about ESD, refer to the Quality and Reliability Guide, 
beginning with page 41.

Use the Latest Version of the Designer Software to Generate Your 
Programming File (recommended)
The files used to program Microsemi flash devices (*.bit, *.stp, *.pdb) contain important information about 
the switches that will be programmed in the FPGA. Find the latest version and corresponding release 
notes at http://www.microsemi.com/soc/download/software/designer/. Also, programming files must 
always be zipped during file transfer to avoid the possibility of file corruption.

Use the Latest Version of the Programming Software 
The programming software is frequently updated to accommodate yield enhancements in FPGA 
manufacturing. These updates ensure maximum programming yield and minimum programming times. 
Before programming, always check the version of software being used to ensure it is the most recent. 
Depending on the programming software, refer to one of the following:

• FlashPro: http://www.microsemi.com/soc/download/program_debug/flashpro/
• Silicon Sculptor: http://www.microsemi.com/soc/download/program_debug/ss/

Use the Most Recent Adapter Module with Silicon Sculptor
Occasionally, Microsemi makes modifications to the adapter modules to improve programming yields 
and programming times. To identify the latest version of each module before programming, visit
http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx.

Perform Routine Hardware Self-Diagnostic Test
• Adapter modules must be regularly cleaned. Adapter modules need to be inserted carefully into 

the programmer to make sure the DIN connectors (pins at the back side) are not damaged.
• FlashPro

The self-test is only applicable when programming with FlashPro and FlashPro3 programmers. It 
is not supported with FlashPro4 or FlashPro Lite. To run the self-diagnostic test, follow the 
instructions given in the "Performing a Self-Test" section of
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf. 

• Silicon Sculptor
The self-diagnostic test verifies correct operation of the pin drivers, power supply, CPU, memory, 
and adapter module. This test should be performed with an adapter module installed and before 
every programming session. At minimum, the test must be executed every week. To perform self-
diagnostic testing using the Silicon Sculptor software, perform the following steps, depending on 
the operating system:
– DOS: From anywhere in the software, type ALT + D.
– Windows: Click Device > choose Actel Diagnostic > select the Test tab > click OK.
Silicon Sculptor programmers must be verified annually for calibration. Refer to the Silicon 
Sculptor Verification of Calibration Work Instruction document on the website. 
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For this scenario, generate the programming file as follows:
1. Select only the Security settings option, as indicated in Figure 11-14 and Figure 11-15 on

page 252. Click Next.

Table 11-5 • FlashLock Security Options for Fusion

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / no FlashLock – – – –

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓

Figure 11-14 • Programming IGLOO and ProASIC3 Security Settings Only
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Programming with this file is intended for an unsecured environment. The AES key encrypts the
programming file with the same AES key already used in the device and utilizes it to program the device.

Reprogramming Devices
Previously programmed devices can be reprogrammed using the steps in the "Generation of the
Programming File in a Trusted Environment—Application 1" section on page 247 and "Generation of
Security Header Programming File Only—Application 2" section on page 250. In the case where a
FlashLock Pass Key has been programmed previously, the user must generate the new programming file
with a FlashLock Pass Key that matches the one previously programmed into the device. The software
will check the FlashLock Pass Key in the programming file against the FlashLock Pass Key in the device.
The keys must match before the device can be unlocked to perform further programming with the new
programming file.
Figure 11-10 on page 248 and Figure 11-11 on page 248 show the option Programming previously
secured device(s), which the user should select before proceeding. Upon going to the next step, the
user will be notified that the same FlashLock Pass Key needs to be entered, as shown in Figure 11-19 on
page 256. 

Figure 11-18 • Security Level Set High to Reprogram Device with AES Key
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Programming Voltage (VPUMP) and VJTAG 
Low-power flash devices support on-chip charge pumps, and therefore require only a single 3.3 V
programming voltage for the VPUMP pin during programming. When the device is not being
programmed, the VPUMP pin can be left floating or can be tied (pulled up) to any voltage between 0 V
and 3.6 V2. During programming, the target board or the FlashPro4/3/3X programmer can provide
VPUMP. FlashPro4/3/3X is capable of supplying VPUMP to a single device. If more than one device is to
be programmed using FlashPro4/3/3X on a given board, FlashPro4/3/3X should not be relied on to
supply the VPUMP voltage. A FlashPro4/3/3X programmer is not capable of providing reliable VJTAG
voltage. The board must supply VJTAG voltage to the device and the VJTAG pin of the programmer
header must be connected to the device VJTAG pin. Microsemi recommends that VPUMP3 and VJTAG
power supplies be kept separate with independent filtering capacitors rather than supplying them from a
common rail. Refer to the "Board-Level Considerations" section on page 271 for capacitor requirements. 
Low power flash device I/Os support a bank-based, voltage-supply architecture that simultaneously
supports multiple I/O voltage standards (Table 12-2). By isolating the JTAG power supply in a separate
bank from the user I/Os, low power flash devices provide greater flexibility with supply selection and
simplify power supply and printed circuit board (PCB) design. The JTAG pins can be run at any voltage
from 1.5 V to 3.3 V (nominal). Microsemi recommends that TCK be tied to GND through a 200 ohm to 1
Kohm resistor. This prevents a possible totempole current on the input buffer stage. For TDI, TMS, and
TRST pins, the devices provide an internal nominal 10 Kohm pull-up resistor. During programming, all
I/O pins, except for JTAG interface pins, are tristated and weakly pulled up to VCCI. This isolates the part
and prevents the signals from floating. The JTAG interface pins are driven by the FlashPro4/3/3X during
programming, including the TRST pin, which is driven HIGH. 

Nonvolatile Memory (NVM) Programming Voltage
SmartFusion and Fusion devices need stable VCCNVM/VCCENVM3 (1.5 V power supply to the
embedded nonvolatile memory blocks) and VCCOSC/VCCROSC4 (3.3 V power supply to the integrated
RC oscillator). The tolerance of VCCNVM/VCCENVM is ± 5% and VCCOSC/VCCROSC is ± 5%. 
Unstable supply voltage on these pins can cause an NVM programming failure due to NVM page
corruption. The NVM page can also be corrupted if the NVM reset pin has noise. This signal must be tied
off properly.
Microsemi recommends installing the following capacitors5 on the VCCNVM/VCCENVM and
VCCOSC/VCCROSC pins:

• Add one bypass capacitor of 10 µF for each power supply plane followed by an array of
decoupling capacitors of 0.1 µF. 

• Add one 0.1 µF capacitor near each pin.

2. During sleep mode in IGLOO devices connect VPUMP to GND.
3. VPUMP has to be quiet for successful programming. Therefore VPUMP must be separate and required capacitors must be

installed close to the FPGA VPUMP pin.

Table 12-2 • Power Supplies

Power Supply Programming Mode
Current during
Programming

VCC 1.2 V / 1.5 V < 70 mA

VCCI 1.2 V / 1.5 V / 1.8 V / 2.5 V / 3.3 V
(bank-selectable)

I/Os are weakly pulled up.

VJTAG 1.2 V / 1.5 V / 1.8 V / 2.5 V / 3.3 V < 20 mA

VPUMP 3.15 V to 3.45 V < 80 mA

Note: All supply voltages should be at 1.5 V or higher, regardless of the setting during normal
operation, except for IGLOO nano, where 1.2 V VCC and VJTAG programming is allowed.

4. VCCROSC is for SmartFusion.
5. The capacitors cannot guarantee reliable operation of the device if the board layout is not done properly.
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UJTAG Support in Flash-Based Devices
The flash-based FPGAs listed in Table 16-1 support the UJTAG feature and the functions described in
this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 16-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 16-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 16-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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