
Microchip Technology - A3PN060-Z1VQ100 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 18432

Number of I/O 71

Number of Gates 60000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -20°C ~ 85°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn060-z1vq100

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn060-z1vq100-4494308
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3 nano FPGA Fabric User’s Guide
PLL Core Specifications . 84
Functional Description . 85
Software Configuration . 96
Detailed Usage Information . 104
Recommended Board-Level Considerations . 112
Conclusion . 113
Related Documents . 113
List of Changes . 113

5 FlashROM in Microsemi’s Low Power Flash Devices . 117
Introduction . 117
Architecture of User Nonvolatile FlashROM . 117
FlashROM Support in Flash-Based Devices . 118
FlashROM Applications . 120
FlashROM Security . 121
Programming and Accessing FlashROM . 122
FlashROM Design Flow . 124
Custom Serialization Using FlashROM . 129
Conclusion . 130
Related Documents . 130
List of Changes . 130

6 SRAM and FIFO Memories in Microsemi's Low Power Flash Devices . 131
Introduction . 131
Device Architecture . 131
SRAM/FIFO Support in Flash-Based Devices . 134
SRAM and FIFO Architecture . 135
Memory Blocks and Macros . 135
Initializing the RAM/FIFO . 148
Software Support . 154
Conclusion . 157
List of Changes . 157

7 I/O Structures in nano Devices. 159
Introduction . 159
Low Power Flash Device I/O Support . 161
nano Standard I/Os . 162
I/O Architecture . 164
I/O Standards . 166
Wide Range I/O Support . 166
I/O Features . 167
Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout . 176
I/O Software Support . 177
User I/O Naming Convention . 178
I/O Bank Architecture and CCC Naming Conventions . 179
Board-Level Considerations . 181
Conclusion . 182
Related Documents . 183
List of Changes . 183
Revision 5 3

ProASIC3 nano FPGA Fabric User’s Guide
Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO nano ProASIC3 nano (x, y) (x, y) (x, y) (x, y) (x, y) (x, y)

AGLN010 A3P010 (0, 2) (32, 5) None None (0, 0) (34, 5)

AGLN015 A3PN015 (0, 2) (32, 9) None None (0, 0) (34, 9)

AGLN020 A3PN020 (0, 2) 32, 13) None None (0, 0) (34, 13)

AGLN060 A3PN060 (3, 2) (66, 25) None (3, 26) (0, 0) (69, 29)

AGLN125 A3PN125 (3, 2) (130, 25) None (3, 26) (0, 0) (133, 29)

AGLN250 A3PN250 (3, 2) (130, 49) None (3, 50) (0, 0) (133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600

Top Row (5, 1) to (168, 1)
Bottom Row (7, 0) to (165, 0)

Top Row (169, 1) to (192, 1)

I/O Tile

Memory
Blocks

Memory
Blocks

Memory
Blocks

UJTAG FlashROM

Top Row (7, 79) to (189, 79)
Bottom Row (5, 78) to (192, 78)

I/O Tile

(3, 77)
(3, 76)

Memory
Blocks

(3, 3)
(3, 2)

VersaTile (Core)
 (3, 75)

VersaTile (Core)
 (3, 4)

(0, 0) (197, 0)

(194, 2)
(194, 3)

(194, 4)
VersaTile (Core)

(194, 75)
VersaTile (Core)

(197, 79)

(194, 77)
(194, 76)

(0, 79)

(197, 1)
Revision 5 17

3 – Global Resources in Low Power Flash Devices

Introduction
IGLOO, Fusion, and ProASIC3 FPGA devices offer a powerful, low-delay VersaNet global network
scheme and have extensive support for multiple clock domains. In addition to the Clock Conditioning
Circuits (CCCs) and phase-locked loops (PLLs), there is a comprehensive global clock distribution
network called a VersaNet global network. Each logical element (VersaTile) input and output port has
access to these global networks. The VersaNet global networks can be used to distribute low-skew clock
signals or high-fanout nets. In addition, these highly segmented VersaNet global networks contain spines
(the vertical branches of the global network tree) and ribs that can reach all the VersaTiles inside their
region. This allows users the flexibility to create low-skew local clock networks using spines. This
document describes VersaNet global networks and discusses how to assign signals to these global
networks and spines in a design flow. Details concerning low power flash device PLLs are described in
the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" section on
page 61. This chapter describes the low power flash devices’ global architecture and uses of these global
networks in designs.

Global Architecture
Low power flash devices offer powerful and flexible control of circuit timing through the use of global
circuitry. Each chip has up to six CCCs, some with PLLs.

• In IGLOOe, ProASIC3EL, and ProASIC3E devices, all CCCs have PLLs—hence, 6 PLLs per
device (except the PQ208 package, which has only 2 PLLs).

• In IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, and ProASIC3L devices, the west CCC
contains a PLL core (except in 10 k through 30 k devices).

• In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and
AFS1500), the west and east CCCs each contain a PLL.

Refer to Table 4-6 on page 84 for details. Each PLL includes delay lines, a phase shifter (0°, 90°, 180°,
270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three chip global lines on each side of the chip (six chip global lines total). The CCCs at the four corners
each have access to three quadrant global lines in each quadrant of the chip (except in 10 k through 30 k
gate devices).
The nano 10 k, 15 k, and 20 k devices support four VersaNet global resources, and 30 k devices support
six global resources. The 10 k through 30 k devices have simplified CCCs called CCC-GLs.
The flexible use of the VersaNet global network allows the designer to address several design
requirements. User applications that are clock-resource-intensive can easily route external or gated
internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay
penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.
Note: Microsemi recommends that you choose the appropriate global pin and use the appropriate global

resource so you can realize these benefits.
The following sections give an overview of the VersaNet global network, the structure of the global
network, access point for the global networks, and the clock aggregation feature that enables a design to
have very low clock skew using spines.
Revision 5 31

ProASIC3 nano FPGA Fabric User’s Guide
During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)
You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC
commands:
assign_local_clock –net QCLK1_c –type quadrant UL
assign_local_clock –net QCLK2_c –type quadrant LL

Step 4
Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:
The following nets have been assigned to a global resource:
Fanout Type Name

1536 INT_NET Net : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536 SET/RESET_NET Net : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256 CLK_NET Net : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256 CLK_NET Net : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

The following nets have been assigned to a quadrant clock resource using PDC:
Fanout Type Name

256 CLK_NET Net : QCLK1_c

Driver: QCLK1_pad_CLKINT
Region: quadrant_UL

256 CLK_NET Net : QCLK2_c
Driver: QCLK2_pad_CLKINT
Region: quadrant_LL

Step 5
Run Layout.

Global Management in PLL Design
This section describes the legal global network connections to PLLs in the low power flash devices. For
detailed information on using PLLs, refer to "Clock Conditioning Circuits in Low Power Flash Devices and
Mixed Signal FPGAs" section on page 61. Microsemi recommends that you use the dedicated global
pins to directly drive the reference clock input of the associated PLL for reduced propagation delays and
clock distortion. However, low power flash devices offer the flexibility to connect other signals to
reference clock inputs. Each PLL is associated with three global networks (Figure 3-5 on page 36). There
are some limitations, such as when trying to use the global and PLL at the same time:

• If you use a PLL with only primary output, you can still use the remaining two free global
networks.

• If you use three globals associated with a PLL location, you cannot use the PLL on that location.
• If the YB or YC output is used standalone, it will occupy one global, even though this signal does

not go to the global network.
Revision 5 57

Global Resources in Low Power Flash Devices
Using Spines of Occupied Global Networks
When a signal is assigned to a global network, the flash switches are programmed to set the MUX select
lines (explained in the "Clock Aggregation Architecture" section on page 45) to drive the spines of that
network with the global net. However, if the global net is restricted from reaching into the scope of a
spine, the MUX drivers of that spine are available for other high-fanout or critical signals (Figure 3-20).
For example, if you want to limit the CLK1_c signal to the left half of the chip and want to use the right
side of the same global network for CLK2_c, you can add the following PDC commands:
define_region -name region1 -type inclusive 0 0 34 29
assign_net_macros region1 CLK1_c
assign_local_clock –net CLK2_c –type chip B2

Conclusion
IGLOO, Fusion, and ProASIC3 devices contain 18 global networks: 6 chip global networks and 12
quadrant global networks. These global networks can be segmented into local low-skew networks called
spines. The spines provide low-skew networks for the high-fanout signals of a design. These allow you
up to 252 different internal/external clocks in an A3PE3000 device. This document describes the
architecture for the global network, plus guidelines and methodologies in assigning signals to globals and
spines.

Related Documents

User’s Guides
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

Figure 3-20 • Design Example Using Spines of Occupied Global Networks
58 Revision 5

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each CCC can implement up to three independent global buffers (with or without programmable delay)
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to
three global outputs. Unused global outputs of a PLL can be used to implement independent global
buffers, up to a maximum of three global outputs for a given CCC.

CCC Programming
The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous dedicated shift register interface is dynamically
accessible from inside the low power flash devices to permit parameter changes, such as PLL divide
ratios and delays, during device operation.
To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation.
This latter mode allows the user to dynamically reconfigure the CCC without the need for core
programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG
Applications in Microsemi’s Low Power Flash Devices" section on page 297 or the application note Using
Global Resources in Actel Fusion Devices.

Global Resources
Low power flash and mixed signal devices provide three global routing networks (GLA, GLB, and GLC)
for each of the CCC locations. There are potentially many I/O locations; each global I/O location can be
chosen from only one of three possibilities. This is controlled by the multiplexer tree circuitry in each
global network. Once the I/O location is selected, the user has the option to utilize the CCCs before the
signals are connected to the global networks. The CCC in each location (up to six) has the same
structure, so generating the CCC macros is always done with an identical software GUI. The CCCs in the
corner locations drive the quadrant global networks, and the CCCs in the middle of the east and west
chip sides drive the chip global networks. The quadrant global networks span only a quarter of the
device, while the chip global networks span the entire device. For more details on global resources
offered in low power flash devices, refer to the "Global Resources in Low Power Flash Devices" section
on page 31.
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, or
CLKC-GLC) of a given CCC. A PLL macro uses the CLKA CCC input to drive its reference clock. It uses
the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can
also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the
YB (or YC) output is used. Refer to the "PLL Macro Signal Descriptions" section on page 68 for more
information.
Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or

ProASIC3 nano devices)
• The FPGA core
62 Revision 5

http://www.microsemi.com/soc/documents/Fusion_GlobalResources_AN.pdf
http://www.microsemi.com/soc/documents/Fusion_GlobalResources_AN.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Implementing EXTFB in ProASIC3/E Devices
When the external feedback (EXTFB) signal of the PLL in the ProASIC3/E devices is implemented, the
phase detector of the PLL core receives the reference clock (CLKA) and EXTFB as inputs. EXTFB must
be sourced as an INBUF macro and located at the global/chip clock location associated with the target
PLL by Designer software. EXTFB cannot be sourced from the FPGA fabric.
The following example shows CLKA and EXTFB signals assigned to two global I/Os in the same global
area of ProASIC3E device.

Figure 4-5 • CLKA and EXTFB Assigned to Global I/Os

+–

+
–

Source for CCC
(CLKA or CLKB or CLKC)

To Core

GxB0

GxB1

GxB2
Routed Clok
(from FPGA core)

+–

+
–

Source for CCC
(CLKA or CLKB or CLKC)

To Core

GxA0

GxA1

GxA2
Routed Clok
(from FPGA core)

x represents global location; can be A, B, C, D, E, or F

External Feedback
(EXTFB) signal is
assigned on GxB1
by Designer automatically.

The reference clock,
CLKA, can be assigned
on GxA0 or GxA1.
70 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Phase Adjustment
The four phases available (0, 90, 180, 270) are phases with respect to VCO (PLL output). The
VCO is divided to achieve the user's CCC required output frequency (GLA, YB/GLB, YC/GLC). The
division happens after the selection of the VCO phase. The effective phase shift is actually the VCO
phase shift divided by the output divider. This is why the visual CCC shows both the actual achievable
phase and more importantly the actual delay that is equivalent to the phase shift that can be
achieved.

Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits
The flash configuration bits are the configuration bits associated with programmed flash switches. These
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration.
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be
dynamically changed through shift and update operations in the serial register interface. Access to the
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs.
Figure 4-21 illustrates a simplified block diagram of the MUX architecture in the CCCs.

The selection between the flash configuration bits and the bits from the configuration register is made
using the MODE signal shown in Figure 4-21. If the MODE signal is logic HIGH, the dynamic shift
register configuration bits are selected. There are 81 control bits to configure the different functions of the
CCC.

Note: *For Fusion, bit <88:81> is also needed.
Figure 4-21 • The CCC Configuration MUX Architecture

SDIN

SCLK

RESET_ENABLE

SDOUT

SSHIFT

MODE

SUPDATE

Configuration Bits

Dynamic Shift
Register

Flash
Programming
Configuration

Bits

<80:0>*

<80>
<79:0> <79:0>*
Revision 5 87

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each group of control bits is assigned a specific location in the configuration shift register. For a list of the
81 configuration bits (C[80:0]) in the CCC and a description of each, refer to "PLL Configuration Bits
Description" on page 90. The configuration register can be serially loaded with the new configuration
data and programmed into the CCC using the following ports:

• SDIN: The configuration bits are serially loaded into a shift register through this port. The LSB of
the configuration data bits should be loaded first.

• SDOUT: The shift register contents can be shifted out (LSB first) through this port using the shift
operation.

• SCLK: This port should be driven by the shift clock.
• SSHIFT: The active-high shift enable signal should drive this port. The configuration data will be

shifted into the shift register if this signal is HIGH. Once SSHIFT goes LOW, the data shifting will
be halted.

• SUPDATE: The SUPDATE signal is used to configure the CCC with the new configuration bits
when shifting is complete.

To access the configuration ports of the shift register (SDIN, SDOUT, SSHIFT, etc.), the user should
instantiate the CCC macro in his design with appropriate ports. Microsemi recommends that users
choose SmartGen to generate the CCC macros with the required ports for dynamic reconfiguration.
Users must familiarize themselves with the architecture of the CCC core and its input, output, and
configuration ports to implement the desired delay and output frequency in the CCC structure.
Figure 4-22 shows a model of the CCC with configurable blocks and switches.
88 Revision 5

FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Support in Flash-Based Devices
The flash FPGAs listed in Table 5-1 support the FlashROM feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 5-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 5-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 5-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
118 Revision 5

http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf

FlashROM in Microsemi’s Low Power Flash Devices
Programming and Accessing FlashROM
The FlashROM content can only be programmed via JTAG, but it can be read back selectively through
the JTAG programming interface, the UJTAG interface, or via direct FPGA core addressing. The pages of
the FlashROM can be made secure to prevent read-back via JTAG. In that case, read-back on these
secured pages is only possible by the FPGA core fabric or via UJTAG.
A 7-bit address from the FPGA core defines which of the eight pages (three MSBs) is being read, and
which of the 16 bytes within the selected page (four LSBs) are being read. The FlashROM content can
be read on a random basis; the access time is 10 ns for a device supporting commercial specifications.
The FPGA core will be powered down during writing of the FlashROM content. FPGA power-down during
FlashROM programming is managed on-chip, and FPGA core functionality is not available during
programming of the FlashROM. Table 5-2 summarizes various FlashROM access scenarios.

Figure 5-6 shows the accessing of the FlashROM using the UJTAG macro. This is similar to FPGA core
access, where the 7-bit address defines which of the eight pages (three MSBs) is being read and which
of the 16 bytes within the selected page (four LSBs) are being read. Refer to the "UJTAG Applications in
Microsemi’s Low Power Flash Devices" section on page 297 for details on using the UJTAG macro to
read the FlashROM.
Figure 5-7 on page 123 and Figure 5-8 on page 123 show the FlashROM access from the JTAG port.
The FlashROM content can be read on a random basis. The three-bit address defines which page is
being read or updated.

Table 5-2 • FlashROM Read/Write Capabilities by Access Mode

Access Mode FlashROM Read FlashROM Write

JTAG Yes Yes

UJTAG Yes No

FPGA core Yes No

Figure 5-6 • Block Diagram of Using UJTAG to Read FlashROM Contents

FlashROM

Addr [6:0]

Data[7:0]
CLK

Enable

SDO

SDI

RESET

Addr [6:0]

Data [7:0]

TDI

TCK

TDO

TMS

TRST
UTDI

UTDO

UDRCK

UDRCAP

UDRSH

UDRUPD

URSTB

UIREG [7:0]

Control

UJTAG
Address Generation and

Data Serialization
122 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Simulation of FlashROM Design
The MEM file has 128 rows of 8 bits, each representing the contents of the FlashROM used for
simulation. For example, the first row represents page 0, byte 0; the next row is page 0, byte 1; and so
the pattern continues. Note that the three MSBs of the address define the page number, and the four
LSBs define the byte number. So, if you send address 0000100 to FlashROM, this corresponds to the
page 0 and byte 4 location, which is the fifth row in the MEM file. SmartGen defaults to 0s for any
unspecified location of the FlashROM. Besides using the MEM file generated by SmartGen, you can
create a binary file with 128 rows of 8 bits each and use this as a MEM file. Microsemi recommends that
you use different file names if you plan to generate multiple MEM files. During simulation, Libero SoC
passes the MEM file used as the generic file in the netlist, along with the design files and testbench. If
you want to use different MEM files during simulation, you need to modify the generic file reference in the
netlist.
…………………
UFROM0: UFROM
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_a.mem")
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_b.mem")
…………………….

The VITAL and Verilog simulation models accept the generics passed by the netlist, read the MEM file,
and perform simulation with the data in the file.

Programming File Generation for FlashROM Design
FlashPoint is the programming software used to generate the programming files for flash devices.
Depending on the applications, you can use the FlashPoint software to generate a STAPL file with
different FlashROM contents. In each case, optional AES decryption is available. To generate a STAPL
file that contains the same FPGA core content and different FlashROM contents, the FlashPoint software
needs an Array Map file for the core and UFC file(s) for the FlashROM. This final STAPL file represents
the combination of the logic of the FPGA core and FlashROM content.
FlashPoint generates the STAPL files you can use to program the desired FlashROM page and/or FPGA
core of the FPGA device contents. FlashPoint supports the encryption of the FlashROM content and/or
FPGA Array configuration data. In the case of using the FlashROM for device serialization, a sequence
of unique FlashROM contents will be generated. When generating a programming file with multiple
unique FlashROM contents, you can specify in FlashPoint whether to include all FlashROM content in a
single STAPL file or generate a different STAPL file for each FlashROM (Figure 5-11). The programming
software (FlashPro) handles the single STAPL file that contains the FlashROM content from multiple
devices. It enables you to program the FlashROM content into a series of devices sequentially
(Figure 5-11). See the FlashPro User’s Guide for information on serial programming.

Figure 5-11 • Single or Multiple Programming File Generation

FlashPoint

FPGA Array
Map File

FPGA Array
Map File

Security SettingsSecurity Settings

UFC File for
Multiple FlashROM

Contents

UFC File for
Single FlashROM

Contents

FlashPoint

Single
STAPL

File

Single
STAPL

File

Single
STAPL

File
Revision 5 127

http://www.microsemi.com/soc/documents/flashpro_ug.pdf

ProASIC3 nano FPGA Fabric User’s Guide
I/O Software Support
In Microsemi's Libero software, default settings have been defined for the various I/O standards
supported. Changes can be made to the default settings via the use of attributes; however, not all I/O
attributes are applicable for all I/O standards.

Table 7-15 • nano I/O Attributes vs. I/O Standard Applications

I/O Standard

SLEW
(output
only)

OUT_DRIVE
(output only) RES_PULL

OUT_LOAD
(output only)

Schmitt
Trigger Hold State

Combine
Register

IGLOO
nano

ProASIC
3 nano

LVTTL/
LVCMOS3.3

✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS2.5 ✓ ✓ (8) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.8 ✓ ✓ (4) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.5 ✓ ✓ (2) ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS1.2 ✓ ✓ (2) ✓ ✓ – ✓ ✓ ✓

Software
Defaults

HIGH Refer to
numbers in
parentheses

in above cells.

None All
Devices:

5 pF

10 pF or
35 pF*

Off Off No

Note: *10 pF for A3PN010, A3PN015, and A3PN020; 35 pF for A3PN060, A3PN125, and A3PN250.
Revision 5 177

I/O Software Control in Low Power Flash Devices
Automatically Assigning Technologies to I/O Banks
The I/O Bank Assigner (IOBA) tool runs automatically when you run Layout. You can also use this tool
from within the MultiView Navigator (Figure 8-17). The IOBA tool automatically assigns technologies and
VREF pins (if required) to every I/O bank that does not currently have any technologies assigned to it.
This tool is available when at least one I/O bank is unassigned.
To automatically assign technologies to I/O banks, choose I/O Bank Assigner from the Tools menu (or
click the I/O Bank Assigner's toolbar button, shown in Figure 8-16).

Messages will appear in the Output window informing you when the automatic I/O bank assignment
begins and ends. If the assignment is successful, the message "I/O Bank Assigner completed
successfully" appears in the Output window, as shown in Figure 8-17.

Figure 8-16 • I/O Bank Assigner’s Toolbar Button

Figure 8-17 • I/O Bank Assigner Displays Messages in Output Window
202 Revision 5

Security in Low Power Flash Devices
Figure 11-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

Figure 11-11 • All Silicon Features Selected for Fusion
248 Revision 5

Security in Low Power Flash Devices
Choose the High security level to reprogram devices using both the FlashLock Pass Key and AES key
protection (Figure 11-18 on page 255). Enter the AES key and click Next.
A device that has already been secured with FlashLock and has an AES key loaded must recognize the
AES key to program the device and generate a valid bitstream in authentication. The FlashLock Key is
only required to unlock the device and change the security settings.
This is what makes it possible to program in an untrusted environment. The AES key is protected inside
the device by the FlashLock Key, so you can only program if you have the correct AES key. In fact, the
AES key is not in the programming file either. It is the key used to encrypt the data in the file. The same
key previously programmed with the FlashLock Key matches to decrypt the file.
An AES-encrypted file programmed to a device without FlashLock would not be secure, since without
FlashLock to protect the AES key, someone could simply reprogram the AES key first, then program with
any AES key desired or no AES key at all. This option is therefore not available in the software.

Note: The settings in this figure are used to show the generation of an AES-encrypted programming file for the FPGA
array, FlashROM, and FB contents. One or all locations may be selected for encryption.

Figure 11-17 • Settings to Program a Device Secured with FlashLock and using AES Encryption
254 Revision 5

12 – In-System Programming (ISP) of Microsemi’s
Low Power Flash Devices Using FlashPro4/3/3X

Introduction
Microsemi’s low power flash devices are all in-system programmable. This document describes the
general requirements for programming a device and specific requirements for the FlashPro4/3/3X
programmers1.
IGLOO, ProASIC3, SmartFusion, and Fusion devices offer a low power, single-chip, live-at-power-up
solution with the ASIC advantages of security and low unit cost through nonvolatile flash technology.
Each device contains 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be
used in diverse system applications such as Internet Protocol (IP) addressing, user system preference
storage, device serialization, or subscription-based business models. IGLOO, ProASIC3, SmartFusion,
and Fusion devices offer the best in-system programming (ISP) solution, FlashLock® security features,
and AES-decryption-based ISP.

ISP Architecture
Low power flash devices support ISP via JTAG and require a single VPUMP voltage of 3.3 V during
programming. In addition, programming via a microcontroller in a target system is also supported.
Refer to the "Microprocessor Programming of Microsemi’s Low Power Flash Devices" chapter of an
appropriate FPGA fabric user’s guide.
Family-specific support:

• ProASIC3, ProASIC3E, SmartFusion, and Fusion devices support ISP.
• ProASIC3L devices operate using a 1.2 V core voltage; however, programming can be done only

at 1.5 V. Voltage switching is required in-system to switch from a 1.2 V core to 1.5 V core for
programming.

• IGLOO and IGLOOe V5 devices can be programmed in-system when the device is using a 1.5 V
supply voltage to the FPGA core.

• IGLOO nano V2 devices can be programmed at 1.2 V core voltage (when using FlashPro4 only)
or 1.5 V. IGLOO nano V5 devices are programmed with a VCC core voltage of 1.5 V. Voltage
switching is required in-system to switch from a 1.2 V supply (VCC,VCCI, and VJTAG) to 1.5 V
for programming. The exception is that V2 devices can be programmed at 1.2 V VCC with
FlashPro4.

IGLOO devices cannot be programmed in-system when the device is in Flash*Freeze mode. The device
should exit Flash*Freeze mode and be in normal operation for programming to start. Programming
operations in IGLOO devices can be achieved when the device is in normal operating mode and a 1.5 V
core voltage is used.

JTAG 1532
IGLOO, ProASIC3, SmartFusion, and Fusion devices support the JTAG-based IEEE 1532 standard for
ISP. To start JTAG operations, the IGLOO device must exit Flash*Freeze mode and be in normal
operation before starting to send JTAG commands to the device. As part of this support, when a device is
in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN

1. FlashPro4 replaced FlashPro3/3X in 2010 and is backward compatible with FlashPro3/3X as long as there is no connection
to pin 4 on the JTAG header on the board. On FlashPro3/3X, there is no connection to pin 4 on the JTAG header; however,
pin 4 is used for programming mode (Prog_Mode) on FlashPro4. When converting from FlashPro3/3X to FlashPro4, users
should make sure that JTAG connectors on system boards do not have any connection to pin 4. FlashPro3X supports
discrete TCK toggling that is needed to support non-JTAG compliant devices in the chain. This feature is included in
FlashPro4.
Revision 5 261

ProASIC3 nano FPGA Fabric User’s Guide
ISP Programming Header Information
The FlashPro4/3/3X programming cable connector can be connected with a 10-pin, 0.1"-pitch
programming header. The recommended programming headers are manufactured by AMP (103310-1)
and 3M (2510-6002UB). If you have limited board space, you can use a compact programming header
manufactured by Samtec (FTSH-105-01-L-D-K). Using this compact programming header, you are
required to order an additional header adapter manufactured by Microsemi SoC Products Group (FP3-
10PIN-ADAPTER-KIT).
Existing ProASICPLUS family customers who are using the Samtec Small Programming Header
(FTSH-113-01-L-D-K) and are planning to migrate to IGLOO or ProASIC3 devices can also use
FP3-10PIN-ADAPTER-KIT.

Table 12-3 • Programming Header Ordering Codes

Manufacturer Part Number Description

AMP 103310-1 10-pin, 0.1"-pitch cable header (right-angle PCB mount
angle)

3M 2510-6002UB 10-pin, 0.1"-pitch cable header (straight PCB mount
angle)

Samtec FTSH-113-01-L-D-K Small programming header supported by FlashPro and
Silicon Sculptor

Samtec FTSH-105-01-L-D-K Compact programming header

Samtec FFSD-05-D-06.00-01-N 10-pin cable with 50 mil pitch sockets; included in FP3-
10PIN-ADAPTER-KIT.

Microsemi FP3-10PIN-ADAPTER-KIT Transition adapter kit to allow FP3 to be connected to a
micro 10-pin header (50 mil pitch). Includes a 6 inch
Samtec FFSD-05-D-06.00-01-N cable in the kit. The
transition adapter board was previously offered as
FP3-26PIN-ADAPTER and includes a 26-pin adapter for
design transitions from ProASICPLUS based boards to
ProASIC3 based boards.

Note: *Prog_Mode on FlashPro4 is an output signal that goes High during device programming and
returns to Low when programming is complete. This signal can be used to drive a system to provide
a 1.5 V programming signal to IGLOO nano, ProASIC3L, and RT ProASIC3 devices that can run
with 1.2 V core voltage but require 1.5 V for programming. IGLOO nano V2 devices can be
programmed at 1.2 V core voltage (when using FlashPro4 only), but IGLOO nano V5 devices are
programmed with a VCC core voltage of 1.5 V.

Figure 12-5 • Programming Header (top view)

1 2
3 4
5 6
7 8
9

TCK
TDO
TMS
VPUMP
TDI

GND
NC (FlashPro3/3X); Prog_Mode* (FlashPro4)

TRST
GND10

VJTAG
Revision 5 269

Boundary Scan in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 In the "Boundary Scan Chain" section, the reference made to the datasheet for
pull-up/-down recommendations was changed to mention TCK and TRST pins
rather than TDO and TCK pins. TDO is an output, so no pull resistor is needed
(SAR 35937).

293

The "Advanced Boundary Scan Register Settings" section is new (SAR 38432). 295

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Table 15-3 • TRST and TCK Pull-Down Recommendations was revised to add
VJTAG at 1.2 V.

294

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 15-1 • Flash-Based
FPGAs.

292

v1.3
(October 2008)

The "Boundary Scan Support in Low Power Devices" section was revised to include
new families and make the information more concise.

293

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 15-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

292

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 292
296 Revision 5

Summary of Changes
Revision 1
(continued)

"In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using
FlashPro4/3/3X" was revised.

273

"Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System
Programming" was revised.

281

"Boundary Scan in Low Power Flash Devices" was revised. 296

Revision 0
(April 2010)

The ProASIC3 nano Low Power Flash FPGAs Handbook was divided into two
parts to create the ProASIC3 nano Datasheet ProASIC3 nano Device Family
User’s Guide.

N/A

Revision
(month/year) Chapter Affected

List of Changes
(page number)
320 Revision 5

