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Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Alternatively, Figure 2-7 shows how a microprocessor can be used with a voltage regulator's shutdown
pin to turn the power supplies connected to the device on or off.

Though Sleep mode or Shutdown mode can be used to save power, the content of the SRAM and the
state of the registers is lost when power is turned off if no other measure is taken. To keep the original
contents of the device, a low-cost external serial EEPROM can be used to save and restore the device
contents when entering and exiting Sleep mode. In the Embedded SRAM Initialization Using External
Serial EEPROM application note, detailed information and a reference design are provided to initialize
the embedded SRAM using an external serial EEPROM. The user can easily customize the reference
design to save and restore the FPGA state when entering and exiting Sleep mode. The microcontroller
will need to manage this activity, so before powering down VCC, the data must be read from the FPGA
and stored externally. Similarly, after the FPGA is powered up, the microcontroller must allow the FPGA
to load the data from external memory and restore its original state.

Conclusion
Microsemi ProASIC3/E and ProASIC3 nano FPGAs inherit low power consumption capability from their
nonvolatile and live-at-power-up flash-based technology. Power consumption can be reduced further
using the Static (Idle), User Low Static (Idle), Sleep, or Shutdown power modes. All these features result
in a low-power, cost-effective, single-chip solution designed specifically for power-sensitive electronics
applications.

Related Documents

Application Notes
Embedded SRAM Initialization Using External Serial EEPROM
http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf

Figure 2-7 • Controlling Power On/Off State Using Microprocessor and Voltage Regulator
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Simple Design Example
Consider a design consisting of six building blocks (shift registers) and targeted for an A3PE600-PQ208
(Figure 3-16 on page 52). The example design consists of two PLLs (PLL1 has GLA only; PLL2 has both
GLA and GLB), a global reset (ACLR), an enable (EN_ALL), and three external clock domains (QCLK1,
QCLK2, and QCLK3) driving the different blocks of the design. Note that the PQ208 package only has
two PLLs (which access the chip global network). Because of fanout, the global reset and enable signals
need to be assigned to the chip global resources. There is only one free chip global for the remaining
global (QCLK1, QCLK2, QCLK3). Place two of these signals on the quadrant global resource. The
design example demonstrates manually assignment of QCLK1 and QCLK2 to the quadrant global using
the PDC command. 

Figure 3-19 • Block Diagram of the Global Management Example Design
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
IGLOOe and ProASIC3E CCC Locations
IGLOOe and ProASIC3E devices have six CCCs—one in each of the four corners and one each in the 
middle of the east and west sides of the device (Figure 4-15).
All six CCCs are integrated with PLLs, except in PQFP-208 package devices. PQFP-208 package 
devices also have six CCCs, of which two include PLLs and four are simplified CCCs. The CCCs with 
PLLs are implemented in the middle of the east and west sides of the device (middle right and middle 
left). The simplified CCCs without PLLs are located in the four corners of the device (Figure 4-16).   

Figure 4-15 • CCC Locations in IGLOOe and ProASIC3E Family Devices (except PQFP-208 
package)

Figure 4-16 • CCC Locations in ProASIC3E Family Devices (PQFP-208 package)
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Core Specifications
PLL core specifications can be found in the DC and Switching Characteristics chapter of the appropriate 
family datasheet.

Loop Bandwidth
Common design practice for systems with a low-noise input clock is to have PLLs with small loop 
bandwidths to reduce the effects of noise sources at the output. Table 4-6 shows the PLL loop 
bandwidth, providing a measure of the PLL's ability to track the input clock and jitter.  

PLL Core Operating Principles
This section briefly describes the basic principles of PLL operation. The PLL core is composed of a 
phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO). 
Figure 4-19 illustrates a basic single-phase PLL core with a divider and delay in the feedback path. 

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To 
achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase 
difference between the input and feedback signals. 
The first element is the PD, which produces a voltage proportional to the phase difference between its 
inputs. A simple example of a digital phase detector is an Exclusive-OR gate. The second element, the 
LPF, extracts the average voltage from the phase detector and applies it to the VCO. This applied voltage 
alters the resonant frequency of the VCO, thus adjusting its output frequency. 
Consider Figure 4-19 with the feedback path bypassing the divider and delay elements. If the LPF 
steadily applies a voltage to the VCO such that the output frequency is identical to the input frequency, 
this steady-state condition is known as lock. Note that the input and output phases are also identical. The 
PLL core sets a LOCK output signal HIGH to indicate this condition.
Should the input frequency increase slightly, the PD detects the frequency/phase difference between its 
reference and feedback input signals. Since the PD output is proportional to the phase difference, the 
change causes the output from the LPF to increase. This voltage change increases the resonant 
frequency of the VCO and increases the feedback frequency as a result. The PLL dynamically adjusts in 
this manner until the PD senses two phase-identical signals and steady-state lock is achieved. The 
opposite (decreasing PD output signal) occurs when the input frequency decreases.
Now suppose the feedback divider is inserted in the feedback path. As the division factor M (shown in 
Figure 4-20 on page 85) is increased, the average phase difference increases. The average phase 

Table 4-6 • –3 dB Frequency of the PLL
Minimum

(Ta = +125°C, VCCA = 1.4 V)
Typical

(Ta = +25°C, VCCA = 1.5 V)
Maximum

(Ta = –55°C, VCCA = 1.6 V)
–3 dB 
Frequency

15 kHz 25 kHz 45 kHz

Figure 4-19 • Simplified PLL Core with Feedback Divider and Delay
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each group of control bits is assigned a specific location in the configuration shift register. For a list of the 
81 configuration bits (C[80:0]) in the CCC and a description of each, refer to "PLL Configuration Bits 
Description" on page 90. The configuration register can be serially loaded with the new configuration 
data and programmed into the CCC using the following ports:

• SDIN: The configuration bits are serially loaded into a shift register through this port. The LSB of 
the configuration data bits should be loaded first. 

• SDOUT: The shift register contents can be shifted out (LSB first) through this port using the shift 
operation.

• SCLK: This port should be driven by the shift clock.
• SSHIFT: The active-high shift enable signal should drive this port. The configuration data will be 

shifted into the shift register if this signal is HIGH. Once SSHIFT goes LOW, the data shifting will 
be halted. 

• SUPDATE: The SUPDATE signal is used to configure the CCC with the new configuration bits 
when shifting is complete.

To access the configuration ports of the shift register (SDIN, SDOUT, SSHIFT, etc.), the user should 
instantiate the CCC macro in his design with appropriate ports. Microsemi recommends that users 
choose SmartGen to generate the CCC macros with the required ports for dynamic reconfiguration. 
Users must familiarize themselves with the architecture of the CCC core and its input, output, and 
configuration ports to implement the desired delay and output frequency in the CCC structure. 
Figure 4-22 shows a model of the CCC with configurable blocks and switches. 
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ProASIC3 nano FPGA Fabric User’s Guide
    wire VCC, GND;
    
    VCC VCC_1_net(.Y(VCC));
    GND GND_1_net(.Y(GND));
    PLL Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), 
        .GLA(GLA), .LOCK(LOCK), .GLB(), .YB(), .GLC(), .YC(), 
        .OADIV0(GND), .OADIV1(GND), .OADIV2(GND), .OADIV3(GND), 
        .OADIV4(GND), .OAMUX0(GND), .OAMUX1(GND), .OAMUX2(VCC), 
        .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND), .DLYGLA3(GND)
        , .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND), 
        .OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), 
        .OBMUX2(GND), .DLYYB0(GND), .DLYYB1(GND), .DLYYB2(GND), 
        .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND), .DLYGLB1(GND), 
        .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND), 
        .OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), 
        .OCMUX0(GND), .OCMUX1(GND), .OCMUX2(GND), .DLYYC0(GND), 
        .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND), 
        .DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND)
        , .DLYGLC4(GND), .FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(
        VCC), .FINDIV3(GND), .FINDIV4(GND), .FINDIV5(GND), 
        .FINDIV6(GND), .FBDIV0(VCC), .FBDIV1(GND), .FBDIV2(VCC), 
        .FBDIV3(GND), .FBDIV4(GND), .FBDIV5(GND), .FBDIV6(GND), 
        .FBDLY0(GND), .FBDLY1(GND), .FBDLY2(GND), .FBDLY3(GND), 
        .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), .XDLYSEL(GND), 
        .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(GND));
    defparam Core.VCOFREQUENCY = 33.000;  
endmodule

The "PLL Configuration Bits Description" section on page 90 provides descriptions of the PLL 
configuration bits for completeness. The configuration bits are shown as busses only for purposes of 
illustration. They will actually be broken up into individual pins in compilation libraries and all simulation 
models. For example, the FBSEL[1:0] bus will actually appear as pins FBSEL1 and FBSEL0. The setting 
of these select lines for the static PLL configuration is performed by the software and is completely 
transparent to the user.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Using internal feedback, we know from EQ 4-1 on page 86 that the maximum achievable output 
frequency from the primary output is 

fGLA = fCLKA × m / (n × u) = 2 MHz × 128 / (1 × 1) = 256 MHz

EQ 4-5
Figure 4-35 shows the settings of the initial PLL. When configuring the initial PLL, specify the input to be 
either Hardwired I/O–Driven or External I/O–Driven. This generates a netlist with the initial PLL routed 
from an I/O. Do not specify the input to be Core Logic–Driven, as this prohibits the connection from the 
I/O pin to the input of the PLL. 

A second PLL can be connected serially to achieve the required frequency. EQ 4-1 on page 86 to EQ 4-3 
on page 86 are extended as follows:

fGLA2 = fGLA × m2 / (n2 × u2) = fCLKA1 × m1 × m2 / (n1 × u1 × n2 × u2) – Primary PLL Output Clock 

EQ 4-6

fGLB2 = fYB2 = fCLKA1 × m1 × m2 / (n1 × n2 × v1 × v2) – Secondary 1 PLL Output Clock(s)

EQ 4-7

fGLC2 = fYC2 = fCLKA1 × m1 × m2 / (n1 × n2 × w1 × w2) – Secondary 2 PLL Output Clock(s)

EQ 4-8
In the example, the final output frequency (foutput) from the primary output of the second PLL will be as 
follows (EQ 4-9):

foutput = fGLA2 = fGLA × m2 / (n2 × u2) = 256 MHz × 70 / (64 × 1) = 280 MHz

EQ 4-9
Figure 4-36 on page 111 shows the settings of the second PLL. When configuring the second PLL (or 
any subsequent-stage PLLs), specify the input to be Core Logic–Driven. This generates a netlist with the 
second PLL routed internally from the core. Do not specify the input to be Hardwired I/O–Driven or 
External I/O–Driven, as these options prohibit the connection from the output of the first PLL to the input 
of the second PLL.

Figure 4-34 • Cascade PLL Configuration

Figure 4-35 • First-Stage PLL Showing Input of 2 MHz and Output of 256 MHz
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FlashROM Generation and Instantiation in the Design
The SmartGen core generator, available in Libero SoC and Designer, is the only tool that can be used to
generate the FlashROM content. SmartGen has several user-friendly features to help generate the
FlashROM contents. Instead of selecting each byte and assigning values, you can create a region within
a page, modify the region, and assign properties to that region. The FlashROM user interface, shown in
Figure 5-10, includes the configuration grid, existing regions list, and properties field. The properties field
specifies the region-specific information and defines the data used for that region. You can assign values
to the following properties: 

1. Static Fixed Data—Enables you to fix the data so it cannot be changed during programming time.
This option is useful when you have fixed data stored in this region, which is required for the
operation of the design in the FPGA. Key storage is one example. 

2. Static Modifiable Data—Select this option when the data in a particular region is expected to be
static data (such as a version number, which remains the same for a long duration but could
conceivably change in the future). This option enables you to avoid changing the value every time
you enter new data. 

3. Read from File—This provides the full flexibility of FlashROM usage to the customer. If you have
a customized algorithm for generating the FlashROM data, you can specify this setting. You can
then generate a text file with data for as many devices as you wish to program, and load that into
the FlashPoint programming file generation software to get programming files that include all the
data. SmartGen will optionally pass the location of the file where the data is stored if the file is
specified in SmartGen. Each text file has only one type of data format (binary, decimal, hex, or
ASCII text). The length of each data file must be shorter than or equal to the selected region
length. If the data is shorter than the selected region length, the most significant bits will be
padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In
SmartGen, Load Sim. Value From File allows you to load the first device data in the MEM file for
simulation.

4. Auto Increment/Decrement—This scenario is useful when you specify the contents of FlashROM
for a large number of devices in a series. You can specify the step value for the serial number and
a maximum value for inventory control. During programming file generation, the actual number of
devices to be programmed is specified and a start value is fed to the software. 

Figure 5-10 • SmartGen GUI of the FlashROM 
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Table 6-8 and Table 6-9 show the maximum potential width and depth configuration for each device. Note
that 15 k and 30 k gate devices do not support RAM or FIFO.

 

Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device

Device

RAM 
Block

s

Maximum Potential Width1 Maximum Potential Depth2

IGLOO 
IGLOO nano 
IGLOO PLUS

ProASIC3
ProASIC3 nano

ProASIC3L Depth Width Depth Width

AGL060 
AGLN060 
AGLP060

A3P060
A3PN060

4 256 72 (4×18) 16,384 (4,096×4) 1

AGL125
AGLN125
AGLP125

A3P125 
A3PN125

8 256 144 (8×18) 32,768 (4,094×8) 1

AGL250 
AGLN250

A3P250/L 
A3PN250

8 256 144 (8×18) 32,768 (4,096×8) 1

AGL400 A3P400 12 256 216 (12×18) 49,152 (4,096×12) 1

AGL600 A3P600/L 24 256 432 (24×18) 98,304 (4,096×24) 1

AGL1000 A3P1000/L 32 256 576 (32×18) 131,072 (4,096×32) 1

AGLE600 A3PE600 24 256 432 (24×18) 98,304 (4,096×24) 1

A3PE1500 60 256 1,080 (60×18) 245,760 (4,096×60) 1

AGLE3000 A3PE3000/L 112 256 2,016 (112×18) 458,752 (4,096×112) 1

Notes:
1. Maximum potential width uses the two-port configuration.
2. Maximum potential depth uses the dual-port configuration.

Table 6-9 • Memory Availability per Fusion Device 

Device RAM Blocks
Maximum Potential Width1 Maximum Potential Depth2

Depth Width Depth Width
AFS090 6 256 108 (6×18)  24,576 (4,094×6) 1

AFS250 8 256 144 (8×18) 32,768 (4,094×8) 1

AFS600 24 256 432 (24×18) 98,304 (4,096×24) 1

AFS1500 60 256 1,080 (60×18) 245,760 (4,096×60) 1

Notes:
1. Maximum potential width uses the two-port configuration.
2. Maximum potential depth uses the dual-port configuration.
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Electrostatic Discharge Protection
Low power flash devices are tested per JEDEC Standard JESD22-A114-B.
These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device
pads against damage from ESD as well as from excessive voltage transients. 
All nano devices are qualified to the Human Body Model (HBM) and the Charged Device Model (CDM). 

5 V Input and Output Tolerance
nano devices can be made 5 V–input–tolerant for certain I/O standards by using external level shifting
techniques. 5 V output compliance can be achieved using certain I/O standards. 
Table 7-5 on page 163 shows the I/O standards that support 5 V input tolerance. Only 3.3 V
LVTTL/LVCMOS standards support 5 V output tolerance. 

5 V Input Tolerance
I/Os can support 5 V input tolerance when LVTTL 3.3 V or LVCMOS 3.3 V configurations are used (see
Table 7-12). There are three recommended solutions for achieving 5 V receiver tolerance (see Figure 7-5
on page 172 to Figure 7-7 on page 173 for details of board and macro setups). All the solutions meet a
common requirement of limiting the voltage at the input to 3.6 V or less. In fact, the I/O absolute
maximum voltage rating is 3.6 V, and any voltage above 3.6 V may cause long-term gate oxide failures. 

Solution 1
The board-level design must ensure that the reflected waveform at the pad does not exceed the limits
provided in the recommended operating conditions in the datasheet. This is a requirement to ensure
long-term reliability.
This solution requires two board resistors, as demonstrated in Figure 7-5 on page 172. Here are some
examples of possible resistor values (based on a simplified simulation model with no line effects and
10 Ω transmitter output resistance, where Rtx_out_high = (VCCI – VOH) / IOH and
Rtx_out_low = VOL / IOL).
Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 36 Ω (±5%), P(r1)min = 0.069 Ω

R2 = 82 Ω (±5%), P(r2)min = 0.158 Ω

Imax_tx = 5.5 V / (82 × 0.95 + 36 × 0.95 + 10) = 45.04 mA

tRISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Table 7-12 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in nano Devices

I/O Assignment Clamp Diode Hot Insertion
5 V Input 
Tolerance Input Buffer

Output 
Buffer

3.3 V LVTTL/LVCMOS No Yes Yes* Enabled/Disabled

LVCMOS 2.5 V No Yes No Enabled/Disabled

LVCMOS 1.8 V No Yes No Enabled/Disabled

LVCMOS 1.5 V No Yes No Enabled/Disabled

LVCMOS 1.2 V No Yes No Enabled/Disabled

* Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
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I/O Software Control in Low Power Flash Devices
Output Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers
There are two variations: Regular and Special.
The Regular variation has Enable Polarity (Active High, Active Low) in addition to the Width option.
The Special variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down
options.

Tristate Buffers
Same as Bidirectional Buffers.

DDR
There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output
Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional
Buffers, and Special Bidirectional Buffers.
These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers
variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not
available on IGLOO PLUS devices. 

4. Once the desired configuration is selected, click the Generate button. The Generate Core
window opens (Figure 8-4).

5. Enter a name for the macro. Click OK. The core will be generated and saved to the appropriate
location within the project files (Figure 8-5 on page 191). 

6. Instantiate the I/O macro in the top-level code.
The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to
generate both these macros and then instantiate them in your top level. To combine the DDR
macros with the I/O, the following rules must be met:

Figure 8-4 • Generate Core Window
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Security Architecture
Fusion, IGLOO, and ProASIC3 devices have been designed with the most comprehensive programming
logic design security in the industry. In the architecture of these devices, security has been designed into
the very fabric. The flash cells are located beneath seven metal layers, and the use of many device
design and layout techniques makes invasive attacks difficult. Since device layers cannot be removed
without disturbing the charge on the programmed (or erased) flash gates, devices cannot be easily
deconstructed to decode the design. Low power flash devices are unique in being reprogrammable and
having inherent resistance to both invasive and noninvasive attacks on valuable IP. Secure, remote ISP
is now possible with AES encryption capability for the programming file during electronic transfer.
Figure 11-2 shows a view of the AES decryption core inside an IGLOO device; Figure 11-3 on page 238
shows the AES decryption core inside a Fusion device. The AES core is used to decrypt the encrypted
programming file when programming.

Note: *ISP AES Decryption is not supported by 30 k gate devices and smaller. For details of other architecture features
by device, refer to the appropriate family datasheet. 

Figure 11-2 • Block Representation of the AES Decryption Core in IGLOO and ProASIC3 Devices 
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Security in Low Power Flash Devices
3. Choose the desired settings for the FlashROM configurations to be programmed (Figure 11-13).
Click Finish to generate the STAPL programming file for the design. 

Generation of Security Header Programming File Only—
Application 2
As mentioned in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 243,
the designer may employ FlashLock Pass Key protection or FlashLock Pass Key with AES encryption on
the device before sending it to a nontrusted or unsecured location for device programming. To achieve
this, the user needs to generate a programming file containing only the security settings desired (Security
Header programming file).
Note: If AES encryption is configured, FlashLock Pass Key protection must also be configured.
The available security options are indicated in Table 11-4 and Table 11-5 on page 251.

Figure 11-13 • FlashROM Configuration Settings for Low Power Flash Devices

Table 11-4 • FlashLock Security Options for IGLOO and ProASIC3

Security Option FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA

No AES / no FlashLock – – –

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
Microsemi’s Flash Families Support Voltage Switching Circuit 
The flash FPGAs listed in Table 13-1 support the voltage switching circuit feature and the functions
described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 13-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 13-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 13-1 • Flash-Based FPGAs Supporting Voltage Switching Circuit

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.1
(October 2008)

The "Introduction" was revised to include information about the core supply voltage
range of operation in V2 devices.

275

IGLOO nano device support was added to Table 13-1 • Flash-Based FPGAs
Supporting Voltage Switching Circuit.

276

The "Circuit Description" section was updated to include IGLOO PLUS core
operation from 1.2 V to 1.5 V in 50 mV increments.

277

v1.0
(August 2008)

The "Microsemi’s Flash Families Support Voltage Switching Circuit" section was
revised to include new families and make the information more concise.

276
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Boundary Scan in Low Power Flash Devices
Microsemi’s Flash Devices Support the JTAG Feature
The flash-based FPGAs listed in Table 15-1 support the JTAG feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 15-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 15-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 15-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC®3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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17 – Power-Up/-Down Behavior of Low Power 
Flash Devices

Introduction
Microsemi’s low power flash devices are flash-based FPGAs manufactured on a 0.13 µm process node. 
These devices offer a single-chip, reprogrammable solution and support Level 0 live at power-up (LAPU) 
due to their nonvolatile architecture. 
Microsemi's low power flash FPGA families are optimized for logic area, I/O features, and performance. 
IGLOO® devices are optimized for power, making them the industry's lowest power programmable 
solution. IGLOO PLUS FPGAs offer enhanced I/O features beyond those of the IGLOO ultra-low power 
solution for I/O-intensive low power applications. IGLOO nano devices are the industry's lowest-power 
cost-effective solution. ProASIC3®L FPGAs balance low power with high performance. The ProASIC3 
family is Microsemi's high-performance flash FPGA solution. ProASIC3 nano devices offer the lowest-
cost solution with enhanced I/O capabilities.
Microsemi’s low power flash devices exhibit very low transient current on each power supply during 
power-up. The peak value of the transient current depends on the device size, temperature, voltage 
levels, and power-up sequence. 
The following devices can have inputs driven in while the device is not powered:

• IGLOO (AGL015 and AGL030)
• IGLOO nano (all devices)
• IGLOO PLUS (AGLP030, AGLP060, AGLP125)
• IGLOOe (AGLE600, AGLE3000)
• ProASIC3L (A3PE3000L)
• ProASIC3 (A3P015, A3P030)
• ProASIC3 nano (all devices)
• ProASIC3E (A3PE600, A3PE1500, A3PE3000)
• Military ProASIC3EL (A3PE600L, A3PE3000L, but not A3P1000)
• RT ProASIC3 (RT3PE600L, RT3PE3000L)

The driven I/Os do not pull up power planes, and the current draw is limited to very small leakage current, 
making them suitable for applications that require cold-sparing. These devices are hot-swappable, 
meaning they can be inserted in a live power system.1 

1. For more details on the levels of hot-swap compatibility in Microsemi’s low power flash devices, refer to the "Hot-Swap 
Support" section in the I/O Structures chapter of the FPGA fabric user’s guide for the device you are using.
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I/O Behavior at Power-Up/-Down
This section discusses the behavior of device I/Os, used and unused, during power-up/-down of VCC and 
VCCI. As mentioned earlier, VMVx and VCCIBx are tied together, and therefore, inputs and outputs are 
powered up/down at the same time. 

I/O State during Power-Up/-Down
This section discusses the characteristics of I/O behavior during device power-up and power-down. 
Before the start of power-up, all I/Os are in tristate mode. The I/Os will remain tristated during power-up 
until the last voltage supply (VCC or VCCI) is powered to its functional level (power supply functional 
levels are discussed in the "Power-Up to Functional Time" section on page 312). After the last supply 
reaches the functional level, the outputs will exit the tristate mode and drive the logic at the input of the 
output buffer. Similarly, the input buffers will pass the external logic into the FPGA fabric once the last 
supply reaches the functional level. The behavior of user I/Os is independent of the VCC and VCCI 
sequence or the state of other voltage supplies of the FPGA (VPUMP and VJTAG). Figure 17-2 shows 
the output buffer driving HIGH and its behavior during power-up with 10 kΩ external pull-down. In 
Figure 17-2, VCC is powered first, and VCCI is powered 5 ms after VCC. Figure 17-3 on page 312 
shows the state of the I/O when VCCI is powered about 5 ms before VCC. In the circuitry shown in 
Figure 17-3 on page 312, the output is externally pulled down. 
During power-down, device I/Os become tristated once the first power supply (VCC or VCCI) drops 
below its brownout voltage level. The I/O behavior during power-down is also independent of voltage 
supply sequencing.  

Figure 17-2 • I/O State when VCC Is Powered before VCCI 
Revision 5 311



Index

Numerics
5 V input and output tolerance 171

A
AES encryption 239
architecture 131

four I/O banks 13
global 31
IGLOO 12
IGLOO nano 11
IGLOO PLUS 13
IGLOOe 14
ProASIC3 nano 11
ProASIC3E 14
routing 18
spine 41
SRAM and FIFO 135

architecture overview 11
array coordinates 16

B
boundary scan 291

board-level recommendations 294
chain 293
opcodes 293

brownout voltage 315

C
CCC 82

board-level considerations 112
cascading 109
Fusion locations 83
global resources 62
hardwired I/O clock input 108
IGLOO locations 81
IGLOOe locations 82
locations 80
naming conventions 179
overview 61
ProASIC3 locations 81
ProASIC3E locations 82
programming 62
software configuration 96
with integrated PLLs 79
without integrated PLLs 79

chip global aggregation 43
CLKDLY macro 65
clock aggregation 44
clock macros 46
clock sources

core logic 76

PLL and CLKDLY macros 73
clocks

delay adjustment 86
detailed usage information 104
multipliers and dividers 85
phase adjustment 87
physical constraints for quadrant clocks 108
SmartGen settings 105
static timing analysis 107

cold-sparing 170, 316
compiling 195

report 195
contacting Microsemi SoC Products Group

customer service 321
email 321
web-based technical support 321

customer service 321

D
DDR

architecture 205
design example 216
I/O options 207
input/output support 209
instantiating registers 210

design example 55
design recommendations 46
device architecture 131
DirectC 280
DirectC code 285
dual-tile designs 160

E
efficient long-line resources 19
encryption 289
ESD protection 171

F
FIFO

features 141
initializing 148
memory block consumption 147
software support 154
usage 144

flash switch for programming 9
FlashLock

IGLOO and ProASIC devices 241
permanent 241

FlashROM
access using JTAG port 123
architecture 267
Revision 5 323


