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FPGA Array Architecture in Low Power Flash Devices
FPGA Array Architecture Support 
The flash FPGAs listed in Table 1-1 support the architecture features described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 1-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 1-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 1-1 • Flash-Based FPGAs

Series Family* Description

IGLOO® IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC®3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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2 – Low Power Modes in ProASIC3/E and 
ProASIC3 nano FPGAs

Introduction
The demand for low power systems and semiconductors, combined with the strong growth observed for
value-based FPGAs, is driving growing demand for low power FPGAs. For portable and battery-operated
applications, power consumption has always been the greatest challenge. The battery life of a system
and on-board devices has a direct impact on the success of the product. As a result, FPGAs used in
these applications should meet low power consumption requirements.
ProASIC®3/E and ProASIC3 nano FPGAs offer low power consumption capability inherited from their
nonvolatile and live-at-power-up (LAPU) flash technology. This application note describes the power
consumption and how to use different power saving modes to further reduce power consumption for
power-conscious electronics design.

Power Consumption Overview
In evaluating the power consumption of FPGA technologies, it is important to consider it from a system
point of view. Generally, the overall power consumption should be based on static, dynamic, inrush, and
configuration power. Few FPGAs implement ways to reduce static power consumption utilizing sleep
modes.
SRAM-based FPGAs use volatile memory for their configuration, so the device must be reconfigured
after each power-up cycle. Moreover, during this initialization state, the logic could be in an indeterminate
state, which might cause inrush current and power spikes. More complex power supplies are required to
eliminate potential system power-up failures, resulting in higher costs. For portable electronics requiring
frequent power-up and -down cycles, this directly affects battery life, requiring more frequent recharging
or replacement.

SRAM-Based FPGA Total Power Consumption = Pstatic + Pdynamic + Pinrush + Pconfig 

EQ 1

ProASIC3/E Total Power Consumption = Pstatic + Pdynamic 

EQ 2
Unlike SRAM-based FPGAs, Microsemi flash-based FPGAs are nonvolatile and do not require power-up
configuration. Additionally, Microsemi nonvolatile flash FPGAs are live at power-up and do not require
additional support components. Total power consumption is reduced as the inrush current and
configuration power components are eliminated.
Note that the static power component can be reduced in flash FPGAs (such as the ProASIC3/E devices)
by entering User Low Static mode or Sleep mode. This leads to an extremely low static power
component contribution to the total system power consumption.
The following sections describe the usage of Static (Idle) mode to reduce the power component, User
Low Static mode to reduce the static power component, and Sleep mode and Shutdown mode to achieve
a range of power consumption when the FPGA or system is idle. Table 2-1 on page 22 summarizes the
different low power modes offered by ProASIC3/E devices.
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Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Static (Idle) Mode
In Static (Idle) mode, the clock inputs are not switching and the static power consumption is the minimum
power required to keep the device powered up. In this mode, I/Os are only drawing the minimum leakage
current specified in the datasheet. Also, in Static (Idle) mode, embedded SRAM, I/Os, and registers
retain their values, so the device can enter and exit this mode without any penalty.
If the embedded PLLs are used as the clock source, Static (Idle) mode can be entered easily by pulling
LOW the PLL POWERDOWN pin (active-low). By pulling the PLL POWERDOWN pin to LOW, the PLL is
turned off. Refer to Figure 2-1 on page 23 for more information. 

Table 2-1 • ProASIC3/E/nano Low Power Modes Summary

Mode Power Supplies / Clock Status Needed to Start Up

Active On – All, clock N/A (already active)

Off – None

Static (Idle) On – All Initiate clock source.

Off – No active clock in FPGA No need to initialize volatile
contents.

Optional: Enter User Low Static (Idle) Mode by enabling
ULSICC macro to further reduce power consumption by
powering down FlashROM.

Sleep On – VCCI Need to turn on core.

Off – VCC (core voltage), VJTAG (JTAG DC voltage),
and VPUMP (programming voltage)

Load states from external
memory.

LAPU enables immediate operation when power
returns.

As needed, restore volatile
contents from external memory.

Optional: Save state of volatile contents in external
memory.

Shutdown On – None Need to turn on VCC, VCCI.

Off – All power supplies

Applicable to all ProASIC3 nano devices, cold-sparing
and hot-insertion allow the device to be powered down
without bringing down the system. LAPU enables
immediate operation when power returns.
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3 – Global Resources in Low Power Flash Devices

Introduction 
IGLOO, Fusion, and ProASIC3 FPGA devices offer a powerful, low-delay VersaNet global network
scheme and have extensive support for multiple clock domains. In addition to the Clock Conditioning
Circuits (CCCs) and phase-locked loops (PLLs), there is a comprehensive global clock distribution
network called a VersaNet global network. Each logical element (VersaTile) input and output port has
access to these global networks. The VersaNet global networks can be used to distribute low-skew clock
signals or high-fanout nets. In addition, these highly segmented VersaNet global networks contain spines
(the vertical branches of the global network tree) and ribs that can reach all the VersaTiles inside their
region. This allows users the flexibility to create low-skew local clock networks using spines. This
document describes VersaNet global networks and discusses how to assign signals to these global
networks and spines in a design flow. Details concerning low power flash device PLLs are described in
the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" section on
page 61. This chapter describes the low power flash devices’ global architecture and uses of these global
networks in designs. 

Global Architecture
Low power flash devices offer powerful and flexible control of circuit timing through the use of global
circuitry. Each chip has up to six CCCs, some with PLLs.

• In IGLOOe, ProASIC3EL, and ProASIC3E devices, all CCCs have PLLs—hence, 6 PLLs per
device (except the PQ208 package, which has only 2 PLLs). 

• In IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, and ProASIC3L devices, the west CCC
contains a PLL core (except in 10 k through 30 k devices). 

• In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and
AFS1500), the west and east CCCs each contain a PLL.

Refer to Table 4-6 on page 84 for details. Each PLL includes delay lines, a phase shifter (0°, 90°, 180°,
270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three chip global lines on each side of the chip (six chip global lines total). The CCCs at the four corners
each have access to three quadrant global lines in each quadrant of the chip (except in 10 k through 30 k
gate devices).
The nano 10 k, 15 k, and 20 k devices support four VersaNet global resources, and 30 k devices support
six global resources. The 10 k through 30 k devices have simplified CCCs called CCC-GLs.
The flexible use of the VersaNet global network allows the designer to address several design
requirements. User applications that are clock-resource-intensive can easily route external or gated
internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay
penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.
Note: Microsemi recommends that you choose the appropriate global pin and use the appropriate global

resource so you can realize these benefits. 
The following sections give an overview of the VersaNet global network, the structure of the global
network, access point for the global networks, and the clock aggregation feature that enables a design to
have very low clock skew using spines.
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Global Resources in Low Power Flash Devices
Table 3-2 • Chip Global Pin Name

I/O Type Beginning of I/O Name Notes

Single-Ended GFAO/IOuxwByVz
GFA1/IOuxwByVz
GFA2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GFBO/IOuxwByVz
GFB1/IOuxwByVz
GFB2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GFC0/IOuxwByVz
GFC1/IOuxwByVz
GFC2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time. 

GCAO/IOuxwByVz
GCA1/IOuxwByVz
GCA2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCBO/IOuxwByVz
GCB1/IOuxwByVz
GCB2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

GCC0/IOuxwByVz
GCC1/IOuxwByVz
GCC2/IOuxwByVz

Only one of the I/Os can be directly connected to a chip
global at a time.

Differential I/O Pairs GFAO/IOuxwByVz
GFA1/IOuxwByVz

The output of the different pair will drive the chip global.

GFBO/IOuxwByVz
GFB1/IOuxwByVz

The output of the different pair will drive the chip global.

GFCO/IOuxwByVz
GFC1/IOuxwByVz

The output of the different pair will drive the chip global.

GCAO/IOuxwByVz
GCA1/IOuxwByVz

The output of the different pair will drive the chip global.

GCBO/IOuxwByVz
GCB1/IOuxwByVz

The output of the different pair will drive the chip global.

GCCO/IOuxwByVz
GCC1/IOuxwByVz

The output of the different pair will drive the chip global.

Note: Only one of the I/Os can be directly connected to a quadrant at a time.
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ProASIC3 nano FPGA Fabric User’s Guide
Table 3-3 • Quadrant Global Pin Name 

I/O Type Beginning of I/O Name Notes

Single-Ended GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time

GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GAC0/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBC0/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDC0/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEAO/IOuxwByVz
GEA1/IOuxwByVz
GEA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEC0/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

Note: Only one of the I/Os can be directly connected to a quadrant at a time. 
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ProASIC3 nano FPGA Fabric User’s Guide
YB and YC are identical to GLB and GLC, respectively, with the exception of a higher selectable final 
output delay. The SmartGen PLL Wizard will configure these outputs according to user specifications and 
can enable these signals with or without the enabling of Global Output Clocks.
The above signals can be enabled in the following output groupings in both internal and external 
feedback configurations of the static PLL:

• One output – GLA only
• Two outputs – GLA + (GLB and/or YB)
• Three outputs – GLA + (GLB and/or YB) + (GLC and/or YC)

PLL Macro Block Diagram 
As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these 
(GLB and GLC) can be routed to the B and C global network access, respectively, and/or routed to the 
device core (YB and YC).
There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).
There are delay elements in the feedback loop that can be used to advance the clock relative to the 
reference clock. 
The PLL macro reference clock can be driven in the following ways:

1. By an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer 
(with programmable delay) using a hardwired connection. In this case, the I/O must be placed in 
one of the dedicated global I/O locations.

2. Directly from the FPGA core.
3. From an I/O that is routed through the FPGA regular routing fabric. In this case, users must 

instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described 
earlier.

During power-up, the PLL outputs will toggle around the maximum frequency of the voltage-controlled 
oscillator (VCO) gear selected. Toggle frequencies can range from 40 MHz to 250 MHz. This will 
continue as long as the clock input (CLKA) is constant (HIGH or LOW). This can be prevented by LOW 
assertion of the POWERDOWN signal. 
The visual PLL configuration in SmartGen, a component of the Libero SoC and Designer tools, will derive 
the necessary internal divider ratios based on the input frequency and desired output frequencies 
selected by the user.
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ProASIC3 nano FPGA Fabric User’s Guide
External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF 
options and accesses the CCCs via internal routing. The user has the option of assigning this input to 
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions 
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Fusion 
Family of Mixed Signal FPGAs datasheet for more information. Figure 4-11 gives a brief explanation of 
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but 
introduces additional delay because the signal connects to the routed clock input through internal routing 
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before 
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by 
SmartGen when this option is selected. Microsemi recommends using the SmartGen tool to generate the 
CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O 
to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the 
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see 
Figure 4-11 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros. 
The reference clock pins of the CCC functional block core macros must be driven by regular input 
macros (INBUFs), not clock input macros. 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-11 • Illustration of External I/O Usage
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ProASIC3 nano FPGA Fabric User’s Guide
difference will cause the VCO to increase its frequency until the output signal is phase-identical to the 
input after undergoing division. In other words, lock in both frequency and phase is achieved when the 
output frequency is M times the input. Thus, clock division in the feedback path results in multiplication at 
the output.
A similar argument can be made when the delay element is inserted into the feedback path. To achieve 
steady-state lock, the VCO output signal will be delayed by the input period less the feedback delay. For 
periodic signals, this is equivalent to time-advancing the output clock by the feedback delay. 
Another key parameter of a PLL system is the acquisition time. Acquisition time is the amount of time it 
takes for the PLL to achieve lock (i.e., phase-align the feedback signal with the input reference clock). 
For example, suppose there is no voltage applied to the VCO, allowing it to operate at its free-running 
frequency. Should an input reference clock suddenly appear, a lock would be established within the 
maximum acquisition time.

Functional Description
This section provides detailed descriptions of PLL block functionality: clock dividers and multipliers, clock 
delay adjustment, phase adjustment, and dynamic PLL configuration.

Clock Dividers and Multipliers
The PLL block contains five programmable dividers. Figure 4-20 shows a simplified PLL block. 

Figure 4-20 • PLL Block Diagram
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Dividers n and m (the input divider and feedback divider, respectively) provide integer frequency division 
factors from 1 to 128. The output dividers u, v, and w provide integer division factors from 1 to 32. 
Frequency scaling of the reference clock CLKA is performed according to the following formulas:

fGLA = fCLKA × m / (n × u) – GLA Primary PLL Output Clock

EQ 4-1

fGLB = fYB = fCLKA × m / (n × v) – GLB Secondary 1 PLL Output Clock(s)

EQ 4-2

fGLC = fYC = fCLKA × m / (n × w) – GLC Secondary 2 PLL Output Clock(s)

EQ 4-3
SmartGen provides a user-friendly method of generating the configured PLL netlist, which includes 
automatically setting the division factors to achieve the closest possible match to the requested 
frequencies. Since the five output clocks share the n and m dividers, the achievable output frequencies 
are interdependent and related according to the following formula:

fGLA = fGLB × (v / u) = fGLC × (w / u)

EQ 4-4

Clock Delay Adjustment
There are a total of seven configurable delay elements implemented in the PLL architecture. 
Two of the delays are located in the feedback path, entitled System Delay and Feedback Delay. System 
Delay provides a fixed delay of 2 ns (typical), and Feedback Delay provides selectable delay values from 
0.6 ns to 5.56 ns in 160 ps increments (typical). For PLLs, delays in the feedback path will effectively 
advance the output signal from the PLL core with respect to the reference clock. Thus, the System and 
Feedback delays generate negative delay on the output clock. Additionally, each of these delays can be 
independently bypassed if necessary.
The remaining five delays perform traditional time delay and are located at each of the outputs of the 
PLL. Besides the fixed global driver delay of 0.755 ns for each of the global networks, the global 
multiplexer outputs (GLA, GLB, and GLC) each feature an additional selectable delay value, as given in 
Table 4-7.

The additional YB and YC signals have access to a selectable delay from 0.6 ns to 5.56 ns in 160 ps 
increments (typical). This is the same delay value as the CLKDLY macro. It is similar to CLKDLY, which 
bypasses the PLL core just to take advantage of the phase adjustment option with the delay value.
The following parameters must be taken into consideration to achieve minimum delay at the outputs 
(GLA, GLB, GLC, YB, and YC) relative to the reference clock: routing delays from the PLL core to CCC 
outputs, core outputs and global network output delays, and the feedback path delay. The feedback path 
delay acts as a time advance of the input clock and will offset any delays introduced beyond the PLL core 
output. The routing delays are determined from back-annotated simulation and are configuration-
dependent. 

Table 4-7 • Delay Values in Libero SoC Software per Device Family

Device Typical Starting Values Increments Ending Value

ProASIC3 200 ps 0 to 735 ps 200 ps 6.735 ns

IGLOO/ProASIC3L 1.5 V 360 ps 0 to 1.610 ns 360 ps 12.410 ns

IGLOO/ProASIC3L 1.2 V 580 ps 0 to 2.880 ns 580 ps 20.280 ns
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ProASIC3 nano FPGA Fabric User’s Guide
DYNCCC Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), .GLA(GLA), .LOCK(LOCK),
.CLKB(CLKB), .GLB(GLB), .YB(), .CLKC(CLKC), .GLC(GLC), .YC(), .SDIN(SDIN),
.SCLK(SCLK), .SSHIFT(SSHIFT), .SUPDATE(SUPDATE), .MODE(MODE), .SDOUT(SDOUT),
.OADIV0(GND), .OADIV1(GND), .OADIV2(VCC), .OADIV3(GND), .OADIV4(GND), .OAMUX0(GND),
.OAMUX1(GND), .OAMUX2(VCC), .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND),
.DLYGLA3(GND), .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
.OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), .OBMUX2(GND), .DLYYB0(GND),
.DLYYB1(GND), .DLYYB2(GND), .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND),
.DLYGLB1(GND), .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
.OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), .OCMUX0(GND), .OCMUX1(GND),
.OCMUX2(GND), .DLYYC0(GND), .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
.DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND), .DLYGLC4(GND),
.FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(VCC), .FINDIV3(GND), .FINDIV4(GND),
.FINDIV5(GND), .FINDIV6(GND), .FBDIV0(GND), .FBDIV1(GND), .FBDIV2(GND),
.FBDIV3(GND), .FBDIV4(GND), .FBDIV5(VCC), .FBDIV6(GND), .FBDLY0(GND), .FBDLY1(GND),
.FBDLY2(GND), .FBDLY3(GND), .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), 
.XDLYSEL(GND), .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(VCC));

defparam Core.VCOFREQUENCY = 165.000; 

endmodule

Delayed Clock Configuration
The CLKDLY macro can be generated with the desired delay and input clock source (Hardwired I/O, 
External I/O, or Core Logic), as in Figure 4-28. 

After setting all the required parameters, users can generate one or more PLL configurations with HDL or 
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results 
and messages in a log file:
****************
Macro Parameters
****************

Name                            : delay_macro
Family                          : ProASIC3
Output Format                   : Verilog
Type                            : Delayed Clock
Delay Index                     : 2
CLKA Source                     : Hardwired I/O

Total Clock Delay = 0.935 ns.

The resultant CLKDLY macro Verilog netlist is as follows:

module delay_macro(GL,CLK);

output GL;
input  CLK;

Figure 4-28 • Delayed Clock Configuration Dialog Box
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
CLKDLY Inst1(.CLK(CLK), .GL(GL), .DLYGL0(VCC), .DLYGL1(GND), .DLYGL2(VCC),

.DLYGL3(GND), .DLYGL4(GND));

endmodule

Detailed Usage Information

Clock Frequency Synthesis
Deriving clocks of various frequencies from a single reference clock is known as frequency synthesis. 
The PLL has an input frequency range from 1.5 to 350 MHz. This frequency is automatically divided 
down to a range between 1.5 MHz and 5.5 MHz by input dividers (not shown in Figure 4-19 on page 84) 
between PLL macro inputs and PLL phase detector inputs. The VCO output is capable of an output 
range from 24 to 350 MHz. With dividers before the input to the PLL core and following the VCO outputs, 
the VCO output frequency can be divided to provide the final frequency range from 0.75 to 350 MHz. 
Using SmartGen, the dividers are automatically set to achieve the closest possible matches to the 
specified output frequencies.
Users should be cautious when selecting the desired PLL input and output frequencies and the I/O buffer 
standard used to connect to the PLL input and output clocks. Depending on the I/O standards used for 
the PLL input and output clocks, the I/O frequencies have different maximum limits. Refer to the family 
datasheets for specifications of maximum I/O frequencies for supported I/O standards. Desired PLL input 
or output frequencies will not be achieved if the selected frequencies are higher than the maximum I/O 
frequencies allowed by the selected I/O standards. Users should be careful when selecting the I/O 
standards used for PLL input and output clocks. Performing post-layout simulation can help detect this 
type of error, which will be identified with pulse width violation errors. Users are strongly encouraged to 
perform post-layout simulation to ensure the I/O standard used can provide the desired PLL input or 
output frequencies. Users can also choose to cascade PLLs together to achieve the high frequencies 
needed for their applications. Details of cascading PLLs are discussed in the "Cascading CCCs" section 
on page 109.
In SmartGen, the actual generated frequency (under typical operating conditions) will be displayed 
beside the requested output frequency value. This provides the ability to determine the exact frequency 
that can be generated by SmartGen, in real time. The log file generated by SmartGen is a useful tool in 
determining how closely the requested clock frequencies match the user specifications. For example, 
assume a user specifies 101 MHz as one of the secondary output frequencies. If the best output 
frequency that could be achieved were 100 MHz, the log file generated by SmartGen would indicate the 
actual generated frequency.

Simulation Verification
The integration of the generated PLL and CLKDLY modules is similar to any VHDL component or Verilog 
module instantiation in a larger design; i.e., there is no special requirement that users need to take into 
account to successfully synthesize their designs.
For simulation purposes, users need to refer to the VITAL or Verilog library that includes the functional 
description and associated timing parameters. Refer to the Software Tools section of the Microsemi SoC 
Products Group website to obtain the family simulation libraries. If Designer is installed, these libraries 
are stored in the following locations:

<Designer_Installation_Directory>\lib\vtl\95\proasic3.vhd
<Designer_Installation_Directory>\lib\vtl\95\proasic3e.vhd
<Designer_Installation_Directory>\lib\vlog\proasic3.v
<Designer_Installation_Directory>\lib\vlog\proasic3e.v

For Libero users, there is no need to compile the simulation libraries, as they are conveniently pre-
compiled in the ModelSim® Microsemi simulation tool.
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FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Support in Flash-Based Devices 
The flash FPGAs listed in Table 5-1 support the FlashROM feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 5-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 5-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 5-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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ProASIC3 nano FPGA Fabric User’s Guide
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, ADDRB
should be tied to ground. 

DINA and DINB
These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all
configurations. When a data width less than nine is specified, unused high-order signals must be
grounded (Table 6-4).
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, DINB should

be tied to ground.
DOUTA and DOUTB
These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA
and DINB, high-order bits may not be used (Table 6-4). The output data on unused pins is undefined. 

RAM512X18 Macro
RAM512X18 is the two-port configuration of the same RAM block (Figure 6-5 on page 140). Like the
RAM4K9 nomenclature, the RAM512X18 nomenclature refers to both the deepest possible configuration
and the widest possible configuration the two-port RAM block can assume. In two-port mode, the RAM
block can be configured to either the 512×9 aspect ratio or the 256×18 aspect ratio. RAM512X18 is also
fully synchronous and has the following features:

• Dedicated read and write ports
• Active-low read and write enables
• Selectable pipelined or nonpipelined read
• Active-low asynchronous reset
• Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion

to previous stages.

Table 6-3 • Address Pins Unused/Used for Various Supported Bus Widths

D×W

ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.

Table 6-4 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

D×W
DINx/DOUTx

Unused Used
4k×1 [8:1] [0]

2k×2 [8:2] [1:0]

1k×4 [8:4] [3:0]

512×9 None [8:0]

Note: The "x" in DINx or DOUTx implies A or B.
Revision 5 139



10 – Programming Flash Devices

Introduction
This document provides an overview of the various programming options available for the Microsemi 
flash families. The electronic version of this document includes active links to all programming resources, 
which are available at http://www.microsemi.com/soc/products/hardware/default.aspx. For Microsemi 
antifuse devices, refer to the Programming Antifuse Devices document.

Summary of Programming Support 
FlashPro4 and FlashPro3 are high-performance in-system programming (ISP) tools targeted at the latest 
generation of low power flash devices offered by the SmartFusion,® Fusion, IGLOO,® and ProASIC®3 
families, including ARM-enabled devices. FlashPro4 and FlashPro3 offer extremely high performance 
through the use of USB 2.0, are high-speed compliant for full use of the 480 Mbps bandwidth, and can 
program ProASIC3 devices in under 30 seconds. Powered exclusively via USB, FlashPro4 and 
FlashPro3 provide a VPUMP voltage of 3.3 V for programming these devices. 
FlashPro4 replaced FlashPro3 in 2010. FlashPro4 supports SmartFusion, Fusion, ProASIC3,and IGLOO 
devices as well as future generation flash devices. FlashPro4 also adds 1.2 V programming for IGLOO 
nano V2 devices. FlashPro4 is compatible with FlashPro3; however it adds a programming mode 
(PROG_MODE) signal to the previously unused pin 4 of the JTAG connector. The PROG_MODE goes 
high during programming and can be used to turn on a 1.5 V external supply for those devices that 
require 1.5 V for programming. If both FlashPro3 and FlashPro4 programmers are used for programming 
the same boards, pin 4 of the JTAG connector must not be connected to anything on the board because 
FlashPro4 uses pin 4 for PROG_MODE. 

Figure 10-1 • FlashPro Programming Setup

FlashPro
Software

FlashPro3 or
 FlashPro4

JTAG
ProASIC3/E

Programming File:
PDB, STP, or FDB
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Security in Low Power Flash Devices
Security in Action
This section illustrates some applications of the security advantages of Microsemi’s devices (Figure 11-6).

.

Note: Flash blocks are only used in Fusion devices
Figure 11-6 • Security Options 
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Security in Low Power Flash Devices
It is important to note that when the security settings need to be updated, the user also needs to select
the Security settings check box in Step 1, as shown in Figure 11-10 on page 248 and Figure 11-11 on
page 248, to modify the security settings. The user must consider the following:

• If only a new AES key is necessary, the user must re-enter the same Pass Key previously
programmed into the device in Designer and then generate a programming file with the same
Pass Key and a different AES key. This ensures the programming file can be used to access and
program the device and the new AES key.

• If a new Pass Key is necessary, the user can generate a new programming file with a new Pass
Key (with the same or a new AES key if desired). However, for programming, the user must first
load the original programming file with the Pass Key that was previously used to unlock the
device. Then the new programming file can be used to program the new security settings.

Advanced Options
As mentioned, there may be applications where more complicated security settings are required. The
“Custom Security Levels” section in the FlashPro User's Guide describes different advanced options
available to aid the user in obtaining the best available security settings. 

Figure 11-19 • FlashLock Pass Key, Previously Programmed Devices 
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Security in Low Power Flash Devices
STAPL File with AES Encryption
• Does not contain AES key / FlashLock Key information
• Intended for transmission through web or service to unsecured locations for programming

=============================================
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EF57";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "ENCRYPT FROM CORE ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";

Conclusion
The new and enhanced security features offered in Fusion, IGLOO, and ProASIC3 devices provide state-
of-the-art security to designs programmed into these flash-based devices. Microsemi low power flash
devices employ the encryption standard used by NIST and the U.S. government—AES using the 128-bit
Rijndael algorithm. 
The combination of an on-chip AES decryption engine and FlashLock technology provides the highest
level of security against invasive attacks and design theft, implementing the most robust and secure ISP
solution. These security features protect IP within the FPGA and protect the system from cloning,
wholesale “black box” copying of a design, invasive attacks, and explicit IP or data theft.

Glossary

References
National Institute of Standards and Technology. “ADVANCED ENCRYPTION STANDARD (AES)

Questions and Answers.” 28 January 2002 (10 January 2005).
See http://csrc.nist.gov/archive/aes/index1.html for more information.

Term Explanation

Security Header 
programming file

Programming file used to program the FlashLock Pass Key and/or AES key into the device to
secure the FPGA, FlashROM, and/or FBs. 

AES (encryption) key 128-bit key defined by the user when the AES encryption option is set in the Microsemi
Designer software when generating the programming file.

FlashLock Pass Key 128-bit key defined by the user when the FlashLock option is set in the Microsemi Designer
software when generating the programming file.
The FlashLock Key protects the security settings programmed to the device. Once a device
is programmed with FlashLock, whatever settings were chosen at that time are secure. 

FlashLock The combined security features that protect the device content from attacks. These features
are the following:
• Flash technology that does not require an external bitstream to program the device
• FlashLock Pass Key that secures device content by locking the security settings and

preventing access to the device as defined by the user
• AES key that allows secure, encrypted device reprogrammability
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13 – Core Voltage Switching Circuit for IGLOO and 
ProASIC3L In-System Programming

Introduction
The IGLOO® and ProASIC®3L families offer devices that can be powered by either 1.5 V or, in the case
of V2 devices, a core supply voltage anywhere in the range of 1.2 V to 1.5 V, in 50 mV increments.
Since IGLOO and ProASIC3L devices are flash-based, they can be programmed and reprogrammed
multiple times in-system using Microsemi FlashPro3. FlashPro3 uses the JTAG standard interface (IEEE
1149.1) and STAPL file (defined in JESD 71 to support programming of programmable devices using
IEEE 1149.1) for in-system configuration/programming (IEEE 1532) of a device. Programming can also
be executed by other methods, such as an embedded microcontroller that follows the same standards
above.
All IGLOO and ProASIC3L devices must be programmed with the VCC core voltage at 1.5 V. Therefore,
applications using IGLOO or ProASIC3L devices powered by a 1.2 V supply must switch the core supply
to 1.5 V for in-system programming.
The purpose of this document is to describe an easy-to-use and cost-effective solution for switching the
core supply voltage from 1.2 V to 1.5 V during in-system programming for IGLOO and ProASIC3L
devices.
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B – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 650.318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more 
information and support. Many answers available on the searchable web resource include diagrams, 
illustrations, and links to other resources on the website. 

Website
You can browse a variety of technical and non-technical information on the SoC home page, at 
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.
The technical support email address is soc_tech@microsemi.com.
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