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ProASIC3 nano FPGA Fabric User’s Guide
User Low Static (Idle) Mode
User Low Static (Idle) mode is an advanced feature supported by ProASIC3/E devices to reduce static
(idle) power consumption. Entering and exiting this mode is made possible using the ULSICC macro by
setting its value to disable/enable the User Low Static (Idle) mode. Under typical operating conditions,
characterization results show up to 25% reduction of the static (idle) power consumption. The greatest
power savings in terms of percentage are seen in the smaller members of the ProASIC3 family. The
active-high control signal for User Low Static (Idle) mode can be generated by internal or external logic.
When the device is operating in User Low Static (Idle) mode, FlashROM functionality is temporarily
disabled to save power. If FlashROM functionality is needed, the device can exit User Low Static mode
temporarily and re-enter the mode once the functionality is no longer needed.
To utilize User Low Static (Idle) mode, simply instantiate the ULSICC macro (Table 2-2 on page 24) in
your design, and connect the input port to either an internal logic signal or a device package pin, as
illustrated in Figure 2-2 on page 24 or Figure 2-3 on page 25, respectively. The attribute is used so the
Synplify® synthesis tool will not optimize the instance with no output port.
This mode can be used to lower standard static (idle) power consumption when the FlashROM feature is
not needed. Configuring the device to enter User Low Static (Idle) mode is beneficial when the FPGA
enters and exits static mode frequently and lowering power consumption as much as possible is desired.
The device is still functional, and data is retained in this state so the device can enter and exit this mode
quickly, resulting in reduced total power consumption. The device can also stay in User Low Static mode
when the FlashROM feature is not used in the device.

Figure 2-1 • CCC/PLL Macro
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Chip and Quadrant Global I/Os
The following sections give an overview of naming conventions and other related I/O information.

Naming of Global I/Os
In low power flash devices, the global I/Os have access to certain clock conditioning circuitry and have
direct access to the global network. Additionally, the global I/Os can be used as regular I/Os, since they
have identical capabilities to those of regular I/Os. Due to the comprehensive and flexible nature of the
I/Os in low power flash devices, a naming scheme is used to show the details of the I/O. The global I/O
uses the generic name Gmn/IOuxwByVz. Note that Gmn refers to a global input pin and IOuxwByVz
refers to a regular I/O Pin, as these I/Os can be used as either global or regular I/Os. Refer to the I/O
Structures chapter of the user’s guide for the device that you are using for more information on this
naming convention.
Figure 3-4 represents the global input pins connection. It shows all 54 global pins available to
access the 18 global networks in ProASIC3E families.

Figure 3-4 • Global Connections Details
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Spine Architecture
The low power flash device architecture allows the VersaNet global networks to be segmented. Each of
these networks contains spines (the vertical branches of the global network tree) and ribs that can reach
all the VersaTiles inside its region. The nine spines available in a vertical column reside in global
networks with two separate regions of scope: the quadrant global network, which has three spines, and
the chip (main) global network, which has six spines. Note that the number of quadrant globals and
globals/spines per tree varies depending on the specific device. Refer to Table 3-4 for the clocking
resources available for each device. The spines are the vertical branches of the global network tree,
shown in Figure 3-3 on page 34. Each spine in a vertical column of a chip (main) global network is further
divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die
(except in 10 k through 30 k gate devices).
Top and bottom spine segments radiating from the center of a device have the same height. However,
just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the
middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and
cannot access the middle two rows of the architecture. 
Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see
Figure 3-3 on page 34). Each spine is accessed by the dedicated global network MUX tree architecture,
which defines how a particular spine is driven—either by the signal on the global network from a CCC, for
example, or by another net defined by the user. Details of the chip (main) global network spine-selection
MUX are presented in Figure 3-8 on page 44. The spine drivers for each spine are located in the middle
of the die.
Quadrant spines can be driven from user I/Os or an internal signal from the north and south sides of the
die. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top
of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000
device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables
users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/
ProASIC3L
Devices

IGLOO 
Devices

Chip
Globals 

Quadrant
Globals 

(4×3)
Clock
Trees 

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in Each

Tree 
Total

VersaTiles 

Rows
in

Each
Spine

A3PN010 AGLN010 4 0 1 0 0 260 260 4

A3PN015 AGLN015 4 0 1 0 0 384 384 6

A3PN020 AGLN020 4 0 1 0 0 520 520 6

A3PN060 AGLN060 6 12 4 9 36 384 1,536 12

A3PN125 AGLN125 6 12 8 9 72 384 3,072 12

A3PN250 AGLN250 6 12 8 9 72 768 6,144 24

A3P015 AGL015 6 0 1 9 9 384 384 12

A3P030 AGL030 6 0 2 9 18 384 768 12

A3P060 AGL060 6 12 4 9 36 384 1,536 12

A3P125 AGL125 6 12 8 9 72 384 3,072 12

A3P250/L AGL250 6 12 8 9 72 768 6,144 24

A3P400 AGL400 6 12 12 9 108 768 9,216 24

A3P600/L AGL600 6 12 12 9 108 1,152 13,824 36

A3P1000/L AGL1000 6 12 16 9 144 1,536 24,576 48

A3PE600/L AGLE600 6 12 12 9 108 1,120 13,440 35

A3PE1500 6 12 20 9 180 1,888 37,760 59

A3PE3000/L AGLE3000 6 12 28 9 252 2,656 74,368 83
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Global Resources in Low Power Flash Devices
Using Clock Aggregation
Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections,
without adding any extra skew. A MUX tree, shown in Figure 3-8, provides the necessary flexibility to
allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal
access to the clock aggregation system is achieved through long-line resources in the central rib in the
center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed
directly into the clock system. As Figure 3-9 indicates, this access system is contiguous.
There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different
from the quadrant clocks located in these ribs, which only reach the middle of the rib. 

Figure 3-8 • Spine Selection MUX of Global Tree

Figure 3-9 • Clock Aggregation Tree Architecture
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During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)
You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC
commands:
assign_local_clock –net QCLK1_c  –type quadrant UL
assign_local_clock –net QCLK2_c  –type quadrant LL

Step 4
Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:
The following nets have been assigned to a global resource:
Fanout  Type          Name
--------------------------
1536    INT_NET       Net   : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536    SET/RESET_NET Net   : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET       Net   : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET       Net   : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256     CLK_NET       Net   : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256     CLK_NET       Net   : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

The following nets have been assigned to a quadrant clock resource using PDC:
Fanout  Type          Name
--------------------------
256     CLK_NET       Net   : QCLK1_c

Driver: QCLK1_pad_CLKINT
Region: quadrant_UL

256     CLK_NET       Net   : QCLK2_c
Driver: QCLK2_pad_CLKINT
Region: quadrant_LL

Step 5
Run Layout.

Global Management in PLL Design 
This section describes the legal global network connections to PLLs in the low power flash devices. For
detailed information on using PLLs, refer to "Clock Conditioning Circuits in Low Power Flash Devices and
Mixed Signal FPGAs" section on page 61. Microsemi recommends that you use the dedicated global
pins to directly drive the reference clock input of the associated PLL for reduced propagation delays and
clock distortion. However, low power flash devices offer the flexibility to connect other signals to
reference clock inputs. Each PLL is associated with three global networks (Figure 3-5 on page 36). There
are some limitations, such as when trying to use the global and PLL at the same time:

• If you use a PLL with only primary output, you can still use the remaining two free global
networks.

• If you use three globals associated with a PLL location, you cannot use the PLL on that location.
• If the YB or YC output is used standalone, it will occupy one global, even though this signal does

not go to the global network.   
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Using internal feedback, we know from EQ 4-1 on page 86 that the maximum achievable output 
frequency from the primary output is 

fGLA = fCLKA × m / (n × u) = 2 MHz × 128 / (1 × 1) = 256 MHz

EQ 4-5
Figure 4-35 shows the settings of the initial PLL. When configuring the initial PLL, specify the input to be 
either Hardwired I/O–Driven or External I/O–Driven. This generates a netlist with the initial PLL routed 
from an I/O. Do not specify the input to be Core Logic–Driven, as this prohibits the connection from the 
I/O pin to the input of the PLL. 

A second PLL can be connected serially to achieve the required frequency. EQ 4-1 on page 86 to EQ 4-3 
on page 86 are extended as follows:

fGLA2 = fGLA × m2 / (n2 × u2) = fCLKA1 × m1 × m2 / (n1 × u1 × n2 × u2) – Primary PLL Output Clock 

EQ 4-6

fGLB2 = fYB2 = fCLKA1 × m1 × m2 / (n1 × n2 × v1 × v2) – Secondary 1 PLL Output Clock(s)

EQ 4-7

fGLC2 = fYC2 = fCLKA1 × m1 × m2 / (n1 × n2 × w1 × w2) – Secondary 2 PLL Output Clock(s)

EQ 4-8
In the example, the final output frequency (foutput) from the primary output of the second PLL will be as 
follows (EQ 4-9):

foutput = fGLA2 = fGLA × m2 / (n2 × u2) = 256 MHz × 70 / (64 × 1) = 280 MHz

EQ 4-9
Figure 4-36 on page 111 shows the settings of the second PLL. When configuring the second PLL (or 
any subsequent-stage PLLs), specify the input to be Core Logic–Driven. This generates a netlist with the 
second PLL routed internally from the core. Do not specify the input to be Hardwired I/O–Driven or 
External I/O–Driven, as these options prohibit the connection from the output of the first PLL to the input 
of the second PLL.

Figure 4-34 • Cascade PLL Configuration

Figure 4-35 • First-Stage PLL Showing Input of 2 MHz and Output of 256 MHz
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. AES decryption not supported in 30 k gate devices and smaller.
2. Flash*Freeze is supported in all IGLOO devices and the ProASIC3L devices.
Figure 6-1 • IGLOO and ProASIC3 Device Architecture Overview
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Figure 6-2 • Fusion Device Architecture Overview (AFS600) 
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. Automotive ProASIC3 devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of

phase (inverted) between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent
errors during compile. This warning applies only to automotive ProASIC3 parts of certain revisions and earlier.
Contact Technical Support at soc_tech@microsemi.com for information on the revision number for a particular lot
and date code.

2. For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be used.
Figure 6-3 • Supported Basic RAM Macros
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Signal Descriptions for RAM512X18
RAM512X18 has slightly different behavior from RAM4K9, as it has dedicated read and write ports.

WW and RW
These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 6-5).

WD and RD
These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is
used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, RD[17:9]
are undefined. 

WADDR and RADDR
These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used
for write or read, WADDR[8] and RADDR[8] are unused and must be grounded.

WCLK and RCLK
These signals are the write and read clocks, respectively. They can be clocked on the rising or falling
edge of WCLK and RCLK.

WEN and REN
These signals are the write and read enables, respectively. They are both active-low by default. These
signals can be configured as active-high.

RESET
This active-low signal resets the control logic, forces the output hold state registers to zero, disables
reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not
reset the contents of the memory array.
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
reset signal, care must be taken not to assert it too close to the edges of active read and write clocks. 

PIPE 
This signal is used to specify pipelined read on the output. A LOW on PIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and
data appears on the output in the next clock cycle.

Note: For timing diagrams of the RAM signals, refer to the appropriate family datasheet.
Figure 6-5 • 512X18 Two-Port RAM Block Diagram

Table 6-5 • Aspect Ratio Settings for WW[1:0]
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Low Power Flash Device I/O Support
The low power flash families listed in Table 7-1 support I/Os and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 7-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 7-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 7-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO nano Lowest power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

ProASIC3 ProASIC3 nano Lowest cost 1.5 V FPGAs with balanced performance

Note: *The device name links to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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I/O Structures in nano Devices
I/O Architecture

I/O Tile
IGLOO and ProASIC3 nano devices utilize either a single-tile or dual-tile I/O architecture (Figure 7-1 on
page 159 and Figure 7-2 on page 160). The 10 k, 15 k, and 20 k devices utilize the single-tile design and
the 60 k, 125 k and 250 k devices utilize the dual-tile design. In both cases, the I/O tile provides a
flexible, programmable structure for implementing a large number of I/O standards. In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired. For single-tile designs, all I/O registers share both the CLR and CLK ports,
while for the dual-tile designs, the output register and output enable register share one CLK port. For the
dual-tile designs, the registers can also be used to support the JESD-79C Double Data Rate (DDR)
standard within the I/O structure (see the "DDR for Microsemi’s Low Power Flash Devices" section on
page 205 for more information). 

I/O Registers
Each I/O module contains several input and output registers. Refer to Figure 7-3 on page 165 for a
simplified representation of the I/O block. The number of input registers is selected by a set of switches
(not shown in Figure 7-2 on page 160) between registers to implement single-ended data transmission to
and from the FPGA core. The Designer software sets these switches for the user. For single-tile designs,
a common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. The I/O
register combining requires that no combinatorial logic be present between the register and the I/O.
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– The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute
Editor (see Figure 8-6).

– The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the
only way to use these standards in the design (IGLOO nano and ProASIC3 nano devices do
not support differential inputs).

– To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT
macro. This is the only way to use a DDR macro in the design.  

Performing Place-and-Route on the Design
The netlist created by the synthesis tool should now be imported into Designer and compiled. During
Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can
also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File
A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported
from Designer. 
Table 8-3 shows I/O assignment constraints supported in the PDC file.

Figure 8-6 • Assigning a Different I/O Standard to the Generic I/O Macro

Table 8-3 • PDC I/O Constraints

Command Action Example Comment

I/O Banks Setting Constraints

set_iobank Sets the I/O supply
voltage, VCCI, and the
input reference voltage,
VREF, for the specified I/O
bank.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]

set_iobank Bank7 -vcci 1.50 
-vref 0.75 

Must use in case of mixed I/O
voltage (VCCI) design

set_vref Assigns a VREF pin to a
bank. 

set_vref -bank [bankname]
[pinnum]

set_vref -bank Bank0
685 704 723 742 761

Must use if voltage-
referenced I/Os are used

set_vref_defaults Sets the default VREF
pins for the specified
bank. This command is
ignored if the bank does
not need a VREF pin. 

set_vref_defaults bankname

set_vref_defaults bank2

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
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I/O Cell Architecture
Low power flash devices support DDR in the I/O cells in four different modes: Input, Output, Tristate, and
Bidirectional pins. For each mode, different I/O standards are supported, with most I/O standards having
special sub-options. For the ProASIC3 nano and IGLOO nano devices, DDR is supported only in the
60 k, 125 k, and 250 k logic densities. Refer to Table 9-2 for a sample of the available I/O options.
Additional I/O options can be found in the relevant family datasheet.

Table 9-2 • DDR I/O Options

DDR Register 
Type I/O Type I/O Standard Sub-Options Comments

Receive Register Input Normal None 3.3 V TTL (default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

Pull-Up None (default)

PCI/PCI-X None

GTL/GTL+ Voltage 2.5 V, 3.3 V (3.3 V default)

HSTL Class  I / II (I default)

SSTL2/SSTL3 Class  I / II (I default)

LVPECL None  

LVDS None  

Transmit Register Output Normal None 3.3 V TTL (default)

LVTTL Output Drive 2, 4, 6, 8, 12, 16, 24, 36 mA (8 mA
default)

Slew Rate Low/high (high default)

LVCMOS Voltage 1.5 V, 1.8 V, 2.5 V, 5 V (1.5 V
default)

PCI/PCI-X None  

GTL/GTL+ Voltage 1.8 V, 2.5 V, 3.3 V (3.3 V default)

HSTL Class  I / II (I default)

SSTL2/SSTL3 Class  I / II (I default)

LVPECL* None  

LVDS* None  

Note: *IGLOO nano and ProASIC3 nano devices do not support differential inputs.
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DDR for Microsemi’s Low Power Flash Devices
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
TRIBUFF_F_8U_0_inst : TRIBUFF_F_8U
port map(D => Q, E => TrienAux, PAD => PAD);

end DEF_ARCH;

DDR Bidirectional Buffer

Verilog
module DDR_BiDir_HSTL_I_LowEnb(DataR,DataF,CLR,CLK,Trien,QR,QF,PAD);

input   DataR, DataF, CLR, CLK, Trien;
output  QR, QF;
inout   PAD;

wire TrienAux, D, Q;

INV Inv_Tri(.A(Trien), .Y(TrienAux));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
DDR_REG DDR_REG_0_inst(.D(D),.CLK(CLK),.CLR(CLR),.QR(QR),.QF(QF));
BIBUF_HSTL_I BIBUF_HSTL_I_0_inst(.PAD(PAD),.D(Q),.E(TrienAux),.Y(D));

endmodule

Figure 9-8 • DDR Bidirectional Buffer, LOW Output Enable (HSTL Class II)
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VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_BiDir_HSTL_I_LowEnb is 
port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic; 

PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;

architecture DEF_ARCH of  DDR_BiDir_HSTL_I_LowEnb is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

component BIBUF_HSTL_I
port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic) ;

end component;

signal TrienAux, D, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
DDR_REG_0_inst : DDR_REG
port map(D => D, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
port map(PAD => PAD, D => Q, E => TrienAux, Y => D);

end DEF_ARCH;
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
Figure 12-2 shows different applications for ISP programming.
1. In a trusted programming environment, you can program the device using the unencrypted

(plaintext) programming file.
2. You can program the AES Key in a trusted programming environment and finish the final

programming in an untrusted environment using the AES-encrypted (cipher text) programming
file.

3. For the remote ISP updating/reprogramming, the AES Key stored in the device enables the
encrypted programming bitstream to be transmitted through the untrusted network connection. 

Microsemi low power flash devices also provide the unique Microsemi FlashLock feature, which protects
the Pass Key and AES Key. Unless the original FlashLock Pass Key is used to unlock the device,
security settings cannot be modified. Microsemi does not support read-back of FPGA core-programmed
data; however, the FlashROM contents can selectively be read back (or disabled) via the JTAG port
based on the security settings established by the Microsemi Designer software. Refer to the "Security in
Low Power Flash Devices" section on page 235 for more information.

Figure 12-2 • Different ISP Use Models
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
3. A single STAPL file or multiple STAPL files with multiple FlashROM contents. A single STAPL file
will be generated if the device serialization feature is not used. You can program the whole
FlashROM or selectively program individual pages. 

4. A single STAPL file to configure the security settings for the device, such as the AES Key and/or
Pass Key.

Programming Solution
For device programming, any IEEE 1532–compliant programmer can be used; however, the
FlashPro4/3/3X programmer must be used to control the low power flash device's rich security features
and FlashROM programming options. The FlashPro4/3/3X programmer is a low-cost portable
programmer for the Microsemi flash families. It can also be used with a powered USB hub for parallel
programming. General specifications for the FlashPro4/3/3X programmer are as follows:

• Programming clock – TCK is used with a maximum frequency of 20 MHz, and the default
frequency is 4 MHz. 

• Programming file – STAPL 
• Daisy chain – Supported. You can use the ChainBuilder software to build the programming file for

the chain.
• Parallel programming – Supported. Multiple FlashPro4/3/3X programmers can be connected

together using a powered USB hub or through the multiple USB ports on the PC.
• Power supply – The target board must provide VCC, VCCI, VPUMP, and VJTAG during

programming. However, if there is only one device on the target board, the FlashPro4/3/3X
programmer can generate the required VPUMP voltage from the USB port. 

Figure 12-4 • Flexible Programming File Generation for Different Applications
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 This chapter will now be published standalone as an application note in addition to
being part of the IGLOO/ProASIC3/Fusion FPGA fabric user’s guides (SAR 38769).

N/A

The "ISP Programming Header Information" section was revised to update the
description of FP3-10PIN-ADAPTER-KIT in Table 12-3 • Programming Header
Ordering Codes, clarifying that it is the adapter kit used for ProASICPLUS based
boards, and also for ProASIC3 based boards where a compact programming
header is being used (SAR 36779).

269

June 2011 The VPUMP programming mode voltage was corrected in Table 12-2 • Power
Supplies. The correct value is 3.15 V to 3.45 V (SAR 30668).

263

The notes associated with Figure 12-5 • Programming Header (top view) and
Figure 12-6 • Board Layout and Programming Header Top View were revised to
make clear the fact that IGLOO nano V2 devices can be programmed at 1.2 V (SAR
30787).

269, 271

Figure 12-6 • Board Layout and Programming Header Top View was revised to
include resistors tying TCK and TRST to GND. Microsemi recommends tying off
TCK and TRST to GND if JTAG is not used (SAR 22921). RT ProASIC3 was added
to the list of device families.

271

In the "ISP Programming Header Information" section, the kit for adapting
ProASICPLUS devices was changed from FP3-10PIN-ADAPTER-KIT to FP3-26PIN-
ADAPTER-KIT (SAR 20878).

269

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

References to FlashPro4 and FlashPro3X were added to this chapter, giving
distinctions between them. References to SmartGen were deleted and replaced
with Libero IDE Catalog.

N/A

The "ISP Architecture" section was revised to indicate that V2 devices can be
programmed at 1.2 V VCC with FlashPro4.

261

SmartFusion was added to Table 12-1 • Flash-Based FPGAs Supporting ISP. 262

The "Programming Voltage (VPUMP) and VJTAG" section was revised and 1.2 V
was added to Table 12-2 • Power Supplies.

263

The "Nonvolatile Memory (NVM) Programming Voltage" section is new. 263

 Cortex-M3 was added to the "Cortex-M1 and Cortex-M3 Device Security" section. 265

In the "ISP Programming Header Information" section, the additional header
adapter ordering number was changed from FP3-26PIN-ADAPTER to FP3-10PIN-
ADAPTER-KIT, which contains 26-pin migration capability.

269

The description of NC was updated in Figure 12-5 • Programming Header (top
view), Table 12-4 • Programming Header Pin Numbers and Description and
Figure 12-6 • Board Layout and Programming Header Top View.

269, 270

The "Symptoms of a Signal Integrity Problem" section was revised to add that
customers are expected to troubleshoot board-level signal integrity issues by
measuring voltages and taking scope plots. "FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity
problems" formerly read, "from 24 MHz down to 1 MHz." "The Scan Chain
command expects to see 0x2" was changed to 0x1.

271
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Boundary Scan in Low Power Flash Devices
Microsemi’s Flash Devices Support the JTAG Feature
The flash-based FPGAs listed in Table 15-1 support the JTAG feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 15-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 15-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 15-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC®3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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