
Microchip Technology - A3PN250-Z2VQG100 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 36864

Number of I/O 68

Number of Gates 250000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -20°C ~ 85°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pn250-z2vqg100

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pn250-z2vqg100-4494174
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

FPGA Array Architecture in Low Power Flash Devices
Array Coordinates
During many place-and-route operations in the Microsemi Designer software tool, it is possible to set
constraints that require array coordinates. Table 1-2 provides array coordinates of core cells and memory
blocks for IGLOO and ProASIC3 devices. Table 1-3 provides the information for IGLOO PLUS devices.
Table 1-4 on page 17 provides the information for IGLOO nano and ProASIC3 nano devices. The array
coordinates are measured from the lower left (0, 0). They can be used in region constraints for specific
logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed
because there is not a one-to-one correspondence between I/O cells and core cells. In addition, the I/O
coordinate system changes depending on the die/package combination. It is not listed in Table 1-2. The
Designer ChipPlanner tool provides the array coordinates of all I/O locations. I/O and cell coordinates are
used for placement constraints. However, I/O placement is easier by package pin assignment.
Figure 1-9 on page 17 illustrates the array coordinates of a 600 k gate device. For more information on
how to use array coordinates for region/placement constraints, see the Designer User's Guide or online
help (available in the software) for software tools.

Table 1-2 • IGLOO and ProASIC3 Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO
ProASIC3/
ProASIC3L x y x y (x, y) (x, y) (x, y) (x, y)

AGL015 A3P015 3 2 34 13 None None (0, 0) (37, 15)

AGL030 A3P030 3 3 66 13 None None (0, 0) (69, 15)

AGL060 A3P060 3 2 66 25 None (3, 26) (0, 0) (69, 29)

AGL125 A3P125 3 2 130 25 None (3, 26) (0, 0) (133, 29)

AGL250 A3P250/L 3 2 130 49 None (3, 50) (0, 0) (133, 53)

AGL400 A3P400 3 2 194 49 None (3, 50) (0, 0) (197, 53)

AGL600 A3P600/L 3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

AGL1000 A3P1000/L 3 4 258 99 (3, 2) (3, 100) (0, 0) (261, 103)

AGLE600 A3PE600/L,
RT3PE600L

3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

A3PE1500 3 4 322 123 (3, 2) (3, 124) (0, 0) (325, 127)

AGLE3000 A3PE3000/L,
RT3PE3000L

3 6 450 173 (3, 2)
or

(3, 4)

(3, 174)
or

(3, 176)

(0, 0) (453, 179)

Table 1-3 • IGLOO PLUS Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO PLUS x y x y (x, y) (x, y) (x, y) (x, y)

AGLP030 2 3 67 13 None None (0, 0) (69, 15)

AGLP060 2 2 67 25 None (3, 26) (0, 0) (69, 29)

AGLP125 2 2 131 25 None (3, 26) (0, 0) (133, 29)
16 Revision 5

http://www.microsemi.com/soc/documents/designer_ug.pdf

Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Alternatively, Figure 2-7 shows how a microprocessor can be used with a voltage regulator's shutdown
pin to turn the power supplies connected to the device on or off.

Though Sleep mode or Shutdown mode can be used to save power, the content of the SRAM and the
state of the registers is lost when power is turned off if no other measure is taken. To keep the original
contents of the device, a low-cost external serial EEPROM can be used to save and restore the device
contents when entering and exiting Sleep mode. In the Embedded SRAM Initialization Using External
Serial EEPROM application note, detailed information and a reference design are provided to initialize
the embedded SRAM using an external serial EEPROM. The user can easily customize the reference
design to save and restore the FPGA state when entering and exiting Sleep mode. The microcontroller
will need to manage this activity, so before powering down VCC, the data must be read from the FPGA
and stored externally. Similarly, after the FPGA is powered up, the microcontroller must allow the FPGA
to load the data from external memory and restore its original state.

Conclusion
Microsemi ProASIC3/E and ProASIC3 nano FPGAs inherit low power consumption capability from their
nonvolatile and live-at-power-up flash-based technology. Power consumption can be reduced further
using the Static (Idle), User Low Static (Idle), Sleep, or Shutdown power modes. All these features result
in a low-power, cost-effective, single-chip solution designed specifically for power-sensitive electronics
applications.

Related Documents

Application Notes
Embedded SRAM Initialization Using External Serial EEPROM
http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf

Figure 2-7 • Controlling Power On/Off State Using Microprocessor and Voltage Regulator

Microprocessor

ProASIC3/E/nano

Shutdown
Control Signal
for VCC, VJTAG, and VPUMP

Shutdown
Control Signal

for VCCI

Voltage
Regulator

VCC, VJTAG, and VPUMP
Power Pins

VCCI Power Pin

Power
Supply
28 Revision 5

http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf
http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf
http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf
http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf

Global Resources in Low Power Flash Devices
The following will happen during demotion of a global signal to regular nets:
• CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
• The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be

demoted.
• No automatic buffering will happen.

Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to
large fanout. This may have a negative effect on the quality of the results. Microsemi recommends that
the automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout
nets to improve timing and routability.

Spine Assignment
The low power flash device architecture allows the global networks to be segmented and used as clock
spines. These spines, also called local clock networks, enable the use of PDC or MVN to assign a signal
to a spine.
PDC syntax to promote a net to a spine/local clock:
assign_local_clock –net netname –type [quadrant|chip] Tn|Bn|Tn:Bm

If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before
it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock.
When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer
software will legalize the shared instances. The number of shared instances to be legalized can be
controlled by compile options. If these networks are created in MVN (only quadrant globals can be
created), no legalization is done (as it is post-compile). Designer does not do legalization between non-
clock nets.
As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC
constraints are used:
assign_local_clock –net net_clk –type chip T3
assign_local_clock –net net_reset –type chip T1:T2

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places
the flip-flop in the T3 spine region (Figure 3-16).

Figure 3-16 • Adding a Buffer for Shared Instances

D

CLK

CLR
net_clk

net_reset

T1 T2 T3

D

CLK

CLR
net_clk

net_reset

assign_local_clock -net net_clk -type chip T3
assign_local_clock -net net_reset -type chip T1:T2

Before Compile After Compile

Added
buffer
52 Revision 5

Global Resources in Low Power Flash Devices
3. Occasionally, the synthesis tool assigns a global macro to clock nets, even though the fanout is
significantly less than other asynchronous signals. Select Demote global nets whose fanout is
less than and enter a reasonable value for fanouts. This frees up some global networks from the
signals that have very low fanouts. This can also be done using PDC.

4. Use a local clock network for the signals that do not need to go to the whole chip but should have
low skew. This local clock network assignment can only be done using PDC.

5. Assign the I/O buffer using MVN if you have fixed I/O assignment. As shown in Figure 3-10 on
page 45, there are three sets of global pins that have a hardwired connection to each global
network. Do not try to put multiple CLKBUF macros in these three sets of global pins. For
example, do not assign two CLKBUFs to GAA0x and GAA2x pins.

6. You must click Commit at the end of MVN assignment. This runs the pre-layout checker and
checks the validity of global assignment.

7. Always run Compile with the Keep existing physical constraints option on. This uses the
quadrant clock network assignment in the MVN assignment and checks if you have the desired
signals on the global networks.

8. Run Layout and check the timing.

Figure 3-18 • Globals Management GUI in Designer
54 Revision 5

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
CLKDLY Inst1(.CLK(CLK), .GL(GL), .DLYGL0(VCC), .DLYGL1(GND), .DLYGL2(VCC),

.DLYGL3(GND), .DLYGL4(GND));

endmodule

Detailed Usage Information

Clock Frequency Synthesis
Deriving clocks of various frequencies from a single reference clock is known as frequency synthesis.
The PLL has an input frequency range from 1.5 to 350 MHz. This frequency is automatically divided
down to a range between 1.5 MHz and 5.5 MHz by input dividers (not shown in Figure 4-19 on page 84)
between PLL macro inputs and PLL phase detector inputs. The VCO output is capable of an output
range from 24 to 350 MHz. With dividers before the input to the PLL core and following the VCO outputs,
the VCO output frequency can be divided to provide the final frequency range from 0.75 to 350 MHz.
Using SmartGen, the dividers are automatically set to achieve the closest possible matches to the
specified output frequencies.
Users should be cautious when selecting the desired PLL input and output frequencies and the I/O buffer
standard used to connect to the PLL input and output clocks. Depending on the I/O standards used for
the PLL input and output clocks, the I/O frequencies have different maximum limits. Refer to the family
datasheets for specifications of maximum I/O frequencies for supported I/O standards. Desired PLL input
or output frequencies will not be achieved if the selected frequencies are higher than the maximum I/O
frequencies allowed by the selected I/O standards. Users should be careful when selecting the I/O
standards used for PLL input and output clocks. Performing post-layout simulation can help detect this
type of error, which will be identified with pulse width violation errors. Users are strongly encouraged to
perform post-layout simulation to ensure the I/O standard used can provide the desired PLL input or
output frequencies. Users can also choose to cascade PLLs together to achieve the high frequencies
needed for their applications. Details of cascading PLLs are discussed in the "Cascading CCCs" section
on page 109.
In SmartGen, the actual generated frequency (under typical operating conditions) will be displayed
beside the requested output frequency value. This provides the ability to determine the exact frequency
that can be generated by SmartGen, in real time. The log file generated by SmartGen is a useful tool in
determining how closely the requested clock frequencies match the user specifications. For example,
assume a user specifies 101 MHz as one of the secondary output frequencies. If the best output
frequency that could be achieved were 100 MHz, the log file generated by SmartGen would indicate the
actual generated frequency.

Simulation Verification
The integration of the generated PLL and CLKDLY modules is similar to any VHDL component or Verilog
module instantiation in a larger design; i.e., there is no special requirement that users need to take into
account to successfully synthesize their designs.
For simulation purposes, users need to refer to the VITAL or Verilog library that includes the functional
description and associated timing parameters. Refer to the Software Tools section of the Microsemi SoC
Products Group website to obtain the family simulation libraries. If Designer is installed, these libraries
are stored in the following locations:

<Designer_Installation_Directory>\lib\vtl\95\proasic3.vhd
<Designer_Installation_Directory>\lib\vtl\95\proasic3e.vhd
<Designer_Installation_Directory>\lib\vlog\proasic3.v
<Designer_Installation_Directory>\lib\vlog\proasic3e.v

For Libero users, there is no need to compile the simulation libraries, as they are conveniently pre-
compiled in the ModelSim® Microsemi simulation tool.
104 Revision 5

http://www.microsemi.com/soc/products/tools/sw.aspx

ProASIC3 nano FPGA Fabric User’s Guide
• Use quadrant global region assignments by finding the clock net associated with the CCC macro
under the Nets tab and creating a quadrant global region for the net, as shown in Figure 4-33.

External I/O–Driven CCCs
The above-mentioned recommendation for proper layout techniques will ensure the correct assignment.
It is possible that, especially with External I/O–Driven CCC macros, placement of the CCC macro in a
desired location may not be achieved. For example, assigning an input port of an External I/O–Driven
CCC near a particular CCC location does not guarantee global assignments to the desired location. This
is because the clock inputs of External I/O–Driven CCCs can be assigned to any I/O location; therefore,
it is possible that the CCC connected to the clock input will be routed to a location other than the one
closest to the I/O location, depending on resource availability and placement constraints.

Clock Placer
The clock placer is a placement engine for low power flash devices that places global signals on the chip
global and quadrant global networks. Based on the clock assignment constraints for the chip global and
quadrant global clocks, it will try to satisfy all constraints, as well as creating quadrant clock regions when
necessary. If the clock placer fails to create the quadrant clock regions for the global signals, it will report
an error and stop Layout.
The user must ensure that the constraints set to promote clock signals to quadrant global networks are
valid.

Cascading CCCs
The CCCs in low power flash devices can be cascaded. Cascading CCCs can help achieve more
accurate PLL output frequency results than those achievable with a single CCC. In addition, this
technique is useful when the user application requires the output clock of the PLL to be a multiple of the
reference clock by an integer greater than the maximum feedback divider value of the PLL (divide by
128) to achieve the desired frequency.
For example, the user application may require a 280 MHz output clock using a 2 MHz input reference
clock, as shown in Figure 4-34 on page 110.

Figure 4-33 • Quadrant Clock Assignment for a Global Net
Revision 5 109

ProASIC3 nano FPGA Fabric User’s Guide
FlashROM Generation and Instantiation in the Design
The SmartGen core generator, available in Libero SoC and Designer, is the only tool that can be used to
generate the FlashROM content. SmartGen has several user-friendly features to help generate the
FlashROM contents. Instead of selecting each byte and assigning values, you can create a region within
a page, modify the region, and assign properties to that region. The FlashROM user interface, shown in
Figure 5-10, includes the configuration grid, existing regions list, and properties field. The properties field
specifies the region-specific information and defines the data used for that region. You can assign values
to the following properties:

1. Static Fixed Data—Enables you to fix the data so it cannot be changed during programming time.
This option is useful when you have fixed data stored in this region, which is required for the
operation of the design in the FPGA. Key storage is one example.

2. Static Modifiable Data—Select this option when the data in a particular region is expected to be
static data (such as a version number, which remains the same for a long duration but could
conceivably change in the future). This option enables you to avoid changing the value every time
you enter new data.

3. Read from File—This provides the full flexibility of FlashROM usage to the customer. If you have
a customized algorithm for generating the FlashROM data, you can specify this setting. You can
then generate a text file with data for as many devices as you wish to program, and load that into
the FlashPoint programming file generation software to get programming files that include all the
data. SmartGen will optionally pass the location of the file where the data is stored if the file is
specified in SmartGen. Each text file has only one type of data format (binary, decimal, hex, or
ASCII text). The length of each data file must be shorter than or equal to the selected region
length. If the data is shorter than the selected region length, the most significant bits will be
padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In
SmartGen, Load Sim. Value From File allows you to load the first device data in the MEM file for
simulation.

4. Auto Increment/Decrement—This scenario is useful when you specify the contents of FlashROM
for a large number of devices in a series. You can specify the step value for the serial number and
a maximum value for inventory control. During programming file generation, the actual number of
devices to be programmed is specified and a start value is fed to the software.

Figure 5-10 • SmartGen GUI of the FlashROM
Revision 5 125

ProASIC3 nano FPGA Fabric User’s Guide
FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values. The
FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is
incremented every time a write operation is performed, and RADDR is incremented every time a read
operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal
to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and
RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and
write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data
words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool
translates them into bit addresses and configures these signals automatically. SmartGen configures the
AFULL flag to assert when the write address exceeds the read address by at least a predefined value. In
a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a
write when the difference between the write address and the read address reaches 1,500 (there have
been at least 1,500 more writes than reads). It will stay asserted until the difference between the write
and read addresses drops below 1,500.
The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries, and the AEVAL setting is based on the number of read data entries. For aspect ratios
of 512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The
number of words must be multiplied by 8 and 16 instead of 9 and 18. The SmartGen tool automatically
uses the proper values. To avoid halfwords being written or read, which could happen if different read
and write aspect ratios were specified, the FIFO will assert FULL or EMPTY as soon as at least one word
cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the
FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.

Variable Aspect Ratio and Cascading
Variable aspect ratio and cascading allow users to configure the memory in the width and depth required.
The memory block can be configured as a FIFO by combining the basic memory block with dedicated
FIFO controller logic. The FIFO macro is named FIFO4KX18. Low power flash device RAM can be
configured as 1, 2, 4, 9, or 18 bits wide. By cascading the memory blocks, any multiple of those widths
can be created. The RAM blocks can be from 256 to 4,096 bits deep, depending on the aspect ratio, and
the blocks can also be cascaded to create deeper areas. Refer to the aspect ratios available for each
macro cell in the "SRAM Features" section on page 137. The largest continuous configurable memory
area is equal to half the total memory available on the device, because the RAM is separated into two
groups, one on each side of the device.
The SmartGen core generator will automatically configure and cascade both RAM and FIFO blocks.
Cascading is accomplished using dedicated memory logic and does not consume user gates for depths
up to 4,096 bits deep and widths up to 18, depending on the configuration. Deeper memory will utilize
some user gates to multiplex the outputs.
Generated RAM and FIFO macros can be created as either structural VHDL or Verilog for easy
instantiation into the design. Users of Libero SoC can create a symbol for the macro and incorporate it
into a design schematic.
Table 6-10 on page 147 shows the number of memory blocks required for each of the supported depth
and width memory configurations, and for each depth and width combination. For example, a 256-bit
deep by 32-bit wide two-port RAM would consist of two 256×18 RAM blocks. The first 18 bits would be
stored in the first RAM block, and the remaining 14 bits would be implemented in the other 256×18 RAM
block. This second RAM block would have four bits of unused storage. Similarly, a dual-port memory
block that is 8,192 bits deep and 8 bits wide would be implemented using 16 memory blocks. The dual-
port memory would be configured in a 4,096×1 aspect ratio. These blocks would then be cascaded two
deep to achieve 8,192 bits of depth, and eight wide to achieve the eight bits of width.
Revision 5 145

147

ProASIC3 nano FPGA Fabric User’s Guide

Tabl

16,384 32,768 65,536
Dual-Port Dual-Port Dual-Port

W
id

th

1 4 8 16 × 1
4 × (4,096 × 1)
Cascade Deep

8 × (4,096 × 1)
Cascade Deep

16 × (4,096 × 1)
Cascade Deep

2 8 16 32
8 × (4,096 × 1)

Cascaded 4 Deep
and 2 Wide

16 × (4,096 × 1)
Cascaded 8 Deep

and 2 Wide

32 × (4,096 × 1)
Cascaded 16

Deep and 2 Wide
4 16 32 64

16 × (4,096 × 1)
Cascaded 4 Deep

and 4 Wide

32 × (4,096 × 1)
Cascaded 8 Deep

and 4 Wide

64 × (4,096 × 1)
Cascaded 16

Deep and 4 Wide
8 32 64

32 × (4,096 × 1)
Cascaded 4 Deep

and 8 Wide

64 × (4,096 × 1)
Cascaded 8 Deep

and 8 Wide
9 32

32 × (512 × 9)
Cascaded Deep

1 64
32 × (4,096 × 1)

Cascaded 4 Deep
and 16 Wide

1

3

3

6

7

Note:
Revision 5

e 6-10 • RAM and FIFO Memory Block Consumption
Depth

256 512 1,024 2,048 4,096 8,192
Two-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port Dual-Port

Number Block 1 1 1 1 1 1 2
Configuration Any Any Any 1,024 × 4 2,048 × 2 4,096 × 1 2 × (4,096 × 1)

Cascade Deep
Number Block 1 1 1 1 1 2 4
Configuration Any Any Any 1,024×4 2,048 × 2 2 × (4,096 × 1)

Cascaded Wide
4 × (4,096 × 1)

Cascaded 2 Deep
and 2 Wide

Number Block 1 1 1 1 2 4 8
Configuration Any Any Any 1,024 × 4 2 × (2,048 × 2)

Cascaded Wide
4 × (4,096 × 1)
Cascaded Wide

4 × (4,096 × 1)
Cascaded 2 Deep

and 4 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (1,024 × 4)

Cascaded Wide
4 × (2,048 × 2)
Cascaded Wide

8 × (4,096 × 1)
Cascaded Wide

16 × (4,096 × 1)
Cascaded 2 Deep

and 8 Wide
Number Block 1 1 1 2 4 8 16
Configuration Any Any Any 2 × (512 × 9)

Cascaded Deep
4 × (512 × 9)

Cascaded Deep
8 × (512 × 9)

Cascaded Deep
16 × (512 × 9)

Cascaded Deep
6 Number Block 1 1 1 4 8 16 32

Configuration 256 × 18 256 × 18 256 × 18 4 × (1,024 × 4)
Cascaded Wide

8 × (2,048 × 2)
Cascaded Wide

16 × (4,096 × 1)
Cascaded Wide

32 × (4,096 × 1)
Cascaded 2 Deep

and 16 Wide
8 Number Block 1 2 2 4 8 18 32

Configuration 256 × 8 2 × (512 × 9)
Cascaded Wide

2 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded 2 Deep

and 2 Wide

8 × (512 × 9)
Cascaded 4 Deep

and 2 Wide

16 × (512 × 9)
Cascaded 8 Deep

and 2 Wide

16 × (512 × 9)
Cascaded 16

Deep and 2 Wide
2 Number Block 2 4 4 8 16 32 64

Configuration 2 × (256 × 18)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

8 × (1,024 × 4)
Cascaded Wide

16 × (2,048 × 2)
Cascaded Wide

32 × (4,096 × 1)
Cascaded Wide

64 × (4,096 × 1)
Cascaded 2 Deep

and 32 Wide
6 Number Block 2 4 4 8 16 32

Configuration 2 × (256 × 18)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded Wide

4 × (512 × 9)
Cascaded 2 Deep

and 4 Wide

16 × (512 × 9)
Cascaded 4 Deep

and 4 Wide

16 × (512 × 9)
Cascaded 8 Deep

and 4 Wide
4 Number Block 4 8 8 16 32 64

Configuration 4 × (256 × 18)
Cascaded Wide

8 × (512 × 9)
Cascaded Wide

8 × (512 × 9)
Cascaded Wide

16 × (1,024 × 4)
Cascaded Wide

32 × (2,048 × 2)
Cascaded Wide

64 × (4,096 × 1)
Cascaded Wide

2 Number Block 4 8 8 16 32
Configuration 4 × (256 × 18)

Cascaded Wide
8 × (512 × 9)

Cascaded Wide
8 × (512 × 9)

Cascaded Wide
16 × (512 × 9)

Cascaded Wide
16 × (512 × 9)

Cascaded 4 Deep
and 8 Wide

Memory configurations represented by grayed cells are not supported.

ProASIC3 nano FPGA Fabric User’s Guide
Low Power Flash Device I/O Support
The low power flash families listed in Table 7-1 support I/Os and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 7-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 7-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 7-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO nano Lowest power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

ProASIC3 ProASIC3 nano Lowest cost 1.5 V FPGAs with balanced performance

Note: *The device name links to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
Revision 5 161

http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf

I/O Structures in nano Devices
Table 7-8 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are
powered down, and the card is plugged into the
system. Then the power supplies are turned on for
the system but not for the FPGA on the card.

Compliance of nano Devices Compliant

Table 7-9 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control
circuitry isolates the card busses until the card
supplies are at their nominal operating levels and
stable.

Compliance of nano Devices Compliant
168 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Related Documents

Application Notes
Board-Level Considerations
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k,
and 250 k Devices) was revised to indicate that resets on registers 1, 3, 4, and 5
are active high rather than active low (SAR 40698).

160

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

181, 183

June 2011 Figure 7-2 • I/O Block Logical Representation for Dual-Tile Designs (60 k,125 k,
and 250 k Devices) was revised so that the I/O_CLR and I/O_OCLK nets are no
longer joined in front of Input Register 3 but instead on the branch of the CLR/PRE
signal (SAR 26052).

160

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

166

The "5 V Input Tolerance" section was revised to state that 5 V input tolerance can
be used with LVTTL 3.3 V and LVCMOS 3.3 V configurations. LVCMOS 2.5 V,
LVCMOS 1.8 V, LVCMOS 1.5 V, and LVCMOS 1.2 V were removed from the
sentence listing supported configurations (SAR 22427).

171
Revision 5 183

http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/libero_ug.pdf
http://www.microsemi.com/soc/documents/libero_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/genguide_ug.pdf
http://www.microsemi.com/soc/documents/genguide_ug.pdf

Programming Flash Devices
Volume Programming Services
Device Type Supported: Flash and Antifuse
Once the design is stable for applications with large production volumes, preprogrammed devices can be
purchased. Table 10-2 describes the volume programming services.

Advantages: As programming is outsourced, this solution is easier to implement than creating a
substantial in-house programming capability. As programming houses specialize in large-volume
programming, this is often the most cost-effective solution.
Limitations: There are some logistical issues with the use of a programming service provider, such as the
transfer of programming files and the approval of First Articles. By definition, the programming file must
be released to a third-party programming house. Nondisclosure agreements (NDAs) can be signed to
help ensure data protection; however, for extremely security-conscious designs, this may not be an
option.

• Microsemi In-House Programming
When purchasing Microsemi devices in volume, IHP can be requested as part of the purchase. If
this option is chosen, there is a small cost adder for each device programmed. Each device is
marked with a special mark to distinguish it from blank parts. Programming files for the design will
be sent to Microsemi. Sample parts with the design programmed, First Articles, will be returned
for customer approval. Once approval of First Articles has been received, Microsemi will proceed
with programming the remainder of the order. To request Microsemi IHP, contact your local
Microsemi representative.

• Distributor Programming Centers
If purchases are made through a distributor, many distributors will provide programming for their
customers. Consult with your preferred distributor about this option.

Table 10-2 • Volume Programming Services
Programmer Vendor Availability
In-House Programming Microsemi Contact Microsemi Sales
Distributor Programming Centers Memec Unique Contact Distribution
Independent Programming Centers Various Contact Vendor
226 Revision 5

ProASIC3 nano FPGA Fabric User’s Guide
Cortex-M1 Device Security
Cortex-M1–enabled devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted Write and Verify
• Fusion Embedded Flash Memory enabled for AES-encrypted Write

AES Encryption of Programming Files
Low power flash devices employ AES as part of the security mechanism that prevents invasive and
noninvasive attacks. The mechanism entails encrypting the programming file with AES encryption and
then passing the programming file through the AES decryption core, which is embedded in the device.
The file is decrypted there, and the device is successfully programmed. The AES master key is stored in
on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure
programming environment (such as the Microsemi In-House Programming center), and then "blank"
parts can be shipped to an untrusted programming or manufacturing center for final personalization with
an AES-encrypted bitstream. Late-stage product changes or personalization can be implemented easily
and securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over
public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-
encrypted data.
The AES key protects the programming data for file transfer into the device with 128-bit AES encryption.
If AES encryption is used, the AES key is stored or preprogrammed into the device. To program, you
must use an AES-encrypted file, and the encryption used on the file must match the encryption key
already in the device.
The AES key is protected by a FlashLock security Pass Key that is also implemented in each device. The
AES key is always protected by the FlashLock Key, and the AES-encrypted file does NOT contain the
FlashLock Key. This FlashLock Pass Key technology is exclusive to the Microsemi flash-based device
families. FlashLock Pass Key technology can also be implemented without the AES encryption option,
providing a choice of different security levels.
In essence, security features can be categorized into the following three options:

• AES encryption with FlashLock Pass Key protection
• FlashLock protection only (no AES encryption)
• No protection

Each of the above options is explained in more detail in the following sections with application examples
and software implementation options.

Advanced Encryption Standard
The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and
Technology) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to
protect sensitive government information well into the 21st century. It replaces the aging DES, which
NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (securely) in low power flash devices in nonvolatile flash
memory. All programming files sent to the device can be authenticated by the part prior to programming
to ensure that bad programming data is not loaded into the part that may possibly damage it. All
programming verification is performed on-chip, ensuring that the contents of low power flash devices
remain secure.
Microsemi has implemented the 128-bit AES (Rijndael) algorithm in low power flash devices. With this
key size, there are approximately 3.4 × 1038 possible 128-bit keys. DES has a 56-bit key size, which
provides approximately 7.2 × 1016 possible keys. In their AES fact sheet, the National Institute of
Standards and Technology uses the following hypothetical example to illustrate the theoretical security
provided by AES. If one were to assume that a computing system existed that could recover a DES key
in a second, it would take that same machine approximately 149 trillion years to crack a 128-bit AES key.
NIST continues to make their point by stating the universe is believed to be less than 20 billion years
old.1
Revision 5 239

Security in Low Power Flash Devices
It is important to note that when the security settings need to be updated, the user also needs to select
the Security settings check box in Step 1, as shown in Figure 11-10 on page 248 and Figure 11-11 on
page 248, to modify the security settings. The user must consider the following:

• If only a new AES key is necessary, the user must re-enter the same Pass Key previously
programmed into the device in Designer and then generate a programming file with the same
Pass Key and a different AES key. This ensures the programming file can be used to access and
program the device and the new AES key.

• If a new Pass Key is necessary, the user can generate a new programming file with a new Pass
Key (with the same or a new AES key if desired). However, for programming, the user must first
load the original programming file with the Pass Key that was previously used to unlock the
device. Then the new programming file can be used to program the new security settings.

Advanced Options
As mentioned, there may be applications where more complicated security settings are required. The
“Custom Security Levels” section in the FlashPro User's Guide describes different advanced options
available to aid the user in obtaining the best available security settings.

Figure 11-19 • FlashLock Pass Key, Previously Programmed Devices
256 Revision 5

http://www.microsemi.com/soc/documents/flashpro_ug.pdf

In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
errors, but this list is intended to show where problems can occur. FlashPro4/3/3X allows TCK to be
lowered from 6 MHz down to 1 MHz to allow you to address some signal integrity problems that may
occur with impedance mismatching at higher frequencies. Customers are expected to troubleshoot
board-level signal integrity issues by measuring voltages and taking scope plots.

Scan Chain Failure
Normally, the FlashPro4/3/3X Scan Chain command expects to see 0x1 on the TDO pin. If the command
reports reading 0x0 or 0x3, it is seeing the TDO pin stuck at 0 or 1. The only time the TDO pin comes out
of tristate is when the JTAG TAP state machine is in the Shift-IR or Shift-DR state. If noise or reflections
on the TCK or TMS lines have disrupted the correct state transitions, the device's TAP state controller
might not be in one of these two states when the programmer tries to read the device. When this
happens, the output is floating when it is read and does not match the expected data value. This can also
be caused by a broken TDO net. Only a small amount of data is read from the device during the Scan
Chain command, so marginal problems may not always show up during this command. Occasionally a
faulty programmer can cause intermittent scan chain failures.

Exit 11
This error occurs during the verify stage of programming a device. After programming the design into the
device, the device is verified to ensure it is programmed correctly. The verification is done by shifting the
programming data into the device. An internal comparison is performed within the device to verify that all
switches are programmed correctly. Noise induced by poor signal integrity can disrupt the writes and
reads or the verification process and produce a verification error. While technically a verification error, the
root cause is often related to signal integrity.
Refer to the FlashPro User's Guide for other error messages and solutions. For the most up-to-date
known issues and solutions, refer to http://www.microsemi.com/soc/support.

Conclusion
IGLOO, ProASIC3, SmartFusion, and Fusion devices offer a low-cost, single-chip solution that is live at
power-up through nonvolatile flash technology. The FlashLock Pass Key and 128-bit AES Key security
features enable secure ISP in an untrusted environment. On-chip FlashROM enables a host of new
applications, including device serialization, subscription-based applications, and IP addressing.
Additionally, as the FlashROM is nonvolatile, all of these services can be provided without battery
backup.

Related Documents

User’s Guides
FlashPro User's Guide
http://www.microsemi.com/soc/documents/flashpro_ug.pdf
272 Revision 5

http://www.microsemi.com/soc/documents/flashpro_ug.pdf
http://www.microsemi.com/soc/support
http://www.microsemi.com/soc/documents/flashpro_ug.pdf
http://www.microsemi.com/soc/documents/flashpro_ug.pdf

13 – Core Voltage Switching Circuit for IGLOO and
ProASIC3L In-System Programming

Introduction
The IGLOO® and ProASIC®3L families offer devices that can be powered by either 1.5 V or, in the case
of V2 devices, a core supply voltage anywhere in the range of 1.2 V to 1.5 V, in 50 mV increments.
Since IGLOO and ProASIC3L devices are flash-based, they can be programmed and reprogrammed
multiple times in-system using Microsemi FlashPro3. FlashPro3 uses the JTAG standard interface (IEEE
1149.1) and STAPL file (defined in JESD 71 to support programming of programmable devices using
IEEE 1149.1) for in-system configuration/programming (IEEE 1532) of a device. Programming can also
be executed by other methods, such as an embedded microcontroller that follows the same standards
above.
All IGLOO and ProASIC3L devices must be programmed with the VCC core voltage at 1.5 V. Therefore,
applications using IGLOO or ProASIC3L devices powered by a 1.2 V supply must switch the core supply
to 1.5 V for in-system programming.
The purpose of this document is to describe an easy-to-use and cost-effective solution for switching the
core supply voltage from 1.2 V to 1.5 V during in-system programming for IGLOO and ProASIC3L
devices.
Revision 5 275

14 – Microprocessor Programming of Microsemi’s
Low Power Flash Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of flash FPGAs support in-system programming (ISP) with
the use of a microprocessor. Flash-based FPGAs store their configuration information in the actual cells
within the FPGA fabric. SRAM-based devices need an external configuration memory, and hybrid
nonvolatile devices store the configuration in a flash memory inside the same package as the SRAM
FPGA. Since the programming of a true flash FPGA is simpler, requiring only one stage, it makes sense
that programming with a microprocessor in-system should be simpler than with other SRAM FPGAs.
This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases system reliability.
Nonvolatile flash technology also gives the low power flash devices the advantage of a secure, low
power, live-at-power-up, and single-chip solution. Low power flash devices are reprogrammable and offer
time-to-market benefits at an ASIC-level unit cost. These features enable engineers to create high-
density systems using existing ASIC or FPGA design flows and tools.
This document is an introduction to microprocessor programming only. To explain the difference between
the options available, user's guides for DirectC and STAPL provide more detail on implementing each
style.

Figure 14-1 • ISP Using Microprocessor

Microprocessor

Internal RAM

I/O Functions

JTAG Bus

Flash
Device

Internal/External
Memory Running

DirectC

On-Board
Memory
Device
.dat file
Revision 5 283

Product Support
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms
Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select
Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR
web page.
322 Revision 5

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/

