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Low Power Modes in ProASIC3/E and ProASIC3 nano FPGAs
Table 2-2 • Using ULSICC Macro*

VHDL Verilog
COMPONENT ULSICC
       port (
              LSICC         : in     STD_ULOGIC);
END COMPONENT;

Example:
COMPONENT ULSICC
       port (
              LSICC         : in     STD_ULOGIC);
END COMPONENT;

attribute syn_noprune : boolean;
attribute syn_noprune of u1 : label is true;
u1: ULSICC port map(myInputSignal);

module ULSICC(LSICC);
 input LSICC;
endmodule

Example:
ULSICC U1(.LSICC(myInputSignal)) 
/* synthesis syn_noprune=1 */;

Note: *Supported in Libero® software v7.2 and newer versions.

Figure 2-2 • User Low Static (Idle) Mode Application—Internal Control Signal
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Global Resources in Low Power Flash Devices
Figure 3-5 shows more detailed global input connections. It shows the global input pins connection to the
northwest quadrant global networks. Each global buffer, as well as the PLL reference clock, can be
driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or

ProASIC3 nano devices)
• The FPGA core

Note: Differential inputs are not supported for IGLOO nano or ProASIC3 nano devices.
Figure 3-5 • Global I/O Overview
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(CLKA or CLKB or CLKC)

Each shaded box represents an
INBUF or INBUF_LVDS/LVPECL
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Routed Clock
(from FPGA core)

Sample Pin Names

GAA0/IO0NDB0V01

GAA1/IO00PDB0V01

GAA2/IO13PDB7V11

GAA[0:2]: GA represents global in the northwest corner
of the device. A[0:2]: designates specific A clock source.
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ProASIC3 nano FPGA Fabric User’s Guide
Figure 3-12 • Chip Global Region

Figure 3-13 • Quadrant Global Region
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CLKDLY Macro Usage 
When a CLKDLY macro is used in a CCC location, the programmable delay element is used to allow the 
clock delays to go to the global network. In addition, the user can bypass the PLL in a CCC location 
integrated with a PLL, but use the programmable delay that is associated with the global network by 
instantiating the CLKDLY macro. The same is true when using programmable delay elements in a CCC 
location with no PLLs (the user needs to instantiate the CLKDLY macro). There is no difference between 
the programmable delay elements used for the PLL and the CLKDLY macro. The CCC will be configured 
to use the programmable delay elements in accordance with the macro instantiated by the user.
As an example, if the PLL is not used in a particular CCC location, the designer is free to specify up to 
three CLKDLY macros in the CCC, each of which can have its own input frequency and delay adjustment 
options. If the PLL core is used, assuming output to only one global clock network, the other two global 
clock networks are free to be used by either connecting directly from the global inputs or connecting from 
one or two CLKDLY macros for programmable delay.
The programmable delay elements are shown in the block diagram of the PLL block shown in Figure 4-6 
on page 71. Note that any CCC locations with no PLL present contain only the programmable delay 
blocks going to the global networks (labeled "Programmable Delay Type 2"). Refer to the "Clock Delay 
Adjustment" section on page 86 for a description of the programmable delay types used for the PLL. Also 
refer to Table 4-14 on page 94 for Programmable Delay Type 1 step delay values, and Table 4-15 on 
page 94 for Programmable Delay Type 2 step delay values. CCC locations with a PLL present can be 
configured to utilize only the programmable delay blocks (Programmable Delay Type 2) going to the 
global networks A, B, and C. 
Global network A can be configured to use only the programmable delay element (bypassing the PLL) if the 
PLL is not used in the design. Figure 4-6 on page 71 shows a block diagram of the PLL, where the 
programmable delay elements are used for the global networks (Programmable Delay Type 2). 
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Core Logic Clock Source
Core logic refers to internal routed nets. Internal routed signals access the CCC via the FPGA Core 
Fabric. Similar to the External I/O option, whenever the clock source comes internally from the core itself, 
the routed signal is instantiated with a PLLINT macro before connecting to the CCC clock input (see 
Figure 4-12 for an example illustration of the connections, shown in red). 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-12 • Illustration of Core Logic Usage
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Using internal feedback, we know from EQ 4-1 on page 86 that the maximum achievable output 
frequency from the primary output is 

fGLA = fCLKA × m / (n × u) = 2 MHz × 128 / (1 × 1) = 256 MHz

EQ 4-5
Figure 4-35 shows the settings of the initial PLL. When configuring the initial PLL, specify the input to be 
either Hardwired I/O–Driven or External I/O–Driven. This generates a netlist with the initial PLL routed 
from an I/O. Do not specify the input to be Core Logic–Driven, as this prohibits the connection from the 
I/O pin to the input of the PLL. 

A second PLL can be connected serially to achieve the required frequency. EQ 4-1 on page 86 to EQ 4-3 
on page 86 are extended as follows:

fGLA2 = fGLA × m2 / (n2 × u2) = fCLKA1 × m1 × m2 / (n1 × u1 × n2 × u2) – Primary PLL Output Clock 

EQ 4-6

fGLB2 = fYB2 = fCLKA1 × m1 × m2 / (n1 × n2 × v1 × v2) – Secondary 1 PLL Output Clock(s)

EQ 4-7

fGLC2 = fYC2 = fCLKA1 × m1 × m2 / (n1 × n2 × w1 × w2) – Secondary 2 PLL Output Clock(s)

EQ 4-8
In the example, the final output frequency (foutput) from the primary output of the second PLL will be as 
follows (EQ 4-9):

foutput = fGLA2 = fGLA × m2 / (n2 × u2) = 256 MHz × 70 / (64 × 1) = 280 MHz

EQ 4-9
Figure 4-36 on page 111 shows the settings of the second PLL. When configuring the second PLL (or 
any subsequent-stage PLLs), specify the input to be Core Logic–Driven. This generates a netlist with the 
second PLL routed internally from the core. Do not specify the input to be Hardwired I/O–Driven or 
External I/O–Driven, as these options prohibit the connection from the output of the first PLL to the input 
of the second PLL.

Figure 4-34 • Cascade PLL Configuration

Figure 4-35 • First-Stage PLL Showing Input of 2 MHz and Output of 256 MHz
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FlashROM in Microsemi’s Low Power Flash Devices
Figure 5-12 shows the programming file generator, which enables different STAPL file generation
methods. When you select Program FlashROM and choose the UFC file, the FlashROM Settings
window appears, as shown in Figure 5-13. In this window, you can select the FlashROM page you want
to program and the data value for the configured regions. This enables you to use a different page for
different programming files.   

The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization). This
feature is supported in the programming software. After programming with the STAPL file, you can run
DEVICE_INFO to check the FlashROM content.

Figure 5-12 • Programming File Generator

Figure 5-13 • Setting FlashROM during Programming File Generation
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ProASIC3 nano FPGA Fabric User’s Guide
recommended, since it reduces the complexity of the user interface block and the board-level JTAG
driver.
Moreover, using an internal counter for address generation speeds up the initialization procedure, since
the user only needs to import the data through the JTAG port.
The designer may use different methods to select among the multiple RAM blocks. Using counters along
with demultiplexers is one approach to set the write enable signals. Basically, the number of RAM blocks
needing initialization determines the most efficient approach. For example, if all the blocks are initialized
with the same data, one enable signal is enough to activate the write procedure for all of them at the
same time. Another alternative is to use different opcodes to initialize each memory block. For a small
number of RAM blocks, using counters is an optimal choice. For example, a ring counter can be used to
select from multiple RAM blocks. The clock driver of this counter needs to be controlled by the address
generation process.
Once the addressing of one block is finished, a clock pulse is sent to the (ring) counter to select the next
memory block.
Figure 6-9 illustrates a simple block diagram of an interface block between UJTAG and RAM blocks. 

In the circuit shown in Figure 6-9, the shift register is enabled by the UDRSH output of the UJTAG macro.
The counters and chip select outputs are controlled by the value of the TAP Instruction Register. The
comparison block compares the UIREG value with the "start initialization" opcode value (defined by the
user). If the result is true, the counters start to generate addresses and activate the WEN inputs of
appropriate RAM blocks.
The UDRUPD output of the UJTAG macro, also shown in Figure 6-9, is used for generating the write
clock (WCLK) and synchronizing the data register and address counter with WCLK. UDRUPD is HIGH
when the TAP Controller is in the Data Register Update state, which is an indication of completing the
loading of one data word. Once the TAP Controller goes into the Data Register Update state, the
UDRUPD output of the UJTAG macro goes HIGH. Therefore, the pipeline register and the address
counter place the proper data and address on the outputs of the interface block. Meanwhile, WCLK is
defined as the inverted UDRUPD. This will provide enough time (equal to the UDRUPD HIGH time) for
the data and address to be placed at the proper ports of the RAM block before the rising edge of WCLK.
The inverter is not required if the RAM blocks are clocked at the falling edge of the write clock. An
example of this is described in the "Example of RAM Initialization" section on page 150.

Figure 6-9 • Block Diagram of a Sample User Interface
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ProASIC3 nano FPGA Fabric User’s Guide
Pipeline Register
module D_pipeline (Data, Clock, Q);

input [3:0] Data;
input Clock;
output [3:0] Q;

reg [3:0] Q;

always @ (posedge Clock) Q <= Data;

endmodule

4x4 RAM Block (created by SmartGen Core Generator)
module mem_block(DI,DO,WADDR,RADDR,WRB,RDB,WCLOCK,RCLOCK);

input [3:0] DI;
output [3:0] DO;
input [1:0] WADDR, RADDR;
input WRB, RDB, WCLOCK, RCLOCK;

wire WEBP, WEAP, VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
INV WEBUBBLEB(.A(WRB), .Y(WEBP));
RAM4K9 RAMBLOCK0(.ADDRA11(GND), .ADDRA10(GND), .ADDRA9(GND), .ADDRA8(GND),

.ADDRA7(GND), .ADDRA6(GND), .ADDRA5(GND), .ADDRA4(GND), .ADDRA3(GND), .ADDRA2(GND),

.ADDRA1(RADDR[1]), .ADDRA0(RADDR[0]), .ADDRB11(GND), .ADDRB10(GND), .ADDRB9(GND),

.ADDRB8(GND), .ADDRB7(GND), .ADDRB6(GND), .ADDRB5(GND), .ADDRB4(GND), .ADDRB3(GND),

.ADDRB2(GND), .ADDRB1(WADDR[1]), .ADDRB0(WADDR[0]), .DINA8(GND), .DINA7(GND),

.DINA6(GND), .DINA5(GND), .DINA4(GND), .DINA3(GND), .DINA2(GND), .DINA1(GND),

.DINA0(GND), .DINB8(GND), .DINB7(GND), .DINB6(GND), .DINB5(GND), .DINB4(GND),

.DINB3(DI[3]), .DINB2(DI[2]), .DINB1(DI[1]), .DINB0(DI[0]), .WIDTHA0(GND),

.WIDTHA1(VCC), .WIDTHB0(GND), .WIDTHB1(VCC), .PIPEA(GND), .PIPEB(GND),

.WMODEA(GND), .WMODEB(GND), .BLKA(WEAP), .BLKB(WEBP), .WENA(VCC), .WENB(GND),

.CLKA(RCLOCK), .CLKB(WCLOCK), .RESET(VCC), .DOUTA8(), .DOUTA7(), .DOUTA6(),

.DOUTA5(), .DOUTA4(), .DOUTA3(DO[3]), .DOUTA2(DO[2]), .DOUTA1(DO[1]),

.DOUTA0(DO[0]), .DOUTB8(), .DOUTB7(), .DOUTB6(), .DOUTB5(), .DOUTB4(), .DOUTB3(),

.DOUTB2(), .DOUTB1(), .DOUTB0());
INV WEBUBBLEA(.A(RDB), .Y(WEAP));

endmodule
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ProASIC3 nano FPGA Fabric User’s Guide
Conclusion
Fusion, IGLOO, and ProASIC3 devices provide users with extremely flexible SRAM blocks for most
design needs, with the ability to choose between an easy-to-use dual-port memory or a wide-word two-
port memory. Used with the built-in FIFO controllers, these memory blocks also serve as highly efficient
FIFOs that do not consume user gates when implemented. The SmartGen core generator provides a fast
and easy way to configure these memory elements for use in designs.

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 The note connected with Figure 6-3 • Supported Basic RAM Macros, regarding
RAM4K9, was revised to explain that it applies only to part numbers of certain
revisions and earlier (SAR 29574).

136

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.5
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 6-1 • Flash-Based
FPGAs.

134

IGLOO nano and ProASIC3 nano devices were added to Figure 6-8 • Interfacing
TAP Ports and SRAM Blocks.

148

v1.4
(October 2008)

The "SRAM/FIFO Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

134

The "SRAM and FIFO Architecture" section was modified to remove "IGLOO and
ProASIC3E" from the description of what the memory block includes, as this
statement applies to all memory blocks.

135

Wording in the "Clocking" section was revised to change "IGLOO and ProASIC3
devices support inversion" to "Low power flash devices support inversion." The
reference to IGLOO and ProASIC3 development tools in the last paragraph of the
section was changed to refer to development tools in general.

141

The "ESTOP and FSTOP Usage" section was updated to refer to FIFO counters
in devices in general rather than only IGLOO and ProASIC3E devices.

144

v1.3
(August 2008)

The note was removed from Figure 6-7 • RAM Block with Embedded FIFO
Controller and placed in the WCLK and RCLK description.

142

The "WCLK and RCLK" description was revised. 143

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 6-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

134

v1.1
(March 2008)

The "Introduction" section was updated to include the IGLOO PLUS family. 131

The "Device Architecture" section was updated to state that 15 k gate devices do
not support SRAM and FIFO.

131

The first note in Figure 6-1 • IGLOO and ProASIC3 Device Architecture Overview
was updated to include mention of 15 k gate devices, and IGLOO PLUS was
added to the second note.

133
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ProASIC3 nano FPGA Fabric User’s Guide
For Level 3 and Level 4 compliance with the nano devices, cards with two levels of staging should have
the following sequence:

• Grounds
• Powers, I/Os, and other pins

Table 7-10 • Hot-Swap Level 3

Description Hot-swap while bus idle

Power Applied to Device Yes

Bus State Held idle (no ongoing I/O processes during
insertion/removal)

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application Board bus shared with card bus is "frozen," and
there is no toggling activity on the bus. It is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant

Table 7-11 • Hot-Swap Level 4

Description Hot-swap on an active bus

Power Applied to Device Yes

Bus State Bus may have active I/O processes ongoing, but
device being inserted or removed must be idle.

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application There is activity on the system bus, and it is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of nano Devices Compliant
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I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is 

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin 

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 8-6 on page 193).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist. 
192 Revision 5

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/libero_ug.pdf


I/O Software Control in Low Power Flash Devices
I/O Function
Figure 8-8 shows an example of the I/O Function table included in the I/O bank report:

This table lists the number of input I/Os, output I/Os, bidirectional I/Os, and differential input and output
I/O pairs that use I/O and DDR registers.
Note: IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Certain rules must be met to implement registered and DDR I/O functions (refer to the I/O Structures
section of the handbook for the device you are using and the "DDR" section on page 190).

I/O Technology
The I/O Technology table (shown in Figure 8-9) gives the values of VCCI and VREF (reference voltage)
for all the I/O standards used in the design. The user should assign these voltages appropriately.  

Figure 8-8 • I/O Function Table

Figure 8-9 • I/O Technology Table
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ProASIC3 nano FPGA Fabric User’s Guide
If the assignment is not successful, an error message appears in the Output window.
To undo the I/O bank assignments, choose Undo from the Edit menu. Undo removes the I/O
technologies assigned by the IOBA. It does not remove the I/O technologies previously assigned.
To redo the changes undone by the Undo command, choose Redo from the Edit menu.
To clear I/O bank assignments made before using the Undo command, manually unassign or reassign
I/O technologies to banks. To do so, choose I/O Bank Settings from the Edit menu to display the I/O
Bank Settings dialog box.

Conclusion
Fusion, IGLOO, and ProASIC3 support for multiple I/O standards minimizes board-level components and
makes possible a wide variety of applications. The Microsemi Designer software, integrated with Libero
SoC, presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level
design requirements before programming the device. The device I/O features and functionalities ensure
board designers can produce low-cost and low power FPGA applications fulfilling the complexities of
contemporary design needs. 

Related Documents

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf
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DDR for Microsemi’s Low Power Flash Devices
Instantiating DDR Registers
Using SmartGen is the simplest way to generate the appropriate RTL files for use in the design.
Figure 9-4 shows an example of using SmartGen to generate a DDR SSTL2 Class I input register.
SmartGen provides the capability to generate all of the DDR I/O cells as described. The user, through the
graphical user interface, can select from among the many supported I/O standards. The output formats
supported are Verilog, VHDL, and EDIF.
Figure 9-5 on page 211 through Figure 9-8 on page 214 show the I/O cell configured for DDR using
SSTL2 Class I technology. For each I/O standard, the I/O pad is buffered by a special primitive that
indicates the I/O standard type.

Figure 9-4 • Example of Using SmartGen to Generate a DDR SSTL2 Class I Input Register 
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DDR for Microsemi’s Low Power Flash Devices
Design Example
Figure 9-9 shows a simple example of a design using both DDR input and DDR output registers. The
user can copy the HDL code in Libero SoC software and go through the design flow. Figure 9-10 and
Figure 9-11 on page 217 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may
vary slightly for different families.

Figure 9-9 • Design Example

Figure 9-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices
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10 – Programming Flash Devices

Introduction
This document provides an overview of the various programming options available for the Microsemi 
flash families. The electronic version of this document includes active links to all programming resources, 
which are available at http://www.microsemi.com/soc/products/hardware/default.aspx. For Microsemi 
antifuse devices, refer to the Programming Antifuse Devices document.

Summary of Programming Support 
FlashPro4 and FlashPro3 are high-performance in-system programming (ISP) tools targeted at the latest 
generation of low power flash devices offered by the SmartFusion,® Fusion, IGLOO,® and ProASIC®3 
families, including ARM-enabled devices. FlashPro4 and FlashPro3 offer extremely high performance 
through the use of USB 2.0, are high-speed compliant for full use of the 480 Mbps bandwidth, and can 
program ProASIC3 devices in under 30 seconds. Powered exclusively via USB, FlashPro4 and 
FlashPro3 provide a VPUMP voltage of 3.3 V for programming these devices. 
FlashPro4 replaced FlashPro3 in 2010. FlashPro4 supports SmartFusion, Fusion, ProASIC3,and IGLOO 
devices as well as future generation flash devices. FlashPro4 also adds 1.2 V programming for IGLOO 
nano V2 devices. FlashPro4 is compatible with FlashPro3; however it adds a programming mode 
(PROG_MODE) signal to the previously unused pin 4 of the JTAG connector. The PROG_MODE goes 
high during programming and can be used to turn on a 1.5 V external supply for those devices that 
require 1.5 V for programming. If both FlashPro3 and FlashPro4 programmers are used for programming 
the same boards, pin 4 of the JTAG connector must not be connected to anything on the board because 
FlashPro4 uses pin 4 for PROG_MODE. 

Figure 10-1 • FlashPro Programming Setup
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Programming Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 FlashPro4 is a replacement for FlashPro3 and has been added to this chapter. 
FlashPro is no longer available.

N/A

The chapter was updated to include SmartFusion devices. N/A

The following were deleted: 
"Live at Power-Up (LAPU) or Boot PROM" section
"Design Security" section
Table 14-2 • Programming Features for Actel Devices and much of the text in the 
"Programming Features for Microsemi Devices" section
"Programming Flash FPGAs" section
"Return Material Authorization (RMA) Policies" section

N/A

The "Device Programmers" section was revised. 225

The Independent Programming Centers information was removed from the "Volume 
Programming Services" section.

226

Table 10-3 • Programming Solutions was revised to add FlashPro4 and note that 
FlashPro is discontinued. A note was added for FlashPro Lite regarding power 
supply requirements.

227

Most items were removed from Table 10-4 • Programming Ordering Codes, 
including FlashPro3 and FlashPro.

228

The "Programmer Device Support" section was deleted and replaced with a 
reference to the Microsemi SoC Products Group website for the latest information.

228

The "Certified Programming Solutions" section was revised to add FlashPro4 and 
remove Silicon Sculptor I and Silicon Sculptor 6X. Reference to Programming and 
Functional Failure Guidelines was added.

228

The file type *.pdb was added to the "Use the Latest Version of the Designer 
Software to Generate Your Programming File (recommended)" section.

229

Instructions on cleaning and careful insertion were added to the "Perform Routine 
Hardware Self-Diagnostic Test" section. Information was added regarding testing 
Silicon Sculptor programmers with an adapter module installed before every 
programming session verifying their calibration annually.

229

The "Signal Integrity While Using ISP" section is new. 230

The "Programming Failure Allowances" section was revised. 230
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Security in Low Power Flash Devices
Note: If programming the Security Header only, just perform sub-flow 1. 
If programming design content only, just perform sub-flow 2.

Figure 11-9 • Security Programming Flows
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Microprocessor Programming of Microsemi’s Low Power Flash Devices
Remote Upgrade via TCP/IP
Transmission Control Protocol (TCP) provides a reliable bitstream transfer service between two
endpoints on a network. TCP depends on Internet Protocol (IP) to move packets around the network on
its behalf. TCP protects against data loss, data corruption, packet reordering, and data duplication by
adding checksums and sequence numbers to transmitted data and, on the receiving side, sending back
packets and acknowledging the receipt of data.
The system containing the low power flash device can be assigned an IP address when deployed in the
field. When the device requires an update (core or FlashROM), the programming instructions along with
the new programming data (AES-encrypted cipher text) can be sent over the Internet to the target system
via the TCP/IP protocol. Once the MCU receives the instruction and data, it can proceed with the FPGA
update. Low power flash devices support Message Authentication Code (MAC), which can be used to
validate data for the target device. More details are given in the "Message Authentication Code (MAC)
Validation/Authentication" section.

Hardware Requirement
To facilitate the programming of the low power flash families, the system must have a microprocessor
(with access to the device JTAG pins) to process the programming algorithm, memory to store the
programming algorithm, programming data, and the necessary programming voltage. Refer to the
relevant datasheet for programming voltages.

Security

Encrypted Programming
As an additional security measure, the devices are equipped with AES decryption. AES works in two
steps. The first step is to program a key into the devices in a secure or trusted programming center (such
as Microsemi SoC Products Group In-House Programming (IHP) center). The second step is to encrypt
any programming files with the same encryption key. The encrypted programming file will only work with
the devices that have the same key. The AES used in the low power flash families is the 128-bit AES
decryption engine (Rijndael algorithm).

Message Authentication Code (MAC) Validation/Authentication
As part of the AES decryption flow, the devices are equipped with a MAC validation/authentication
system. MAC is an authentication tag, also called a checksum, derived by applying an on-chip
authentication scheme to a STAPL file as it is loaded into the FPGA. MACs are computed and verified
with the same key so they can only be verified by the intended recipient. When the MCU system receives
the AES-encrypted programming data (cipher text), it can validate the data by loading it into the FPGA
and performing a MAC verification prior to loading the data, via a second programming pass, into the
FPGA core cells. This prevents erroneous or corrupt data from getting into the FPGA. 
Low power flash devices with AES and MAC are superior to devices with only DES or 3DES encryption.
Because the MAC verifies the correctness of the data, the FPGA is protected from erroneous loading of
invalid programming data that could damage a device (Figure 14-5 on page 289).
The AES with MAC enables field updates over public networks without fear of having the design stolen.
An encrypted programming file can only work on devices with the correct key, rendering any stolen files
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