Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|-----------------------------------------------------------------------| | Product Status | Active | | Core Processor | ARM® Cortex®-M0+ | | Core Size | 32-Bit Single-Core | | Speed | 32MHz | | Connectivity | I <sup>2</sup> C, IrDA, SPI, UART/USART, USB | | Peripherals | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, LCD, POR, PWM, WDT | | Number of I/O | 37 | | Program Memory Size | 64KB (64K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 2K x 8 | | RAM Size | 8K x 8 | | Voltage - Supply (Vcc/Vdd) | 1.65V ~ 3.6V | | Data Converters | A/D 10x12b; D/A 1x12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-LQFP | | Supplier Device Package | 48-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l053c8t6 | # 2 Description The ultra-low-power STM32L053x6/8 microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (up to 64 Kbytes of Flash program memory, 2 Kbytes of data EEPROM and 8 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals. The STM32L053x6/8 devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes. The STM32L053x6/8 devices offer several analog features, one 12-bit ADC with hardware oversampling, one DAC, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), three general-purpose 16-bit timers and one basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock. Moreover, the STM32L053x6/8 devices embed standard and advanced communication interfaces: up to two I2C, two SPIs, one I2S, two USARTs, a low-power UART (LPUART), and a crystal-less USB. The devices offer up to 24 capacitive sensing channels to simply add touch sensing functionality to any application. The STM32L053x6/8 also include a real-time clock and a set of backup registers that remain powered in Standby mode. Finally, their integrated LCD controller has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage. The ultra-low-power STM32L053x6/8 devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications. Figure 1. STM32L053x6/8 block diagram #### Stop mode without RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 $\mu$ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events. #### Standby mode with RTC The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire $V_{CORE}$ domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC\_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. #### Standby mode without RTC The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire $V_{CORE}$ domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC\_CSR register). The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop mode. #### ARM® Cortex®-M0+ core with MPU 3.3 The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including: - a simple architecture that is easy to learn and program - ultra-low power, energy-efficient operation - excellent code density - deterministic, high-performance interrupt handling - upward compatibility with Cortex-M processor family - platform security robustness, with integrated Memory Protection Unit (MPU). The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier. The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers. Owing to its embedded ARM core, the STM32L053x6/8 are compatible with all ARM tools and software. #### **Nested vectored interrupt controller (NVIC)** The ultra-low-power STM32L053x6/8 embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels. The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC: - includes a Non-Maskable Interrupt (NMI) - provides zero jitter interrupt option - provides four interrupt priority levels The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart loadmultiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode. This hardware block provides flexible interrupt management features with minimal interrupt latency. #### Startup clock After reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. #### • Clock security system (CSS) This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled. Clock-out capability (MCO: microcontroller clock output) It outputs one of the internal clocks for external use by the application. Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree. ### 3.13.2 V<sub>LCD</sub> voltage monitoring This embedded hardware feature allows the application to measure the $V_{LCD}$ supply voltage using the internal ADC channel ADC\_IN16. As the $V_{LCD}$ voltage may be higher than $V_{DDA}$ , and thus outside the ADC input range, the ADC input is connected to LCD\_VLCD2 (which provides $1/3V_{LCD}$ when the LCD is configured 1/3Bias and $1/4V_{LCD}$ when the LCD is configured 1/4Bias or 1/2Bias). ### 3.14 Digital-to-analog converter (DAC) One 12-bit buffered DAC can be used to convert digital signal into analog voltage signal output. An optional amplifier can be used to reduce the output signal impedance. This digital Interface supports the following features: - One data holding register - Left or right data alignment in 12-bit mode - Synchronized update capability - Noise-wave generation - Triangular-wave generation - DMA capability (including the underrun interrupt) - External triggers for conversion - Input reference voltage V<sub>REF+</sub> Four DAC trigger inputs are used in the STM32L053x6/8. The DAC channel is triggered through the timer update outputs that are also connected to different DMA channels. # 3.15 Ultra-low-power comparators and reference voltage The STM32L053x6/8 embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O). - One comparator with ultra low consumption - One comparator with rail-to-rail inputs, fast or slow mode. - The threshold can be one of the following: - DAC output - External I/O pins - Internal reference voltage (V<sub>RFFINT</sub>) - submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator. Both comparators can wake up the devices from Stop mode, and be combined into a window comparator. The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical). | | - | - | | |-------|----------------------------|------|-------| | Group | TSC_G4_IO1 F TSC_G4_IO2 P/ | | Group | | | TSC_G4_IO1 | PA9 | | | 4 | TSC_G4_IO2 | PA10 | 8 | | 4 | TSC_G4_IO3 | PA11 | | | | TSC_G4_IO4 | PA12 | | Table 8. Capacitive sensing GPIOs available on STM32L053x6/8 devices | Group | Capacitive sensing<br>signal name | Pin<br>name | |-------|-----------------------------------|-------------| | | TSC_G8_IO1 | PC6 | | 8 | TSC_G8_IO2 | PC7 | | 8 | TSC_G8_IO3 | PC8 | | | TSC_G8_IO4 | PC9 | <sup>.</sup> This GPIO offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O. # 3.18 Timers and watchdogs The ultra-low-power STM32L053x6/8 devices include three general-purpose timers, one low-power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer. *Table 9* compares the features of the general-purpose and basic timers. **DMA** Counter Capture/compare Complementary Timer Counter type Prescaler factor request resolution channels outputs generation Up, down, Any integer between TIM2 16-bit Yes 4 No up/down 1 and 65536 TIM21, Up, down, Any integer between 16-bit No 2 No TIM22 up/down 1 and 65536 Any integer between TIM6 16-bit Up Yes 0 No 1 and 65536 Table 9. Timer feature comparison ### 3.18.1 General-purpose timers (TIM2, TIM21 and TIM22) There are three synchronizable general-purpose timers embedded in the STM32L053x6/8 devices (see *Table 9* for differences). #### TIM<sub>2</sub> TIM2 is based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output. The TIM2 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. TIM2 has independent DMA request generation. This timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. # 6.3 Operating conditions ## 6.3.1 General operating conditions Table 24. General operating conditions | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|----------------------------------------------------------------------------------|--------------------------------------------|------|----------------------|----------| | f <sub>HCLK</sub> | Internal AHB clock frequency | - | 0 | 32 | | | f <sub>PCLK1</sub> | Internal APB1 clock frequency | - | 0 | 32 | MHz | | f <sub>PCLK2</sub> | Internal APB2 clock frequency | - | 0 | 32 | | | | Standard operating voltage | BOR detector disabled | 1.65 | 3.6 | | | V <sub>DD</sub> | | BOR detector enabled, at power-on | 1.8 | 3.6 | V | | | | BOR detector disabled, after power-on | 1.65 | 3.6 | | | V <sub>DDA</sub> | Analog operating voltage (DAC not used) | Must be the same voltage as $V_{DD}^{(1)}$ | 1.65 | 3.6 | ٧ | | $V_{DDA}$ | Analog operating voltage (all features) | Must be the same voltage as $V_{DD}^{(1)}$ | 1.8 | 3.6 | <b>\</b> | | V <sub>DD_US</sub> | Standard operating voltage, USB | USB peripheral used | 3.0 | 3.6 | V | | В | domain <sup>(2)</sup> | USB peripheral not used | 1.65 | 3.6 | \ \ | | | Input voltage on ET, ETf and BST pinc(3) | 2.0 V ≤V <sub>DD</sub> ≤3.6 V | -0.3 | 5.5 | | | | Imput voltage on F1, F11 and R31 pins | 1.65 V ≤V <sub>DD</sub> ≤2.0 V | -0.3 | 5.2 | V | | V <sub>IN</sub> | Input voltage on BOOT0 pin | - | 0 | 5.5 | V | | | out voltage on TC pin | - | -0.3 | V <sub>DD</sub> +0.3 | | | | | TFBGA64 package | - | 327 | | | | Power dissipation at $T_A = 85$ °C (range 6) or $T_A = 105$ °C (rage 7) $^{(4)}$ | LQFP64 package | - | 444 | | | $P_{D}$ | 7 | LQFP48 package | - | 363 | mW | | ΓD | | TFBGA64 package | - | 81 | 11100 | | | Power dissipation at $T_A = 125 ^{\circ}\text{C}$ (range $3)^{(4)}$ | LQFP64 package | - | 111 | | | | | LQFP48 package | - | 91 | | | | | Maximum power dissipation (range 6) | -40 | 85 | | | Та | Temperature range | Maximum power dissipation (range 7) | -40 | 105 | | | | | Maximum power dissipation (range 3) | -40 | 125 | °C | | | Junction temperature range (range 6) | -40 °C ≤T <sub>A</sub> ≤85 ° | -40 | 105 | | | TJ | Junction temperature range (range 7) | -40 °C ≤T <sub>A</sub> ≤105 °C | -40 | 125 | ] | | | Junction temperature range (range 3) | -40 °C ≤T <sub>A</sub> ≤125 °C | -40 | 130 | | It is recommended to power V<sub>DD</sub> and V<sub>DDA</sub> from the same source. A maximum difference of 300 mV between V<sub>DD</sub> and V<sub>DDA</sub> can be tolerated during power-up and normal operation. Table 28. Current consumption in Run mode, code with data processing running from Flash | Symbol | Parameter | Co | nditions | f <sub>HCLK</sub> | Тур | Max <sup>(1)</sup> | Unit | |-------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------|------|--------------------|------| | | | | | 1 MHz | 165 | 230 | | | | | Range 3, V <sub>CORE</sub> =1.2 V<br>VOS[1:0]=11 | 2 MHz | 290 | 360 | μΑ | | | | | | 4 MHz | 555 | 630 | | | | | f <sub>HSE</sub> = f <sub>HCLK</sub> up to | | 4 MHz | 0.665 | 0.74 | | | | | | 16 MHz included,<br>$f_{HSE} = f_{HCLK}/2$ above | Range 2, V <sub>CORE</sub> =1.5 V,<br>VOS[1:0]=10, | 8 MHz | 1.3 | 1.4 | | | | | 16 MHz (PLL ON) <sup>(2)</sup> | 100[1.0] | 16 MHz | 2.6 | 2.8 | | | Supply current in | | | 8 MHz | 1.55 | 1.7 | mA | | | (Run<br>from | Run mode, code | | Range 1, V <sub>CORE</sub> =1.8 V,<br>VOS[1:0]=01 | 16 MHz | 3.1 | 3.4 | | | Flash) | executed | | | 32 MHz | 6.3 | 6.8 | | | | from Flash | | Range 3, V <sub>CORE</sub> =1.2 V,<br>VOS[1:0]=11 | 65 kHz | 36.5 | 110 | | | | | MSI clock | | 524 kHz | 99.5 | 190 | μΑ | | | | | | 4.2 MHz | 620 | 700 | | | | | Range 2, V <sub>CORE</sub> =1.5 V,<br>VOS[1:0]=10, | 16 MHz | 2.6 | 2.9 | mΛ | | | | | | Range 1, V <sub>CORE</sub> =1.8 V,<br>VOS[1:0]=01 | 32 MHz | 6.25 | 7 | mA | <sup>1.</sup> Guaranteed by characterization results at 125 °C, unless otherwise specified. Table 29. Current consumption in Run mode vs code type, code with data processing running from Flash | Symbol | Parameter | | Conditions | | f <sub>HCLK</sub> | Тур | Unit | |--------------------------------------------------|------------------|--------------------------------------|---------------------------------------|---------------------------|-------------------|------|------| | | | | | Dhrystone | | 555 | | | | | | CoreMark | | 585 | | | | | | | Range 3,<br>V <sub>CORE</sub> =1.2 V, | Fibonacci | 4 MHz | 440 | μA | | Supply I <sub>DD</sub> current in (Run Run mode, | | VOS[1:0]=11 | while(1) | | 355 | | | | | | urrent in $f_{HSE} = f_{HCLK}$ up to | | while(1), prefetch<br>OFF | | 353 | | | from<br>Flash) | code<br>executed | | Range 1,<br>V <sub>CORE</sub> =1.8 V, | Dhrystone | | 6.3 | | | riasii) | from Flash | | | CoreMark | - | 6.3 | mA | | | | | | Fibonacci | 32 MHz | 6.55 | | | | | VOS[1:0]=01 | while(1) | | 5.4 | | | | | | | | while(1), prefetch<br>OFF | | 5.2 | | <sup>1.</sup> Oscillator bypassed (HSEBYP = 1 in RCC\_CR register). <sup>2.</sup> Oscillator bypassed (HSEBYP = 1 in RCC\_CR register). | Symbol | Peripheral | Typical consum | ption, T <sub>A</sub> = 25 °C | - Unit | |----------------------------|------------------------------|------------------------|-------------------------------|--------| | Symbol | renpheral | V <sub>DD</sub> =1.8 V | V <sub>DD</sub> =3.0 V | | | I <sub>DD(PVD / BOR)</sub> | - | 0.7 | 1.2 | | | I <sub>REFINT</sub> | - | - | 1.4 | | | - | LSE Low drive <sup>(2)</sup> | 0,1 | 0,1 | | | - | LPTIM1, Input 100 Hz | 0,01 | 0,01 | μΑ | | - | LPTIM1, Input 1 MHz | 6 | 6 | | | - | LPUART1 | 0,2 | 0,2 | | | - | RTC | 0,3 | 0,48 | 1 | | - | LCD1 (static duty) | 0,15 | 0,15 | | | - | LCD1 (1/8 duty) | 1,6 | 2,6 | μΑ | Table 39. Peripheral current consumption in Stop and Standby mode<sup>(1)</sup> ### 6.3.5 Wakeup time from low-power mode The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode: - Sleep mode: the clock source is the clock that was set before entering Sleep mode - Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4. - Standby mode: the clock source is the MSI oscillator running at 2.1 MHz All timings are derived from tests performed under ambient temperature and $V_{DD}$ supply voltage conditions summarized in *Table 24*. <sup>1.</sup> LPTIM peripheral cannot operate in Standby mode. LSE Low drive consumption is the difference between an external clock on OSC32\_IN and a quartz between OSC32\_IN and OSC32\_OUT.- #### High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 43*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------|-------------------------------------------|-------------------------------|-----|-----|-----|----------| | f <sub>OSC_IN</sub> | Oscillator frequency | - | 1 | | 25 | MHz | | R <sub>F</sub> | Feedback resistor | - | - | 200 | - | kΩ | | G <sub>m</sub> | Maximum critical crystal transconductance | Startup | i | ı | 700 | μA<br>/V | | t <sub>SU(HSE)</sub> | Startup time | V <sub>DD</sub> is stabilized | - | 2 | - | ms | Table 43. HSE oscillator characteristics<sup>(1)</sup> For $C_{L1}$ and $C_{L2}$ , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 19*). $C_{L1}$ and $C_{L2}$ are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of $C_{L1}$ and $C_{L2}$ . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing $C_{L1}$ and $C_{L2}$ . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*. Figure 19. HSE oscillator circuit diagram 577 <sup>1.</sup> Guaranteed by design. Guaranteed by characterization results. t<sub>SU(HSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. #### **Output voltage levels** Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under ambient temperature and $V_{DD}$ supply voltage conditions summarized in *Table 24*. All I/Os are CMOS and TTL compliant. Table 59. Output voltage characteristics | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|------|------| | V <sub>OL</sub> <sup>(1)</sup> | Output low level voltage for an I/O pin | CMOS port <sup>(2)</sup> , | - | 0.4 | | | V <sub>OH</sub> <sup>(3)</sup> | Output high level voltage for an I/O pin | $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ | V <sub>DD</sub> -0.4 | - | | | V <sub>OL</sub> <sup>(1)</sup> | Output low level voltage for an I/O pin | TTL port <sup>(2)</sup> ,<br>$I_{IO} = + 8 \text{ mA}$<br>$2.7 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$ | - | 0.4 | | | V <sub>OH</sub> (3)(4) | Output high level voltage for an I/O pin | TTL port <sup>(2)</sup> ,<br>$I_{IO} = -6 \text{ mA}$<br>$2.7 \text{ V} \le V_{DD} \le 3.6 \text{ V}$ | 2.4 | - | | | V <sub>OL</sub> <sup>(1)(4)</sup> | Output low level voltage for an I/O pin | $I_{IO}$ = +15 mA<br>2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V | - | 1.3 | ٧ | | V <sub>OH</sub> <sup>(3)(4)</sup> | Output high level voltage for an I/O pin | $I_{IO}$ = -15 mA<br>2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V | V <sub>DD</sub> -1.3 | - | | | V <sub>OL</sub> <sup>(1)(4)</sup> | Output low level voltage for an I/O pin | I <sub>IO</sub> = +4 mA<br>1.65 V ≤V <sub>DD</sub> < 3.6 V | - | 0.45 | | | V <sub>OH</sub> <sup>(3)(4)</sup> | Output high level voltage for an I/O pin | $I_{IO} = -4 \text{ mA}$<br>1.65 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V | V <sub>DD</sub> -0.45 | - | | | V <sub>OLFM+</sub> <sup>(1)(4)</sup> | Output low level voltage for an FTf | $I_{IO} = 20 \text{ mA}$<br>2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V | - | 0.4 | | | VOLFM+ | I/O pin in Fm+ mode | $I_{IO}$ = 10 mA<br>1.65 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V | - | 0.4 | | The I<sub>IO</sub> current sunk by the device must always respect the absolute maximum rating specified in *Table 22*. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣI<sub>IO(PIN)</sub>. <sup>2.</sup> TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. The I<sub>IO</sub> current sourced by the device must always respect the absolute maximum rating specified in Table 22. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣI<sub>IO(PIN)</sub>. <sup>4.</sup> Guaranteed by characterization results. #### Input/output AC characteristics The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 60*, respectively. Unless otherwise specified, the parameters given in *Table 60* are derived from tests performed under ambient temperature and V<sub>DD</sub> supply voltage conditions summarized in *Table 24*. Table 60. I/O AC characteristics<sup>(1)</sup> | OSPEEDRx[1:0]<br>bit value <sup>(1)</sup> | Symbol | Parameter | Conditions | Min | Max <sup>(2)</sup> | Unit | |-------------------------------------------|-------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-----|--------------------|--------| | | f | Maximum frequency <sup>(3)</sup> | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | - | 400 | kHz | | 00 | f <sub>max(IO)out</sub> | waximum frequency | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.65 V to 2.7 V | - | 100 | KIIZ | | 00 | t <sub>f(IO)out</sub> | Output rise and fall time | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | - | 125 | ns | | | t <sub>r(IO)out</sub> | Output rise and fail time | $C_L = 50 \text{ pF}, V_{DD} = 1.65 \text{ V to } 2.7 \text{ V}$ | - | 320 | 113 | | | f | Maximum frequency <sup>(3)</sup> | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | - | 2 | MHz | | 01 | f <sub>max(IO)out</sub> | Maximum frequency. | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.65 V to 2.7 V | - | 0.6 | IVIIIZ | | 01 | t <sub>f(IO)out</sub> | Output rise and fall time | $C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | - | 30 | ns | | | t <sub>r(IO)out</sub> | Output rise and fail time | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.65 V to 2.7 V | - | 65 | 115 | | | F | Maximum frequency <sup>(3)</sup> | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 2.7 V to 3.6 V | - | 10 | MHz | | 10 | F <sub>max(IO)out</sub> | waximum frequency. | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.65 V to 2.7 V | - | 2 | IVITZ | | 10 | t <sub>f(IO)out</sub> | Output rise and fall time | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 2.7 V to 3.6 V | - | 13 | no | | | t <sub>r(IO)out</sub> | Output rise and rail time | $C_L = 50 \text{ pF}, V_{DD} = 1.65 \text{ V to } 2.7 \text{ V}$ | | 28 | ns | | | Е | Maximum frequency <sup>(3)</sup> | $C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$ | - | 35 | MHz | | 11 | F <sub>max(IO)out</sub> | waximum frequency. | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.65 V to 2.7 V | - | 10 | IVITZ | | 11 | t <sub>f(IO)out</sub> | Output rise and fall time | C <sub>L</sub> = 30 pF, V <sub>DD</sub> = 2.7 V to 3.6 V | - | 6 | no | | | t <sub>r(IO)out</sub> | Output rise and fall time | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.65 V to 2.7 V | - | 17 | ns | | | f <sub>max(IO)out</sub> | Maximum frequency <sup>(3)</sup> | | - | 1 | MHz | | | t <sub>f(IO)out</sub> | Output fall time | $C_L = 50 \text{ pF}, V_{DD} = 2.5 \text{ V to } 3.6 \text{ V}$ | - | 10 | no | | Fm+ | t <sub>r(IO)out</sub> | Output rise time | | - | 30 | ns | | configuration <sup>(4)</sup> | f <sub>max(IO)out</sub> | Maximum frequency <sup>(3)</sup> | | - | 350 | KHz | | | t <sub>f(IO)out</sub> | Output fall time | C <sub>L</sub> = 50 pF, V <sub>DD</sub> = 1.65 V to 3.6 V | - | 15 | | | | t <sub>r(IO)out</sub> | Output rise time | | - | 60 | ns | | - | t <sub>EXTIpw</sub> | Pulse width of external signals detected by the EXTI controller | - | 8 | - | ns | <sup>1.</sup> The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register. <sup>2.</sup> Guaranteed by design. <sup>3.</sup> The maximum frequency is defined in Figure 24. <sup>4.</sup> When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration. Figure 24. I/O AC characteristics definition ### 6.3.14 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R<sub>PU</sub>, except when it is internally driven low (see *Table 61*). Unless otherwise specified, the parameters given in *Table 61* are derived from tests performed under ambient temperature and $V_{DD}$ supply voltage conditions summarized in *Table 24*. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |---------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------|-----------------------------------|----------|------| | V <sub>IL(NRST)</sub> <sup>(1)</sup> | NRST input low level voltage | - | $V_{SS}$ | - | 8.0 | | | V <sub>IH(NRST)</sub> <sup>(1)</sup> | NRST input high level voltage | - | 1.4 | - | $V_{DD}$ | | | V <sub>2</sub> , ,,,,,,,,,(1) | NRST output low level | I <sub>OL</sub> = 2 mA<br>2.7 V < V <sub>DD</sub> < 3.6 V | ı | 1 | 0.4 | V | | V <sub>OL(NRST)</sub> <sup>(1)</sup> | voltage | I <sub>OL</sub> = 1.5 mA<br>1.65 V < V <sub>DD</sub> < 2.7 V | - | - | 0.4 | | | V <sub>hys(NRST)</sub> <sup>(1)</sup> | NRST Schmitt trigger voltage hysteresis | - | - | 10%V <sub>DD</sub> <sup>(2)</sup> | ı | mV | | R <sub>PU</sub> | Weak pull-up equivalent resistor <sup>(3)</sup> | $V_{IN} = V_{SS}$ | 30 | 45 | 60 | kΩ | | V <sub>F(NRST)</sub> <sup>(1)</sup> | NRST input filtered pulse | - | - | - | 50 | ns | | V <sub>NF(NRST)</sub> <sup>(1)</sup> | NRST input not filtered pulse | - | 350 | - | - | ns | Table 61. NRST pin characteristics <sup>1.</sup> Guaranteed by design. <sup>2. 200</sup> mV minimum value The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%. Table 65. DAC characteristics (continued) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | |---------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|--------------|--------------|-------|--| | DNL <sup>(2)</sup> | Differential non linearity <sup>(4)</sup> | $C_L \le 50$ pF, $R_L \ge 5$ k $\Omega$ DAC output buffer ON | - | 1.5 | 3 | | | | | | No $R_{LOAD}$ , $C_{L} \le 50 pF$<br>DAC output buffer OFF | - | 1.5 | 3 | | | | INL <sup>(2)</sup> | Integral non linearity <sup>(5)</sup> | $C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$<br>DAC output buffer ON | - | 2 | 4 | | | | IINL , | integral non intearty. | No $R_{LOAD}$ , $C_{L} \le 50 pF$<br>DAC output buffer OFF | - | 2 | 4 | LSB | | | Offset <sup>(2)</sup> | Offset error at code 0x800 <sup>(6)</sup> | $C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON | - | ±10 | ±25 | | | | Oliset | Oliset error at code oxooo (*) | No R <sub>LOAD</sub> , C <sub>L</sub> ≤ 50 pF<br>DAC output buffer OFF | - | ±5 | ±8 | | | | Offset1 <sup>(2)</sup> | Offset error at code 0x001 <sup>(7)</sup> | No $R_{LOAD}$ , $C_{L} \le 50 pF$<br>DAC output buffer OFF | - | ±1.5 | ±5 | | | | (0) | Offset error temperature coefficient (code 0x800) | $V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_{A} = 0 \text{ to } 50 ^{\circ}\text{ C}$ DAC output buffer OFF | -20 | -10 | 0 | | | | dOffset/dT <sup>(2)</sup> | | $V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_{A} = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer ON | 0 | 20 | 50 | μV/°C | | | Gain <sup>(2)</sup> | Gain error <sup>(8)</sup> | $C_L \le 50$ pF, $R_L \ge 5$ k $\Omega$ DAC output buffer ON | - | +0.1 / -0.2% | +0.2 / -0.5% | 0/ | | | Gain <sup>(-)</sup> | Gain error | No $R_{LOAD}$ , $C_{L} \le 50 pF$<br>DAC output buffer OFF | - | +0 / -0.2% | +0 / -0.4% | % | | | dCain/dT <sup>(2)</sup> | Gain error temperature coefficient | $V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_{A} = 0 \text{ to } 50 ^{\circ}\text{ C}$ DAC output buffer OFF | -10 | -2 | 0 | μV/°C | | | dGain/dT <sup>(2)</sup> | | $V_{DDA} = 3.3V$ $V_{REF+} = 3.0 V$ $T_{A} = 0 \text{ to } 50 ^{\circ}\text{ C}$ DAC output buffer ON | -40 | -8 | 0 | μν/ Ο | | | TUE <sup>(2)</sup> | Total up adjusted array | $C_L \le 50$ pF, $R_L \ge 5$ k $\Omega$ DAC output buffer ON | - | 12 | 30 | LCD | | | IUE <sup>(-)</sup> | Total unadjusted error | No $R_{LOAD}$ , $C_{L} \le 50 pF$<br>DAC output buffer OFF | - | 8 | 12 | LSB | | Figure 34. I<sup>2</sup>S slave timing diagram (Philips protocol)<sup>(1)</sup> - 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$ . - 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 35. I<sup>2</sup>S master timing diagram (Philips protocol)<sup>(1)</sup> - 1. Guaranteed by characterization results. - LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 38. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint 1. Dimensions are expressed in millimeters. # 7.3 LQFP48 package information Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline 1. Drawing is not to scale. #### **Device marking for LQFP48** The following figure gives an example of topside marking versus pin 1 position identifier location. Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below. Figure 45. LQFP48 marking example (package top view) 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. Table 87. Document revision history (continued) | Date | Revision | Changes | |-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 05-Sep-2014 | 4 | Extended operating temperature range to 125 °C. Updated minimum ADC operating voltage to 1.65 V. Replaced USART3 by LPUART1 in Table 15: STM32L053x6/8 pin definitions and LPUART by LPUART1 in Table 16: Alternate function port A, Table 17: Alternate function port B, Table 18: Alternate function port A, Table 19: Alternate function port D and Table 20: Alternate function port H. Updated PA6 in Table 16: Alternate function port A. Updated temperature range in Section 2: Description, Table 1: Ultralow-power STM32L053x6/x8 device features and peripheral counts. Updated PD, TA and TJ to add range 3 in Table 24: General operating conditions. Added range 3 in Table 51: Flash memory and data EEPROM characteristics, Table 52: Flash memory and data EEPROM endurance and retention. Update note 1 in Table 28: Current consumption in Run mode, code with data processing running from Flash, Table 30: Current consumption in Run mode, code with data processing running from RAM, Table 32: Current consumption in Sleep mode, Table 33: Current consumption in Low-power run mode, Table 34: Current consumption in Low-power sleep mode, Table 35: Typical and maximum current consumptions in Stop mode, Table 36: Typical and maximum current consumptions in Standby mode and Table 40: Low-power mode wakeup timings. Updated Figure 46: Thermal resistance and removed note 1. Updated Figure 46: Thermal resistance and removed note 1. Updated Figure 46: Thermal resistance and removed note 1. Updated Figure 15: IDD vs VDD, at TA= 25/55/85/105/125 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS, Figure 15: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks OFF. Updated Table 36: Typical and maximum current consumption in Run or Sleep mode. Updated Table 39: Peripheral current consumption in Run or Sleep mode. Updated Table 40: Low-power mode wakeup timings. Updated ACC <sub>HS116</sub> temperature conditions in Table 45: 16 MHz HS116 oscillator characteristics. Changed ambient temperature |