

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l053r6t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 42.	TFBGA64 marking example (package top view)	119
Figure 43.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	120
Figure 44.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint	121
Figure 45.	LQFP48 marking example (package top view)	122
Figure 46.	Thermal resistance	123

57

Figure 1. STM32L053x6/8 block diagram

3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

Clock prescaler

To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.

• Safe clock switching

Clock sources can be changed safely on the fly in Run mode through a configuration register.

Clock management

To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.

System clock source

Three different clock sources can be used to drive the master clock SYSCLK:

- 1-25 MHz high-speed external crystal (HSE), that can supply a PLL
- 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

• Auxiliary clock source

Two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

• RTC and LCD clock sources

The LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.

USB clock source

A 48 MHz clock trimmed through the USB SOF supplies the USB interface.

Figure 2. Clock tree

DocID025844 Rev 7

3.8 Memories

The STM32L053x6/8 devices have the following features:

- 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 32 or 64 Kbytes of embedded Flash program memory
 - 2 Kbytes of data EEPROM
 - Information block containing 32 user and factory options bytes plus 4 Kbytes of system memory

The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no protection
- Level 1: memory readout protected.

The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected

• Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse)

The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the non-volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the volatile data segment (RAM).

The whole non-volatile memory embeds the error correction code (ECC) feature.

3.9 Boot modes

At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by using SPI1(PA4, PA5, PA6, PA7) or SPI2 (PB12, PB13, PB14, PB15), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32[™] microcontroller system memory boot mode AN2606 for details.

	1	2	3	4	5	6	7	8
A	PC14, (0SC32) `_IN'	(PC13)	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)
В	PC75- OSC32 _OUT	(VLCD)	(PB8)		(PD2)	(PC11)	(PC10)	(PA12)
С	PHO- SC_IN	(vss)	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)
D			(PB6)	(vss)	(vss)	(vss)	(PA8)	(PC9)
E	(NRST)	(PC1)	(PC0)	(VDD)	(VDD)		(PC7)	(PC8)
F	(VSSA)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)
G		(PA0)	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)
н	(VDDA)	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	(PB11)	(PB12)
	L							

Figure 4. STM32L053x6/8 TFBGA64 ballout - 5x 5 mm

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

Pin	num	ber						
LQFP48	LQFP64	TFBGA64	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	25	H6	PC5	I/O	FT	-	LCD_SEG23, LPUART1_RX, TSC_G3_IO1	ADC_IN15
18	26	F5	PB0	I/O	FT	-	EVENTOUT, LCD_SEG5, TSC_G3_IO2	LCD_VLCD3, ADC_IN8, VREF_OUT
19	27	G5	PB1	I/O	FT	-	LCD_SEG6, TSC_G3_IO3, LPUART1_RTS_DE	ADC_IN9, VREF_OUT
20	28	G6	PB2	I/O	FT	-	LPTIM1_OUT, TSC_G3_IO4	LCD_VLCD1
21	29	G7	PB10	I/O	FT	-	LCD_SEG10, TIM2_CH3, TSC_SYNC, LPUART1_TX, SPI2_SCK, I2C2_SCL	-
22	30	H7	PB11	I/O	FT	-	EVENTOUT, LCD_SEG11, TIM2_CH4, TSC_G6_IO1, LPUART1_RX, I2C2_SDA	-
23	31	D6	VSS	S		-	-	-
24	32	E5	VDD	S		-	-	-
25	33	H8	PB12	I/O	FT	-	SPI2_NSS/I2S2_WS, LCD_SEG12, LPUART1_RTS_DE, TSC_G6_IO2, I2C2_SMBA, EVENTOUT	LCD_VLCD2
26	34	G8	PB13	I/O	FTf	-	SPI2_SCK/I2S2_CK, LCD_SEG13, TSC_G6_IO3, LPUART1_CTS, I2C2_SCL, TIM21_CH1	-
27	35	F8	PB14	I/O	FTf	-	SPI2_MISO/I2S2_MCK, LCD_SEG14, RTC_OUT, TSC_G6_IO4, LPUART1_RTS_DE, I2C2_SDA, TIM21_CH2	-
28	36	F7	PB15	I/O	FT	-	SPI2_MOSI/I2S2_SD, LCD_SEG15, RTC_REFIN	-

Table 15. STM32L053x6/8 pin definitions (continued)

47/			Та	able 18. Alternate function p	ort C	
/132			AF0	AF1	AF2	AF3
	Po	ort	LPUART1/LPTIM/ TIM21/12/ EVENTOUT/	LCD	SPI2/I2S2/USB/ LPUART1/ EVENTOUT	TSC
		PC0	LPTIM1_IN1	LCD_SEG18	EVENTOUT	TSC_G7_IO1
		PC1	LPTIM1_OUT	LCD_SEG19	EVENTOUT	TSC_G7_IO2
		PC2	LPTIM1_IN2	LCD_SEG20	SPI2_MISO/I2S2_MCK	TSC_G7_IO3
		PC3	LPTIM1_ETR	LCD_SEG21	SPI2_MOSI/I2S2_SD	TSC_G7_IO4
		PC4	EVENTOUT	LCD_SEG22	LPUART1_TX	-
		PC5	-	LCD_SEG23	LPUART1_RX	TSC_G3_IO1
		PC6	TIM22_CH1	LCD_SEG24	-	TSC_G8_IO1
) Ocl[Dort C	PC7	TIM22_CH2	LCD_SEG25	-	TSC_G8_IO2
0025	FULC	PC8	TIM22_ETR	LCD_SEG26	-	TSC_G8_IO3
5844		PC9	TIM21_ETR	LCD_SEG27	USB_NOE	TSC_G8_IO4
Rev		PC10	LPUART1_TX	LCD_COM4/LCD_SEG28	-	-
7		PC11	LPUART1_RX	LCD_COM5/LCD_SEG29	-	-
		PC12	-	LCD_COM6/LCD_SEG30	-	-
		PC13	-	-	-	-
		PC14	-	-	-	-
		PC15	-	-	-	-

Table 19. Alternate function port D

Port		AF0	AF1
		LPUART1	LCD
Port D	PD2	LPUART1_RTS_DE	LCD_COM7/LCD_SEG31

STM32L053x6 STM32L053x8

Symbol	Parameter	Condi	tions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3.	1 MHz	43.5	90	
			V _{CORE} =1.2 V,	2 MHz	72	120	
			VOS[1:0]=11	4 MHz	130	180	
		f _{HSE} = f _{HCLK} up to	Range 2.	4 MHz	160	210	
		16 MHz included,	V _{CORE} =1.5 V,	8 MHz	305	370	
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16 MHz	590	710	
			Range 1.	8 MHz	370	430	
	Supply current		V _{CORE} =1.8 V,	16 MHz	715	860	
	mode, Flash		VOS[1:0]=01	32 MHz	1650	1900	
	OFF		Range 3.	65 kHz	18	65	
		MSI clock	V _{CORE} =1.2 V,	524 kHz	31.5	75	
			VOS[1:0]=11	4.2 MHz	140	210	
		HSI16 clock source (16 MHz)	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	665	830	
L (Sloop)			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	1750	2100	
IDD (Sleep)		$f_{HSE} = f_{HCLK}$ up to 16 MHz included, funct = functor /2 above	Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	1 MHz	57.5	130	μΑ
				2 MHz	84	170	
				4 MHz	150	280	
			Range 2, _{CORE} =1.5 V, VOS[1:0]=10	4 MHz	170	310	
				8 MHz	315	420	
		16 MHz (PLL ON) ⁽²⁾		16 MHz	605	770	
			Range 1	8 MHz	380	460	
	Supply current		V _{CORE} =1.8 V,	16 MHz	730	950	
	mode, Flash		VOS[1:0]=01	32 MHz	1650	2400	
	ON		Range 3.	65 kHz	29.5	110	
		MSI clock	V _{CORE} =1.2 V,	524 kHz	44.5	130	
			VOS[1:0]=11	4.2 MHz	150	270	
		HSI16 clock source (16 MHz)	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10	16 MHz	680	950	
			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	1750	2100	

Table 32.	Current	consumption	in	Sleep	mode
-----------	---------	-------------	----	-------	------

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

High-speed internal 48 MHz (HSI48) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI48}	Frequency		-	48	-	MHz
TRIM	HSI48 user-trimming step		0.09 ⁽²⁾	0.14	0.2 ⁽²⁾	%
DuCy _(HSI48)	Duty cycle		45 ⁽²⁾	-	55 ⁽²⁾	%
ACC _{HSI48}	Accuracy of the HSI48 oscillator (factory calibrated before CRS calibration)	T _A = 25 °C	-4 ⁽³⁾	-	4 ⁽³⁾	%
t _{su(HSI48)}	HSI48 oscillator startup time		-	-	6 ⁽²⁾	μs
I _{DDA(HSI48)}	HSI48 oscillator power consumption		-	330	380 ⁽²⁾	μA

Table 46. HSI48 oscillator characteristi	:s ⁽¹⁾
--	-------------------

1. V_{DDA} = 3.3 V, T_A = -40 to 125 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

Low-speed internal (LSI) RC oscillator

Table 47. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
$D_{LSI}^{(2)}$	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	_	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Multi-speed internal (MSI) RC oscillator

Table 48. MSI oscillator characteristics

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	65.5	-	
	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 1	131	-	kHz
		MSI range 2	262	-	
f _{MSI}		MSI range 3	524	-	
		MSI range 4	1.05	-	
		MSI range 5	2.1	-	MHz
		MSI range 6	4.2	-	

6.3.9 Memory characteristics

RAM memory

		0				
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

Table 50. RAM and hardware registers

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
+	Programming time for	Erasing	-	3.28	3.94	20
Lprog	word or half-page	Programming	-	3.28	3.94	1115
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

Table 51. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 52. Flash	memory and data	EEPROM endurance	and retention
	moniony and data		

Symbol	Parameter	Conditions	Value	Unit
Symbol	Falameter	conditions	Min ⁽¹⁾	Onit
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	T - 40°C to 105 °C	10	- kcycles
	Cycling (erase / write) EEPROM data memory	$T_{A} = -40 \text{ C to } 103 \text{ C}$	100	
	Cycling (erase / write) Program memory	T. – -40°C to 125 °C	0.2	
	Cycling (erase / write) EEPROM data memory	$T_{A} = -40 \ \text{C} \ \text{10} \ \text{120} \ \text{C}$	2	

Symbol	Deremeter	Conditions	Value	l Init	
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	T = +85 °C	30		
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \ ^{\circ}C$	TRET - 103 C	30		
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T _A = 105 °C	T - +105 °C	- 10	years	
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 105$ °C	T _{RET} - +105 C			
	Data retention (program memory) after 200 cycles at T _A = 125 °C	T = +125 °C			
	Data retention (EEPROM data memory) after 2 kcycles at T _A = 125 °C	1 _{RE1} - 123 0			

 Table 52. Flash memory and data EEPROM endurance and retention (continued)

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 53. EMS characteristics

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 24* and *Table 60*, respectively.

Unless otherwise specified, the parameters given in *Table 60* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

OSPEEDRx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	
00	'max(IO)out		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	100	KI IZ
00	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ns
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	320	115
	f (IO) (Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	MHz
01	'max(IO)out		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	0.6	
01	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30	ns
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	65	115
	F (10)	Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	MHz
10	' max(IO)out	Maximum requercy	C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2	
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	13	ns
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	28	
	F _{max(IO)out}	Maximum frequency ⁽³⁾	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	35	- MHz - ns
11			C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	10	
	t _{f(IO)out}	Output rise and fall time	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	6	
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	17	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz
	t _{f(IO)out}	Output fall time	C_{L} = 50 pF, V_{DD} = 2.5 V to 3.6 V	-	10	ne
Fm+	t _{r(IO)out}	Output rise time		-	30	115
configuration ⁽⁴⁾	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	350	KHz
	t _{f(IO)out}	Output fall time	$C_{L} = 50 \text{ pF}, V_{DD} = 1.65 \text{ V to } 3.6 \text{ V}$	-	15	20
	t _{r(IO)out}	Output rise time		-	60	115
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns

Table 60. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure* 24.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration.

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 24*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			16	
		Slave mode receiver	-	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	MHz
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+ 2	
t _{su(MI)}	Data input actus time	Master mode	0	-	-	
t _{su(SI)}		Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	7	-	-	
t _{h(SI)}		Slave mode	3.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	15	-	36	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30	
+		Slave mode 1.65 V <v<sub>DD<3.6 V</v<sub>	-	18	41	
۲v(SO)	Data output valid time	Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	18	25	
t _{v(MO)}		Master mode	-	4	7	
t _{h(SO)}	Data output hold time	Slave mode	10	-	-	
t _{h(MO)}		Master mode	0	-	-	

Table 73	SPI characteristics in voltage Range 1	(1))
----------	--	-----	---

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while $Duty_{(SCK)} = 50\%$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{scк}	SDI alaak fraguanay	Master mode			2	
1/t _{c(SCK)}	SPI Clock liequency	Slave mode	-	-	2 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input satur timo	Master mode	1.5	-	-	
t _{su(SI)}		Slave mode	6	-	-	
t _{h(MI)}	Data input hold time	Master mode	13.5	-	-	
t _{h(SI)}		Slave mode	16	-	-	ns
t _{a(SO}	Data output access time	Slave mode	30	-	70	
t _{dis(SO)}	Data output disable time	Slave mode	40	-	80	
t _{v(SO)}	Data output valid time	Slave mode	-	30	70	
t _{v(MO)}		Master mode	-	7	9	
t _{h(SO)}	Data output hold time	Slave mode	25	-	-]
t _{h(MO)}		Master mode	8	-	-	

				(4)
Table 75.	. SPI characteristics	in voltage	Range	3 (1)

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

Figure 31. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}.}$

Figure 34. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 35. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

7.3 LQFP48 package information

Figure 43. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

^{1.} Drawing is not to scale.

Device marking for LQFP48

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

9 Revision history

Date	Revision	Changes
07-Feb-2014	1	Initial release.
29-Apr-2014	2	 Updated Table 4: Functionalities depending on the working mode (from Run/active down to standby). Added Section 3.2: Interconnect matrix. Updated Figure 4: STM32L053x6/8 TFBGA64 ballout - 5x 5 mm. Added VREF_OUT additional function to PB0 and PB1, replaced TTa I/O structure by TC, and updated PA0/4/5 and PC5/14 I/O structure, and added note 2 in Table 15: STM32L053x6/8 pin definitions. Updated Table 24: General operating conditions, Table 21: Voltage characteristics and Table 22: Current characteristics. Modified conditions in Table 27: Embedded internal reference voltage. Updated Table 28: Current consumption in Run mode, code with data processing running from Flash, Table 30: Current consumption in Run mode, code with data processing running from RAM, Table 32: Current consumption in Low-power run mode, Table 34: Current consumption in Low-power sleep mode, Table 35: Typical and maximum current consumptions in Stop mode and Table 36: Typical and maximum current consumptions in Stop mode, added Figure 12: IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS, Figure 13: IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS, Figure 13: IDD vs VDD, at TA= 25/55/85/105 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 16: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 16: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 16: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 16: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 16: IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC enabled and running on LSE Low drive and Figure 21: HS/16 minimum and maximum value versus temperature.

Table 87	. Document	revision	history
----------	------------	----------	---------

