

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l053r8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.18.3	Basic timer (TIM6)	. 32
		3.18.4	SysTick timer	. 32
		3.18.5	Independent watchdog (IWDG)	. 32
		3.18.6	Window watchdog (WWDG)	. 33
	3.19	Comm	unication interfaces	33
		3.19.1	I2C bus	. 33
		3.19.2	Universal synchronous/asynchronous receiver transmitter (USART) .	. 34
		3.19.3	Low-power universal asynchronous receiver transmitter (LPUART)	. 34
		3.19.4	Serial peripheral interface (SPI)/Inter-integrated sound (I2S)	. 35
		3.19.5	Universal serial bus (USB)	. 36
	3.20	Clock r	ecovery system (CRS)	36
	3.21	Cyclic ı	redundancy check (CRC) calculation unit	36
	3.22	Serial v	vire debug port (SW-DP)	36
4	Pin d	lescript	ions	37
_			_	
5	Mem	ory map	oping	49
6	Elect	rical ch	aracteristics	50
	6.1	Parame	eter conditions	50
		6.1.1	Minimum and maximum values	. 50
		6.1.2	Typical values	
		0.1.2		. 50
		6.1.3	Typical curves	
				. 50
		6.1.3	Typical curves	. 50 . 50
		6.1.3 6.1.4	Typical curves	. 50 . 50 . 50
		6.1.3 6.1.4 6.1.5	Typical curves Loading capacitor Pin input voltage	. 50 . 50 . 50 . 51
		6.1.3 6.1.4 6.1.5 6.1.6	Typical curves Loading capacitor Pin input voltage Power supply scheme	. 50 . 50 . 50 . 51 . 52
	6.2	 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme	. 50 . 50 . 50 . 51 . 52 . 52
	6.2 6.3	6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolu	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement	. 50 . 50 . 50 . 51 . 52 . 52 . 52
		6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolu	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement te maximum ratings	. 50 . 50 . 51 . 52 . 52 53 55
		6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut Operat	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement te maximum ratings ing conditions	. 50 . 50 . 51 . 52 . 52 . 52 . 53 . 55
		6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut Operat 6.3.1	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions	. 50 . 50 . 51 . 52 . 52 . 53 . 55 . 55 . 57
		6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut Operat 6.3.1 6.3.2	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions Embedded reset and power control block characteristics	. 50 . 50 . 50 . 51 . 52 . 52 . 53 . 55 . 55 . 57 . 58
		6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolu Operat 6.3.1 6.3.2 6.3.3	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions Embedded reset and power control block characteristics Embedded internal reference voltage	. 50 . 50 . 51 . 52 . 52 . 55 . 55 . 55 . 57 . 58 . 59
		6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut Operat 6.3.1 6.3.2 6.3.3 6.3.4	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions Embedded reset and power control block characteristics Embedded internal reference voltage Supply current characteristics	. 50 . 50 . 50 . 51 . 52 . 52 . 55 . 55 . 55 . 57 . 58 . 59 . 70
		6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut Operat 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement te maximum ratings ing conditions General operating conditions Embedded reset and power control block characteristics Embedded internal reference voltage Supply current characteristics Wakeup time from low-power mode	. 50 . 50 . 51 . 52 . 52 . 55 . 55 . 55 . 57 . 58 . 59 . 70 . 71

2.1 Device overview

Table 1. Ultra-low-power STM32L053x6/x8 device features ar	d paripharal counts
Table 1. Ultra-low-power STWS2L055X6/X6 device realures an	iu periprierai courits

Peripheral		STM32L053C6	STM32L053R6	STM32L053C8	STM32L053R8
Flash (Kbytes)		32		64	
Data EEPROM (Kby	Data EEPROM (Kbytes)		2	2	
RAM (Kbytes)		8	8	8	3
	General-purpose	;	3	:	3
Timers	Basic		1		1
	LPTIMER		1		1
RTC/SYSTIC	K/IWDG/WWDG	1/1	/1/1	1/1	/1/1
	SPI/I2S	4(2)	⁽¹⁾ /1	4(2)	⁽¹⁾ /1
	l ² C	:	2	:	2
Communication interfaces	USART	:	2	:	2
	LPUART		1		1
	USB/(VDD_USB)	1/(1)		1/(1)	
GPIOs		37	51 ⁽²⁾	37	51 ⁽²⁾
Clocks: HSE/LSE/H	SI/MSI/LSI	1/1/1/1		1/1/1/1	
12-bit synchronized Number of channels		1 10	1 16 ⁽²⁾	1 10	1 16 ⁽²⁾
12-bit DAC Number of channels	5	1		1	
LCD COM x SEG		1 4x18	1 4x32 or 8x28 ⁽²⁾	1 4x18	1 4x32 or 8x28 ⁽²⁾
Comparators		2		2	
Capacitive sensing	channels	17	24 ⁽²⁾	17	24 ⁽²⁾
Max. CPU frequency		32 MHz			
Operating voltage		1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 V to 3.6 V without BOR option			
Operating temperatures		Ambient temperature: -40 to +125 °C Junction temperature: -40 to +130 °C			
Packages		LQFP48 LQFP64, TFBGA64		LQFP48	LQFP64, TFBGA64

1. 2 SPI interfaces are USARTs operating in SPI master mode.

2. TFBGA64 has one GPIO, one LCD COM x SEG, one ADC input and one capacitive sensing channel less than LQFP64.

• Stop mode without RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 μ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events.

• Standby mode with RTC

The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.

Standby mode without RTC

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V_{CORE} domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).

The device exits Standby mode in 60 μ s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop mode.

	Functionalities depending on the operating power supply range				
Operating power supply range	DAC and ADC operation	Dynamic voltage scaling range	I/O operation	USB	
V _{DD} = 1.65 to 1.71 V	ADC only, conversion time up to 570 ksps	Range 2 or range 3	Degraded speed performance	Not functional	
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	ADC only, conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Degraded speed performance	Functional ⁽²⁾	
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 1.14 Msps	Range1, range 2 or range 3	Degraded speed performance	Functional ⁽²⁾	
V _{DD} = 2.0 to 2.4 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation	Functional ⁽²⁾	
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation	Functional ⁽²⁾	

Table O Free discould			
Table 2. Functionalities	aepenaing o	n the operating	power supply range

CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5
µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2
MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. To be USB compliant from the I/O voltage standpoint, the minimum $V_{\text{DD_USB}}$ is 3.0 V.

Table 3. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
32 kHz to 4.2 MHz (0ws)	Range 3

• Startup clock

After reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.

Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

• Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

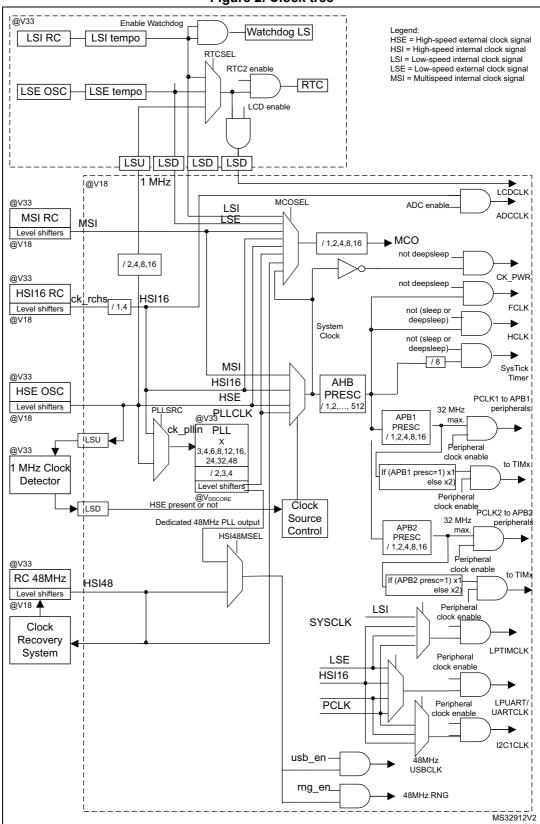


Figure 2. Clock tree

DocID025844 Rev 7

3.16 System configuration controller

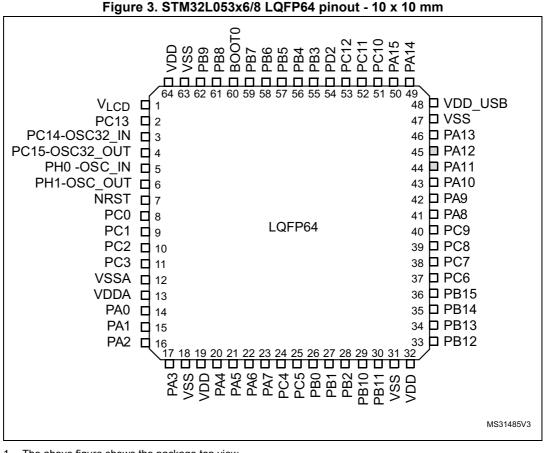
The system configuration controller provides the capability to remap some alternate functions on different I/O ports.

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM21, TIM22 and LPTIM timer input captures. It also controls the routing of internal analog signals to the USB internal oscillator, ADC, COMP1 and COMP2 and the internal reference voltage V_{REFINT} .

3.17 Touch sensing controller (TSC)

The STM32L053x6/8 provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.


The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4 ⁽¹⁾		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	2 <u> </u>	0	TSC_G6_IO3	PB13	
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PC0
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PC1
3	TSC_G3_IO3	PB1	/	TSC_G7_IO3	PC2
	TSC_G3_IO4	PB2		TSC_G7_IO4	PC3

Table 9 Canaditive consinu	CDIOs available on STM221 052x6/9 daviage
Table 6. Capacitive Sensing	GPIOs available on STM32L053x6/8 devices

4 Pin descriptions

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

5 Memory mapping

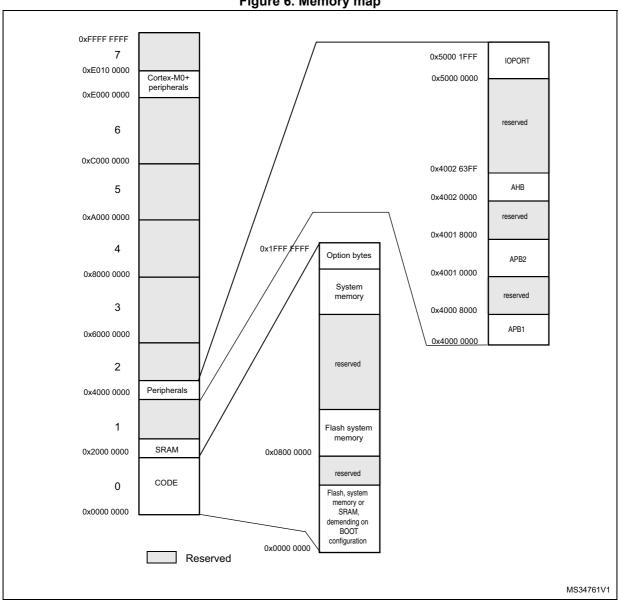


Figure 6. Memory map

Symbol	Ratings	Max.	Unit
$\Sigma I_{VDD}^{(2)}$	Total current into sum of all V_{DD} power lines (source) ⁽¹⁾	105	
$\Sigma I_{VSS}^{(2)}$	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	105	
ΣI_{VDD_USB}	Total current into V _{DD_USB} power lines (source)	25	
I _{VDD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each V_{SS} ground pin (sink) ⁽¹⁾	100	
_	Output current sunk by any I/O and control pin except FTf pins	16	
Ι _{ΙΟ}	Output current sunk by FTf pins	22	
	Output current sourced by any I/O and control pin	-16	mA
	Total output current sunk by sum of all IOs and control pins except PA11 and PA12 ⁽²⁾	90	
ΣΙ _{ΙΟ(ΡΙΝ)}	Total output current sunk by PA11 and PA12	25	
	Total output current sourced by sum of all IOs and control $\ensuremath{pins}^{(2)}$	-90	
1	Injected current on FT, FTf, RST and B pins	-5/+0 ⁽³⁾	
I _{INJ(PIN)}	Injected current on TC pin	± 5 ⁽⁴⁾	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

Table 22. Current characteristics

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

 This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

 Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 21* for maximum allowed input voltage values.

A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 21: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 23. Thermal characteristics

Symbol	Parameter Conditions		Min	Тур	Max	Unit
V _{PVD6} PVD threshold	DVD throshold 6	Falling edge	2.97	3.05	3.09	V
		Rising edge	3.08	3.15	3.20	v
V _{hyst}		BOR0 threshold	-	40	-	
	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV

Table 25. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 27* are based on characterization results, unless otherwise specified.

Table 26. Embedde	ed internal ref	ference vo	ltage o	calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF

Table 27. Embedded internal reference voltage⁽¹⁾

Symbol	Parameter	Conditions		f _{HCLK}	Тур	Max ⁽¹⁾	Unit
				1 MHz	165	230	
			Range 3, V _{CORE} =1.2 V VOS[1:0]=11	2 MHz	290	360	μA
			4 MHz	555	630		
	f _{HSE} = f _{HCLK} up to		4 MHz	0.665	0.74		
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	Range 2, V _{CORE} =1.5 V, VOS[1:0]=10,	8 MHz	1.3	1.4	
Supply I _{DD} current in (Run Run mode, from code	16 MHz (PLL ON) ⁽²⁾		16 MHz	2.6	2.8	mA	
		Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	8 MHz	1.55	1.7		
			16 MHz	3.1	3.4		
Flash)	executed			32 MHz	6.3	6.8	
	from Flash			65 kHz	36.5	110	
	MSI clock	Range 3, V _{CORE} =1.2 V, VOS[1:0]=11	524 kHz	99.5	190	μA	
			4.2 MHz	620	700		
		Range 2, V _{CORE} =1.5 V, VOS[1:0]=10,	16 MHz	2.6	2.9	mA	
			Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	32 MHz	6.25	7	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 29. Current consumption in Run mode vs code type,	
code with data processing running from Flash	

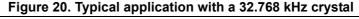
Symbol	Parameter		Conditions		f _{HCLK}	Тур	Unit		
				Dhrystone		555			
				CoreMark		585			
		,	Range 3, V _{CORE} =1.2 V,	Fibonacci	4 MHz	440	μA		
	Cumulu					VOS[1:0]=11	while(1)	1 10112	355
l _{DD} (Run	(Run Run mode, 16 MHz included,		while(1), prefetch OFF		353				
from Flash)			Dhrystone		6.3				
1 (0.511)			Range 1, V _{CORE} =1.8 V,	CoreMark	32 MHz	6.3	mA		
				Fibonacci		6.55			
		VOS[1:0]=01	while(1)	-	5.4				
			while(1), prefetch OFF		5.2				

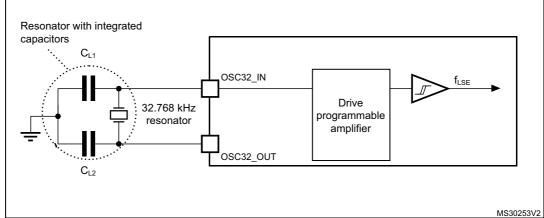
1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min ⁽²⁾	Тур	Max	Unit
f _{LSE}	LSE oscillator frequency		-	32.768	-	kHz
	G _m Maximum critical crystal transconductance	LSEDRV[1:0]=00 lower driving capability	-	-	0.5	
G _m		LSEDRV[1:0]= 01 medium low driving capability	-	-	0.75	- μΑ/V
		LSEDRV[1:0] = 10 medium high driving capability	-	-	1.7	
		LSEDRV[1:0]=11 higher driving capability	-	-	2.7	
$t_{\rm SU(LSE)}^{(3)}$	Startup time	V _{DD} is stabilized	-	2	-	S


Table 44. LSE oscillator characteristics ⁽¹⁾


1. Guaranteed by design.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. Guaranteed by characterization results. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

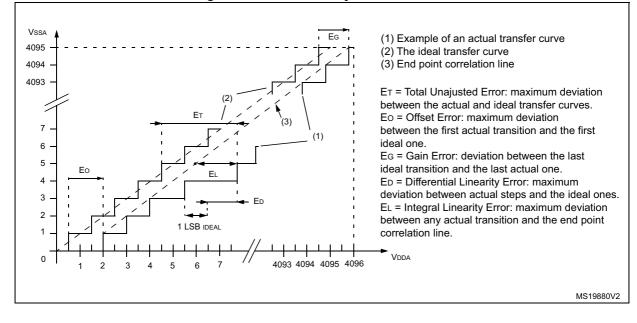
Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

STM32L053x6 STM32L053x8

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
ET	Total unadjusted error		-	2	5	
EO	Offset error		-	1	2.5	
EG	Gain error		-	1	2	LSB
EL	Integral linearity error	1.65 V < V _{REF+} < V _{DDA} < 3.6 V, ⁻ range 1/2/3	-	1.5	3	
ED	Differential linearity error		-	1	2	
ENOB	Effective number of bits		10.0	11.0	-	bits
SINAD	Signal-to-noise distortion		62	69	-	
SNR	Signal-to-noise ratio		61	69	-	dB
THD	Total harmonic distortion		-	-85	-65	

Table 64. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾ (continued)


1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.12 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.

4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.

Figure 26. ADC accuracy characteristics

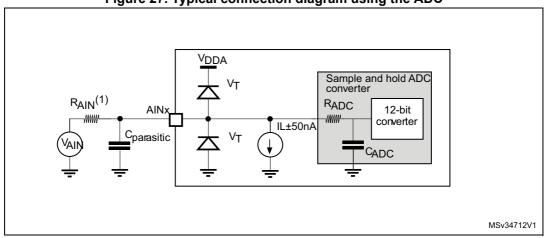


Figure 27. Typical connection diagram using the ADC

- 1. Refer to Table 62: ADC characteristics for the values of RAIN, RADC and CADC.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 28* or *Figure 29*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

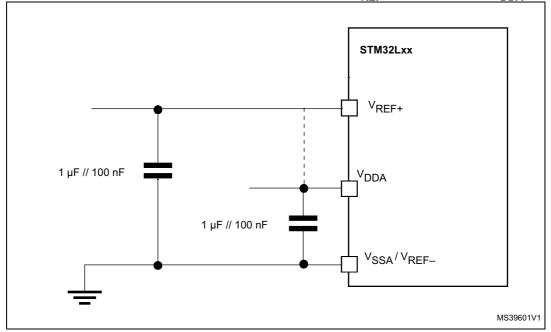


Figure 28. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V
+	Comparator startup time	Fast mode	-	15	20	
t _{start}		Slow mode	-	20	25	
+	Propagation delay ⁽²⁾ in slow mode	1.65 V ⊴V _{DDA} ⊴2.7 V	-	1.8	3.5	
t _{d slow}	Fropagation delay Air slow mode	2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs
+	Propagation delay ⁽²⁾ in fast mode	1.65 V ⊴V _{DDA} ⊴2.7 V	-	0.8	2	
t _{d fast}	riopagation delay. An last mode	2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4	
V _{offset}	Comparator offset error		-	±4	<u>+</u> 20	mV
dThreshold/ dt	Threshold voltage temperature coefficient	V _{DDA} = 3.3V, T _A = 0 to 50 °C, V- = V _{REFINT} , 3/4 V _{REFINT} , 1/2 V _{REFINT} , 1/4 V _{REFINT} .	-	15	30	ppm /°C
	Current consumption ⁽³⁾	Fast mode	-	3.5	5	
I _{COMP2}		Slow mode	-	0.5	2	μA

Table 69. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 24*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			16	
		Slave mode receiver	-	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	MHz
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+ 2	
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}		Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	7	-	-	
t _{h(SI)}		Slave mode	3.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	15	-	36	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30	
t _{v(SO)}		Slave mode 1.65 V <v<sub>DD<3.6 V</v<sub>	-	18	41	
	Data output valid time	Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	18	25	
t _{v(MO)}		Master mode	-	4	7	
t _{h(SO)}	Data output hold time	Slave mode	10	-	-	
t _{h(MO)}		Master mode	0	-	-	

Table 73. SPI characteristics in	n voltage Range 1 ⁽¹⁾
----------------------------------	----------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while $Duty_{(SCK)} = 50\%$.

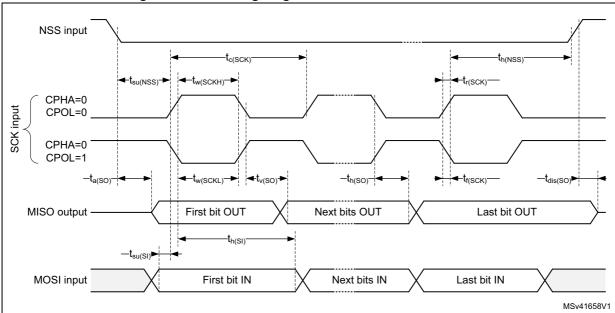
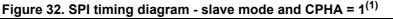
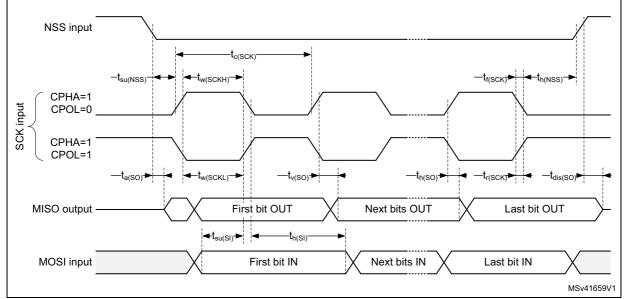




Figure 31. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}.}$

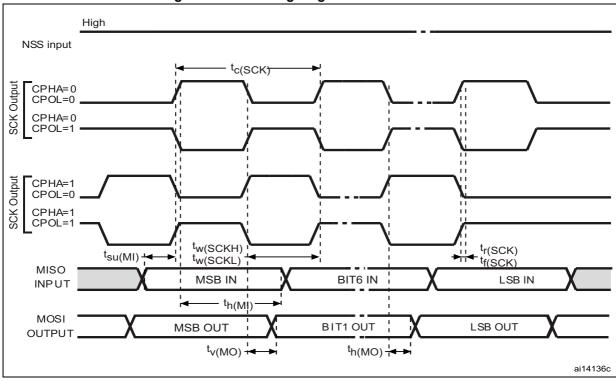
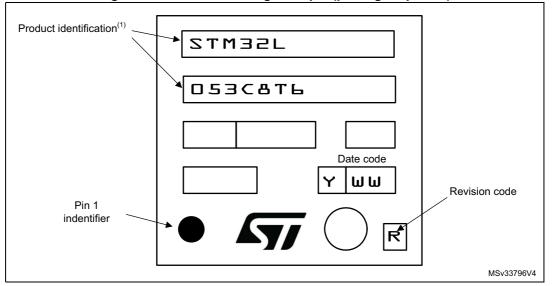
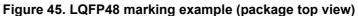


Figure 33. SPI timing diagram - master mode⁽¹⁾


1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$



Device marking for LQFP48

The following figure gives an example of topside marking versus pin 1 position identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

