

Welcome to E-XFL.COM

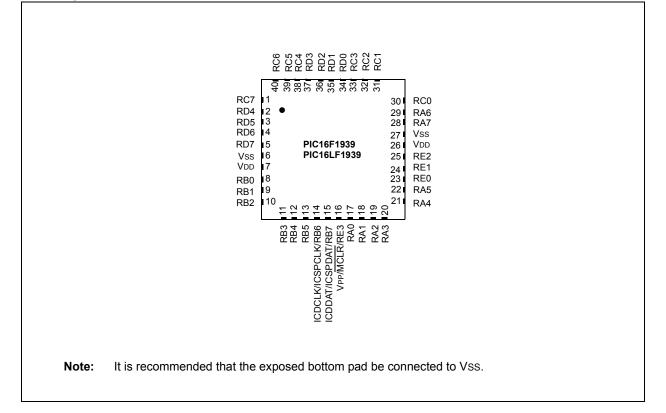
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1938-e-sp


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 40-Pin PDIP

VPP/MCLR/RE3	1	
RA0	2	
RA1	3	38 RB5
RA2	4	37 RB4
RA3	5	36 RB3
RA4	6	35 RB2
RA5	7	34 RB1
RE0	8	33 RB0
RE1	939 6	32 VDD 31 Vss 30 RD7
RE2	PIC16F1939	31 □ Vss
VDD	11 5	30 RD7
Vss	12 6	• 29 RD6
RA7	13	28 RD5
RA6	14	27 RD4
RC0	15	26 RC7
RC1	16	25 RC6
RC2	17	24 RC5
RC3	18	23 RC4
RD0	19	22 RD3
RD1	20	21 RD2
	L	

Pin Diagram – 40-Pin UQFN 5x5

	Function	Input Type	Output Type	Description
RA0/AN0/C12IN0-/C2OUT ⁽¹⁾ /	RA0	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ / SS⁽¹⁾/VCAP⁽²⁾/SEG12	AN0	AN	_	A/D Channel 0 input.
	C12IN0-	AN		Comparator C1 or C2 negative input.
	C2OUT	—	CMOS	Comparator C2 output.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1938/9 only).
	SEG12	_	AN	LCD Analog output.
RA1/AN1/C12IN1-/SEG7	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	—	A/D Channel 1 input.
	C12IN1-	AN	—	Comparator C1 or C2 negative input.
	SEG7	_	AN	LCD Analog output.
RA2/AN2/C2IN+/VREF-/	RA2	TTL	CMOS	General purpose I/O.
DACOUT/COM2	AN2	AN	—	A/D Channel 2 input.
	C2IN+	AN	—	Comparator C2 positive input.
	VREF-	AN	—	A/D Negative Voltage Reference input.
	DACOUT	—	AN	Voltage Reference output.
	COM2	—	AN	LCD Analog output.
RA3/AN3/C1IN+/VREF+/	RA3	TTL	CMOS	General purpose I/O.
COM3 ⁽³⁾ /SEG15	AN3	AN	—	A/D Channel 3 input.
	C1IN+	AN	_	Comparator C1 positive input.
	VREF+	AN	—	A/D Voltage Reference input.
	COM3 ⁽³⁾	—	AN	LCD Analog output.
	SEG15	—	AN	LCD Analog output.
RA4/C1OUT/CPS6/T0CKI/SRQ/	RA4	TTL	CMOS	General purpose I/O.
CCP5/SEG4	C10UT	—	CMOS	Comparator C1 output.
	CPS6	AN	_	Capacitive sensing input 6.
	TOCKI	ST	_	Timer0 clock input.
	SRQ		CMOS	SR Latch non-inverting output.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG4	_	AN	LCD Analog output.
RA5/AN4/C2OUT ⁽¹⁾ /CPS7/	RA5	TTL	CMOS	General purpose I/O.
SRNQ ⁽¹⁾ /SS ⁽¹⁾ /VCAP ⁽²⁾ /SEG5	AN4	AN	_	A/D Channel 4 input.
	C2OUT		CMOS	Comparator C2 output.
	CPS7	AN	_	Capacitive sensing input 7.
	SRNQ	_	CMOS	SR Latch inverting output.
	SS	ST	_	Slave Select input.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1938/9 only).
	SEG5	_	AN	LCD Analog output.

TABLE 1-2: PIC16(L)F1938/9 PINOUT DESCRIPTION

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL = Crystal

HV = High Voltage I^2C^{TM} = Schmitt Trigger input with I²C levels

Note 1: Pin function is selectable via the APFCON register.

- 2: PIC16F1938/9 devices only.
- 3: PIC16(L)F1938 devices only.
- 4: PORTD is available on PIC16(L)F1939 devices only.
- 5: RE<2:0> are available on PIC16(L)F1939 devices only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2	Bank 2										
100h ⁽²⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								****	****
101h ⁽²⁾	INDF1		this location cal register)	uses contents	s of FSR1H/F	SR1L to addr	ess data mei	mory		****	****
102h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
103h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
104h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ac	Idress 0 Low	Pointer					0000 0000	uuuu uuuu
105h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ac	ldress 0 High	Pointer					0000 0000	0000 0000
106h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ac	Idress 1 Low	Pointer					0000 0000	uuuu uuuu
107h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ac	ldress 1 High	Pointer					0000 0000	0000 0000
108h ⁽²⁾	BSR	_	—	—		I	BSR<4:0>			0 0000	0 0000
109h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
10Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000 0000	-000 0000
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	LATA	PORTA Dat	PORTA Data Latch							XXXX XXXX	uuuu uuuu
10Dh	LATB	PORTB Da	PORTB Data Latch							XXXX XXXX	uuuu uuuu
10Eh	LATC	PORTC Da	PORTC Data Latch							XXXX XXXX	uuuu uuuu
10Fh ⁽³⁾	LATD	PORTD Da	ta Latch							XXXX XXXX	uuuu uuuu
110h	LATE	_	—	—	—	—	LATE2 ⁽³⁾	LATE1 ⁽³⁾	LATE0 ⁽³⁾	xxx	uuu
111h	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NC	H<1:0>	000000	000000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	_	C2NC	H<1:0>	000000	000000
115h	CMOUT	_	_	_	_	_	_	MC2OUT	MC1OUT	00	00
116h	BORCON	SBOREN	_	_	_	_	_		BORRDY	1 q	u u
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR1	CDAFVR0	ADFV	R<1:0>	0q00 00p0	0q00 0000
118h	DACCON0	DACEN	DACLPS	DACOE		DACPS	S<1:0>		DACNSS	000- 00-0	000- 00-0
119h	DACCON1					D	ACR<4:0>		•	0 0000	0 0000
11Ah	SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
11Bh	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
11Ch	_	Unimpleme	nted					•	•	_	_
11Dh	APFCON	_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	-000 0000	-000 0000
11Eh	_	Unimpleme	nted		I			1	1	_	_
11Fh	Unimplemented Unimplemented										

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3											
180h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addre	ess data me	mory		XXXX XXXX	XXXX XXXX
181h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addre	ess data me	mory		XXXX XXXX	XXXX XXXX
182h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	int Byte					0000 0000	0000 0000
183h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
184h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ad	dress 0 Low	Pointer	•	•		•	0000 0000	uuuu uuuu
185h ⁽²⁾	FSR0H	Indirect Dat	ta Memory Ad	ldress 0 High	Pointer					0000 0000	0000 0000
186h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ad	dress 1 Low	Pointer					0000 0000	uuuu uuuu
187h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ad	Idress 1 High	Pointer					0000 0000	0000 0000
188h ⁽²⁾	BSR	_	_	_		E	BSR<4:0>			0 0000	0 0000
189h ⁽²⁾	WREG	Working Re	egister							0000 0000	սսսս սսսս
18Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Coun	iter			-000 0000	-000 0000
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
18Ch	ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	
18Dh	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
18Eh	_	Unimpleme	nted	L		1	1	1		_	_
18Fh ⁽³⁾	ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
190h ⁽³⁾	ANSELE	_	_	_		_	ANSE2	ANSE1	ANSE0	111	111
191h	EEADRL	EEPROM /	Program Me	mory Address	Register Lov	v Byte		1		0000 0000	0000 0000
192h	EEADRH	(4)	EEPROM / F	Program Mem	ory Address	Register High	Byte			1000 0000	1000 0000
193h	EEDATL	EEPROM /			ata Register L	v v	,			XXXX XXXX	uuuu uuuu
194h	EEDATH	_	_			ory Read Dat	a Register H	liah Byte		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD		0000 q000
196h	EECON2	EEPROM of	control registe	r 2	l	l	l	1			0000 0000
197h	_	-	Unimplemented							_	_
198h	_	Unimpleme								_	_
199h	RCREG		ceive Data R	eaister						0000 0000	0000 0000
19Ah	TXREG	-	insmit Data R	•							0000 0000
19Bh	SPBRGL			0	BRG<	7:0>					0000 0000
19Ch	SPBRGH				BRG<1	-				0000 0000	
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D		0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D		0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	2	WUE	ABDEN		01-0 0-00

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

4.2 Register Definitions: Configuration

REGISTER 4-1: CONFIGURATION WORD 1

		R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1		
		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD		
		bit 13					bit		
R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1		
CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>			
bit7							bit		
Legend:									
R = Readable bit		P = Programma	able bit	U = Unimpleme	nted hit read a	s '1'			
'0' = Bit is cleared		'1' = Bit is set		-n = Value wher					
						Duik Llase			
bit 13	1 = Fail-Safe Cl	afe Clock Monitor E ock Monitor is ena ock Monitor is disa	bled						
bit 12	1 = Internal/Exte	IESO: Internal External Switchover bit 1 = Internal/External Switchover mode is enabled 0 = Internal/External Switchover mode is disabled							
bit 11	CLKOUTEN: Clock Out Enable bit 1 = CLKOUT function is disabled. I/O or oscillator function on RA6/CLKOUT 0 = CLKOUT function is enabled on RA6/CLKOUT								
bit 10-9	BOREN<1:0>: Brown-out Reset Enable bits ⁽¹⁾ 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the PCON register 00 = BOR disabled								
bit 8	1 = Data memor	e Protection bit ⁽²⁾ ry code protection ry code protection							
		emory code protect							
bit 6	 0 = Program memory code protection is enabled MCLRE: RE3/MCLR/VPP Pin Function Select bit If LVP bit = 1: This bit is ignored. If LVP bit = 0: 1 = RE3/MCLR/VPP pin function is MCLR; Weak pull-up enabled. 0 = RE3/MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUE3 bit								
bit 5	bit. PWRTE: Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled								
	WDTE<1:0>: Watchdog Timer Enable bit 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled								

- 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
- **3:** The entire program memory will be erased when the code protection is turned off.

4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data EEPROM protection are controlled independently. Internal access to the program memory and data EEPROM are unaffected by any code protection setting.

4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See Section 4.4 "Write Protection" for more information.

4.3.2 DATA EEPROM PROTECTION

The entire data EEPROM is protected from external reads and writes by the CPD bit. When CPD = 0, external reads and writes of data EEPROM are inhibited. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

4.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 4.6 "Device ID and Revision ID**" for more information on accessing these memory locations. For more information on checksum calculation, see the "*PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF 190X Memory Programming Specification*" (DS41397).

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT, or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

TABLE 5-1: O	SCILLATOR SWITCHING DELAYS
--------------	----------------------------

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 cycles
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Timer1 Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Timer1 Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

Note 1: PLL inactive.

FIGURE 7	'-2: II	NTERRUPT	LATENCY					
OSC1								
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT			Interru during	pt Sampled Q1				
Interrupt								
GIE								
PC	PC-1	PC	PC	+1	0004h	0005h		
Execute	1 Cycle Instr	uction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
			/					
Interrupt GIE		I						
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h		
Execute-	2 Cycle Instr	uction at PC	Inst(PC)	NOP	NOP	Inst(0004h)	L	
		/		1				
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h	
Execute	3 Cycle Instr	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC	+2	0004h	0005h
Execute	3 Cycle Instr	ruction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)

20.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- · Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 20-1 is a block diagram of the Timer0 module.

20.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

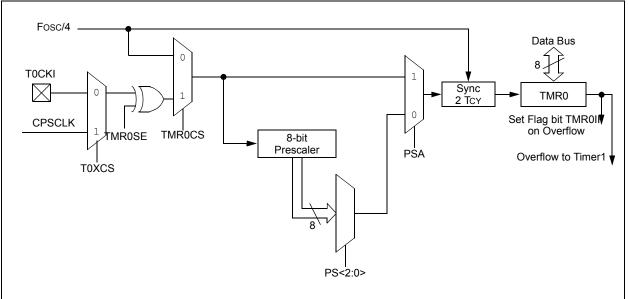
20.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register.

FIGURE 20-1: BLOCK DIAGRAM OF THE TIMER0

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.


20.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSCLK) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSCLK) signal is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

23.1 Capture Mode

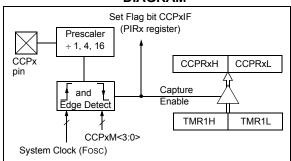
The Capture mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 23-1 shows a simplified diagram of the Capture operation.


23.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON register. Refer to **Section 12.1 "Alternate Pin Function**" for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 23-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

23.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

23.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Capture
	mode. In order for Capture mode to
	recognize the trigger event on the CCPx
	pin, Timer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

23.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 23-1 demonstrates the code to perform this function.

EXAMPLE 23-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL	CCPxCON	;Set Bank bits to point
		;to CCPxCON
CLRF	CCPxCON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value

23.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state. Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CCPxAS		CCPxAS1	CCPxAS0	1	.C<1:0>		D<1:0>
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is u	inchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	CCPxASE: (CPx Auto-Shu	tdown Event S	tatus bit			
		wn event has o tputs are opera		outputs are in	shutdown state	9	
bit 6	1 = Auto-shu	CPx Auto-Shu utdown 2 sourc utdown 2 sourc	e is enabled, V				
bit 5	1 = Auto-shu	CPx Auto-Shu utdown 1 sourc utdown 1 sourc	e is enabled, a),(2) output low		
bit 4	1 = Auto-shi	CPx Auto-Shu utdown 0 source utdown 0 source	e is enabled, a		⁾ output low		
bit 3-2	00 = Drive pi 01 = Drive pi)>: Pins PxA and PxC tri-s	C to '0' C to '1'	wn State Contr	ol bits		
bit 1-0	00 = Drive pi 01 = Drive pi	D>: Pins PxB ar ns PxB and Px ns PxB and Px B and PxD tri-s	D to '0' D to '1'	wn State Contr	ol bits		
Note 1: 2:	If CxSYNC is ena async_CxOUT = a async_CxOUT = a	async_C2OUT	(for CCP1 and		I.		

REGISTER 23-4: CCPxAS: CCPX AUTO-SHUTDOWN CONTROL REGISTER

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

24.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of Clock Stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

24.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message. Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

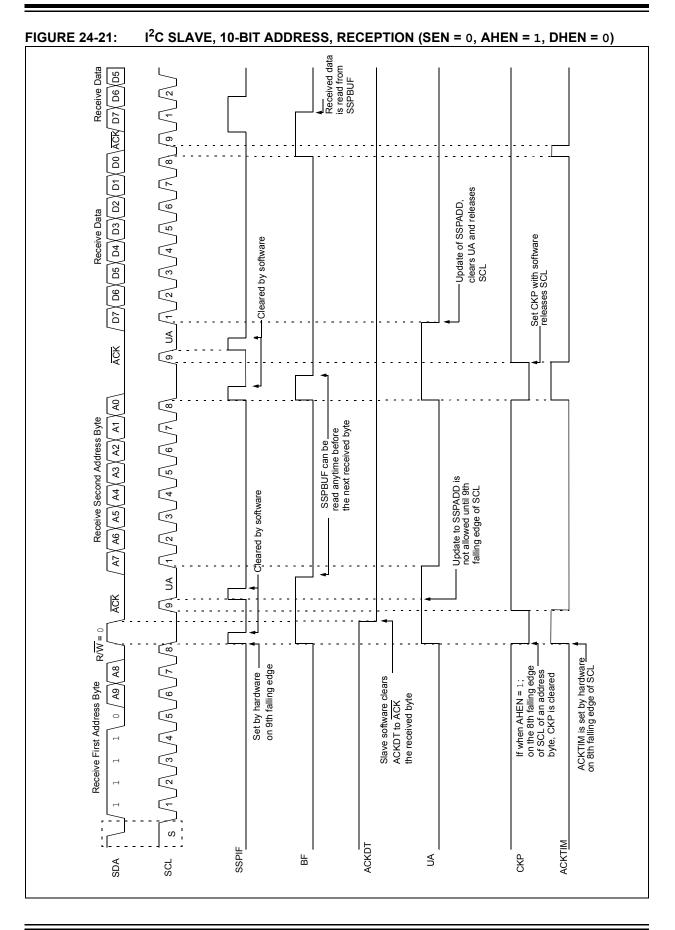
24.4 I²C[™] Mode Operation

All MSSP I²C communication is byte oriented and shifted out MSb first. Six SFR registers and 2 interrupt flags interface the module with the PIC[®] microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I²C devices.

24.4.1 BYTE FORMAT

All communication in 1^2 C is done in 9-bit segments. A byte is sent from a Master to a Slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.


24.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

24.4.3 SDA AND SCL PINS

Selection of any I²C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note: Data is tied to output zero when an I²C mode is enabled.

27.1 LCD Registers

The module contains the following registers:

- LCD Control register (LCDCON)
- LCD Phase register (LCDPS)
- LCD Reference Ladder register (LCDRL)
- LCD Contrast Control register (LCDCST)
- LCD Reference Voltage Control register (LCDREF)
- Up to three LCD Segment Enable registers (LCDSEn)
- Up to 12 LCD data registers (LCDDATAn)

TABLE 27-1:LCD SEGMENT AND DATAREGISTERS

	# of LCD Registers			
Device	Segment Enable	Data		
PIC16(L)F1938	2	8		
PIC16(L)F1939	3	12		

The LCDCON register (Register 27-1) controls the operation of the LCD Driver module. The LCDPS register (Register 27-2) configures the LCD clock source prescaler and the type of waveform; Type-A or Type-B. The LCDSEn registers (Register 27-5) configure the functions of the port pins.

The following LCDSEn registers are available:

- LCDSE0 SE<7:0>
- LCDSE1 SE<15:8>
- LCDSE2 SE<23:16>(1)

Note 1: PIC16(L)F1939 only.

Once the module is initialized for the LCD panel, the individual bits of the LCDDATAn registers are cleared/set to represent a clear/dark pixel, respectively:

- LCDDATA0 SEG<7:0>COM0
- LCDDATA1 SEG<15:8>COM0
- LCDDATA2 SEG<23:16>COM0⁽¹⁾
- LCDDATA3 SEG<7:0>COM1
- LCDDATA4 SEG<15:8>COM1
- LCDDATA5 SEG<23:16>COM1⁽¹⁾
- LCDDATA6 SEG<7:0>COM2
- LCDDATA7 SEG<15:8>COM2
- LCDDATA8 SEG<23:16>COM2⁽¹⁾
- LCDDATA9 SEG<7:0>COM3
- LCDDATA10 SEG<15:8>COM3
- LCDDATA11 SEG<23:16>COM3⁽¹⁾

N	lote 1	1: PIC16(L)	F1939 only.		
As	an	example,	LCDDATAn	is	detailed
Reg	ister 2	27-6.			

in

Once the module is configured, the LCDEN bit of the LCDCON register is used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN bit of the LCDCON register.

REGISTER 27-2: LCDPS: LCD PHASE REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1			
WFT	BIASMD	LCDA	WA		LP<	:3:0>				
bit 7	•						bit 0			
Legend:										
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	1 as '0'				
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is cleared		C = Only clea	rable bit					
bit 7	WFT: Wavefo	orm Type bit								
		phase changes								
		phase changes		common type						
bit 6		as Mode Select	bit							
	When LMUX			(-1)						
	0 = Static Bias mode (do not set this bit to '1')									
	<u>When LMUX<1:0> = 01:</u> 1 = 1/2 Bias mode									
	0 = 1/3 Bias mode									
	<u>When LMUX<1:0> = 10:</u>									
	1 = 1/2 Bias mode									
	0 = 1/3 Bias mode When LMUX<1:0> = 11:									
	0 = 1/3 Bias mode (do not set this bit to '1')									
bit 5	LCDA: LCD Active Status bit									
	1 = LCD Driver module is active									
	0 = LCD Driv	er module is in	active							
bit 4	WA: LCD Write Allow Status bit									
		the LCDDATA the LCDDATA								
bit 3-0	LP<3:0>: LC	D Prescaler Se	election bits							
	1111 = 1:16									
	1110 = 1:15									
	1101 = 1:14 1100 = 1:13									
	1011 = 1:12									
	1011 = 1.12 1010 = 1:11									
	1001 = 1:10									
	1000 = 1:9 0111 = 1:8									
	0110 = 1 : 7									
	0101 = 1:6									
	0100 = 1:5 0011 = 1:4									
	0011 = 1.4 0010 = 1:3									
	0001 = 1:2									
	0000 = 1:1									

REGISTER 27-4: LCDCST: LCD CONTRAST CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—	I	_CDCST<2:0>	
bit 7							bit 0
Lagandi							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	

C = Only clearable bit

bit 7-3 Unimplemented: Read as '0'

'1' = Bit is set

bit 2-0 LCDCST<2:0>: LCD Contrast Control bits Selects the resistance of the LCD contrast control resistor ladder

'0' = Bit is cleared

Bit Value = Resistor ladder

000 = Minimum Resistance (maximum contrast). Resistor ladder is shorted.

001 = Resistor ladder is at 1/7th of maximum resistance

010 = Resistor ladder is at 2/7th of maximum resistance

011 = Resistor ladder is at 3/7th of maximum resistance

100 = Resistor ladder is at 4/7th of maximum resistance

101 = Resistor ladder is at 5/7th of maximum resistance

110 = Resistor ladder is at 6/7th of maximum resistance

111 = Resistor ladder is at maximum resistance (minimum contrast).

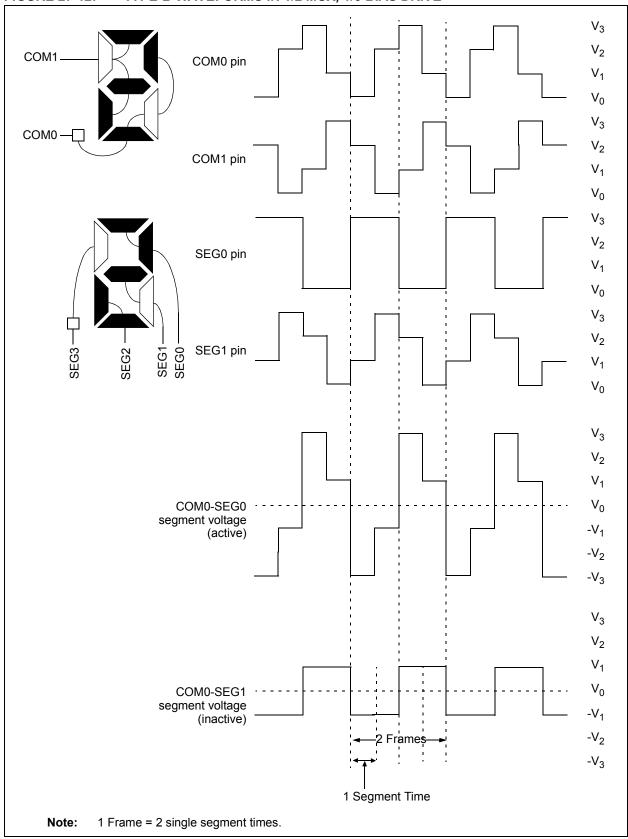


FIGURE 27-12: TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE

DC CHA	ARACTE	RISTICS	Standard C Operating to				ess otherwise stated) 125°C
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP/RE3 pin	8.0	_	9.0	V	(Note 3, Note 4)
D111	IDDP	Supply Current during Programming	—	—	10	mA	
D112		VDD for Bulk Erase	2.7	—	VDD max.	V	
D113	VPEW	VDD for Write or Row Erase	Vdd min.	_	VDD max.	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/ Write	_	1.0	_	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	_	mA	
		Data EEPROM Memory					
D116	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C
D117	Vdrw	VDD for Read/Write	Vdd min.	—	VDD max.	V	
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms	
D119	TRETD	Characteristic Retention	_	40	—	Year	Provided no other specifications are violated
D120	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	—	—	E/W	-40°C to +85°C (Note 1)
D122	Vprw	VDD for Read/Write	Vdd min.	—	VDD max.	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	-	Year	Provided no other specifications are violated

30.5 Memory Programming Requirements

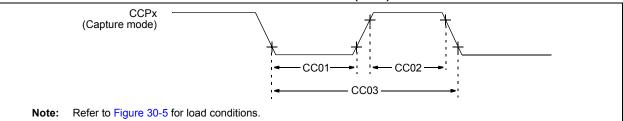
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 11.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must be placed between the MPLAB ICD 2 and target system when programming or debugging with the MPLAB ICD 2.


TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

	rd Operating (ng Temperatur	•	nless otherwis ≤ +125°C	e stated)					
Param No.	Sym.		Characteristi	C	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	_	_	ns	
41*	TT0L	T0CKI Low P	ulse Width	No Prescaler	0.5 Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Тт0Р	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20	—		ns	
		Time	Synchronous, with Prescaler		15	—	—	ns	
			Asynchronous		30		_	ns	
46*	TT1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15	—		ns	
			Asynchronous		30	_	_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N		—	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_	_	ns	
48	F⊤1		ator Input Frequ abled by setting		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	lge to Timer	2 Tosc	—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions	
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns		
			With Prescaler	20	_	_	ns		
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	_	_	ns		
			With Prescaler	20	_	_	ns		
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 31-15: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1938/9 ONLY

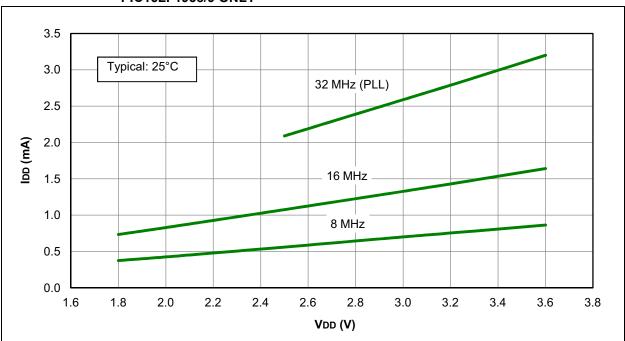
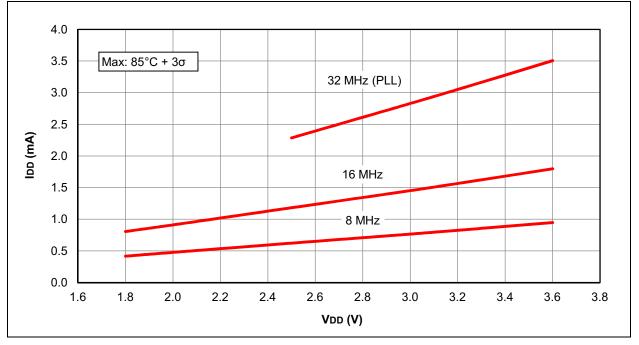



FIGURE 31-16: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1938/9 ONLY

