

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1938-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-7:PIC16(L)F1938 MEMORY MAP,
BANK 15

		Bank 15	
Г	791h	LCDCON	
	792h	LCDPS	1
	793h	LCDREF	
	794h	LCDCST	
	705h	I CDRI	
	706h	_	
-	707h		
-	7006		
-	7901		
-	799h	LCDGET	
-	79Ah		
-	79Bh		
	79Ch	—	
	79Dh		
I L	79Eh	_	
I L	79Fh	—	
	7A0h	LCDDATA0	
-	7A1h	LCDDATA1	
-	7A2h		
-	7A3N 7A4b		
-	7456		
I F	746h		
	7A7h	LCDDATA7	
	7A8h	_	
	7A9h	LCDDATA9	
	7AAh	LCDDATA10	
IL	7ABh	_	
L	7ACh	—	
	7ADh	—	
	7AEh	_	
ΙΓ	7AFh	_	
Ι Γ	7B0h	_	
	7B1h	_	
	7B2h	_	
	7B3h		
	7B4h		
	785h		
-	7B6h		
-	7 D011		
I F	7D0h		
-	/ DOII		
		Unimplemented	
		Read as '0'	
L			
	7EFh		
Leger	nd:	= Unimplemented d	ata memory locations, read
_	as	'0'.	

TABLE 3-8:PIC16(L)F1939 MEMORY MAP,
BANK 15

	Bank 15	
791h	LCDCON	
792h	LCDPS	
793h	LCDREF	
794h	LCDCST	
795h	LCDRL	
796h	_	
797h	_	
798h	LCDSE0	
799h	LCDSE1	
79Ah	LCDSE2	
79Bh	_	
79Ch	_	
79Dh	_	
79Eh	_	
79Fh	_	
7A0h	LCDDATA0	
7A1h	LCDDATA1	
7A2h	LCDDATA2	
7A30 7A4h		
7A5h	LCDDATA5	
7A6h	LCDDATA6	
7A7h	LCDDATA7	
7A8h	LCDDATA8	
7A90 7AAh	LCDDATA9	
7ABh	LCDDATA11	
7ACh	—	
7ADh	_	
7AEh	_	
7AFh	_	
7B0h	_	
7B1h	_	
7B2h	_	
7B3h	—	
7B4h	—	
7B5h	—	
7B6h	—	
7B7h	—	
7B8h		
	Unimplemented Read as '0'	
7EFh		
Legend: as	= Unimplemented d	ata memory locations, read

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6											
300h ⁽²⁾	INDF0	Addressing (not a phys	this location ical register)	uses contents	s of FSR0H/F	SR0L to addre	ess data me	mory		XXXX XXXX	XXXX XXXX
301h ⁽²⁾	INDF1	Addressing (not a phys	this location ical register)		XXXX XXXX	XXXX XXXX					
302h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
303h ⁽²⁾	STATUS	_			TO	PD	Z	DC	С	1 1000	q quuu
304h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ac	Idress 0 Low	Pointer					0000 0000	uuuu uuuu
305h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ac	ldress 0 High	Pointer					0000 0000	0000 0000
306h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ac	Idress 1 Low	Pointer					0000 0000	uuuu uuuu
307h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ac	ldress 1 High	Pointer					0000 0000	0000 0000
308h ⁽²⁾	BSR	_				E	BSR<4:0>			0 0000	0 0000
309h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
30Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	rogram Coun	iter			-000 0000	-000 0000
30Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
30Ch	—	Unimpleme	nted							_	—
30Dh	—	Unimpleme	nted							—	—
30Eh	—	Unimpleme	nted							—	—
30Fh	—	Unimpleme	nted							—	—
310h	—	Unimpleme	nted							—	—
311h	CCPR3L	Capture/Co	mpare/PWM	Register 3 (L	SB)					XXXX XXXX	uuuu uuuu
312h	CCPR3H	Capture/Co	mpare/PWM	Register 3 (N	ISB)					XXXX XXXX	uuuu uuuu
313h	CCP3CON	P3M	<1:0>	DC3E	l<1:0>		CCP3M	<1:0>		0000 0000	0000 0000
314h	PWM3CON	P3RSEN			F	3DC<6:0>				0000 0000	0000 0000
315h	CCP3AS	CCP3ASE	CCP3AS2	CCP3AS1	CCP3AS0	PSS3A	C<1:0>	PSS3E	3D<1:0>	0000 0000	0000 0000
316h	PSTR3CON	—			STR3SYNC	STR3D	STR3C	STR3B	STR3A	0 0001	0 0001
317h	—	Unimpleme	nted							—	—
318h	CCPR4L	Capture/Co	mpare/PWM	Register 4 (L	SB)					XXXX XXXX	uuuu uuuu
319h	CCPR4H	Capture/Co	mpare/PWM	Register 4 (N	ISB)					XXXX XXXX	uuuu uuuu
31Ah	CCP4CON	—	-	DC4E	8<1:0>		CCP4M	<3:0>		00 0000	00 0000
31Bh	—	Unimpleme	nted							—	—
31Ch	CCPR5L	Capture/Co	mpare/PWM	Register 5 (L	SB)					XXXX XXXX	uuuu uuuu
31Dh	CCPR5H	Capture/Co	mpare/PWM	Register 5 (N	ISB)					XXXX XXXX	uuuu uuuu
31Eh	CCP5CON	_	_	DC5B	l<1:0>		CCP5M	<3:0>		00 0000	00 0000
31Fh	_	Unimpleme	nted							-	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 5.3 "Clock Switching"for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase-Lock Loop, HFPLL that can produce one of three internal system clock sources.

- The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase-Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast startup oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

5.6 Register Definitions: Oscillator Control

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0	
SPLLEN		IRCF	<3:0>			SCS<1:0>		
bit 7	÷						bit 0	
Legend:								
R = Readal	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is s	set	'0' = Bit is cle	ared					
bit 7	SPLLEN: So <u>If PLLEN in 0</u> SPLLEN bit <u>If PLLEN in 0</u> 1 = 4x PLL 0 = 4x PLL	oftware PLL Ena <u>Configuration W</u> is ignored. 4x P <u>Configuration W</u> Is enabled is disabled	able bit ′ <u>ords = 1:</u> LL is always e ′ <u>ords = 0:</u>	enabled (subjec	t to oscillator re	quirements)		
0 = 4x PLL is disabledbit 6-3 IRCF<3:0>: Internal Oscillator Frequency Select bits1111 = 16 MHz HF1110 = 8 MHz or 32 MHz HF (see Section 5.2.2.1 "HFINTOSC")1101 = 4 MHz HF1100 = 2 MHz HF1010 = 2 MHz HF1011 = 1 MHz HF1010 = 500 kHz HF(1)1001 = 250 kHz HF(1)1000 = 125 kHz HF(1)0111 = 500 kHz MF (default upon Reset)0110 = 250 kHz MF0101 = 125 kHz MF0101 = 125 kHz MF0101 = 31.25 kHz HF(1)0110 = 31.25 kHz MF								
bit 2 bit 1-0	Unimpleme SCS<1:0>: 3 1x = Interna 01 = Timer1 00 = Clock c	nted: Read as ' System Clock S I oscillator block oscillator letermined by F	0' elect bits S OSC<2:0> in	Configuration V	Vords.			
Note 1:	Duplicate frequer	ncy derived from	HFINTOSC.					

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce Interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

FIGURE 7-1: INTERRUPT LOGIC

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 9.0 "Power-Down Mode (Sleep)" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0		
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD		
bit 7						-	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
S = Bit can onl	y be set	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is c	leared by hardw	are			
L:1 7		h. Due euro de (D.e.)			- L- 14				
DIL 7	$1 = \Delta ccesses$	n Program/Dai	a EEPROIVI IVI Se Flash memo	emory Select	DIL				
	0 = Accesses	s data EEPRO	M memory	лу					
bit 6	CFGS: Flash	Program/Data	EEPROM or C	Configuration	Select bit				
	1 = Accesses	s Configuration	, User ID and	Device ID Re	gisters				
	0 = Accesses	s Flash Progra	m or data EEP	ROM Memor	у				
bit 5	LWLO: Load	Write Latches	Only bit	c = c and E	EPCD = 1 (proc	rom Elach):			
	1 = The	next WR com	mand does not	ot initiate a v	vrite: only the p	<u>iram nasn</u> i. Irogram memol	rv latches are		
	upda	ated.					,		
	0 = The	next WR comn	hand writes a v	alue from EE	DATH:EEDATL	into program m	emory latches		
	anu	millales a write	or all the data	stored in the	program memo	ry latenes.			
	<u> If CFGS = 0 a</u>	and EEPGD = (<u>):</u> (Accessing o	data EEPRON	M)				
	LWLO is igno	red. The next V	VR command i	initiates a wri	te to the data EE	PROM.			
bit 4	FREE: Progra	am Flash Erase	e Enable bit	EGS = 0 and EEPGD = 1 (program Elash).					
	$\frac{11 \text{ CFG3} - 1}{1 = \text{Perf}}$	orms an erase	operation on t	the next WR command (cleared by hardware after comple-					
	tion	of erase).			oninana (oleare				
	0 = Perf	orms a write op	peration on the	next WR cor	nmand.				
	If EEPGD = 0	and CFGS =): (Accessing o	data EEPRO	(N				
	FREE is ignor	red. The next V	VR command	will initiate bo	, th a erase cycle	and a write cyc	de.		
bit 3	WRERR: EEF	PROM Error Fl	ag bit						
	1 = Condition	n indicates an	improper prog	ram or erase	e sequence atter	mpt or termina	tion (bit is set		
	0 = The prog	ram or erase o	peration comp	leted normall	V.				
bit 2	WREN: Progr	ram/Erase Ena	ble bit		,				
	1 = Allows pr	rogram/erase c	ycles						
	0 = Inhibits p	rogramming/er	asing of progra	am Flash and	data EEPROM				
bit 1	WR: Write Co	ontrol bit							
	1 = Initiates a	a program Flas ation is self-tim	h or data EEPI and the bit	ROM prograr is cleared by	n/erase operatio	n. operation is co	mnlete		
	The WR	bit can only be	set (not cleare	ed) in softwar	e.		inpiete.		
	0 = Program	/erase operatio	n to the Flash	or data EEPF	ROM is complete	and inactive.			
bit 0	RD: Read Co	ntrol bit							
	1 = Initiates	an program Fl	ash or data E	EPROM rea	d. Read takes	one cycle. RD	is cleared in		
	0 = Does not	initiate a prog	ram Flash or d	ata EEPRON	l data read.				

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

12.0 I/O PORTS

Each port has three standard registers for its operation. These registers are:

- TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

TABLE 12-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC
PIC16F1933	•	•	
PIC16F1934	•	٠	•

TABLE 12-2: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC	РОКТD	PORTE
PIC16(L)F1938	•	•	•		•
PIC16(L)F1939	•	٠	•	•	•

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 12-1.

FIGURE 12-1: GENERIC I/O PORT OPERATION

EXAMPLE 12-1: INITIALIZING PORTA

;	This	code	example	illustrates
---	------	------	---------	-------------

- ; initializing the PORTA register. The
- ; other ports are initialized in the same
- ; manner.

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

FIGURE 17-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

FIGURE 24-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

FIGURE 24-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

24.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 24-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 24-39).

FIGURE 24-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 24-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

REGISTER 24-2: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0) R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV	SSPEN	СКР		SSPM<	<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemen	ted bit, read as '0'		
u = Bit is uncha	anged	x = Bit is unknowr	ı	-n/n = Value at P	OR and BOR/Value a	t all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared	
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to ti 0 = No collision <u>Slave mode:</u> 1 = The SSPBL 0 = No collision	Illision Detect bit he SSPBUF register n JF register is written v n	r was attempted v	while the I ² C condit nitting the previous v	ions were not valid fo vord (must be cleared i	r a transmission to in software)	be started
bit 6	SSPOV: Receive In SPI mode: 1 = A new byte Overflow cas setting over SSPBUF re 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	e Overflow Indicator is received while the an only occur in Slave flow. In Master mode gister (must be clear v ecceived while the Si eared in software). v	bit ⁽¹⁾ SSPBUF register e mode. In Slave i , the overflow bit i ed in software). SPBUF register i	r is still holding the p mode, the user mus s not set since each s still holding the p	revious data. In case of read the SSPBUF, ev new reception (and tra revious byte. SSPO\	of overflow, the data ren if only transmitti nsmission) is initiat / is a "don't care"	a in SSPSR is lost. ing data, to avoid ed by writing to the in Transmit mode
bit 5	SSPEN: Synchro In both modes, w <u>In SPI mode</u> : 1 = Enables se 0 = Disables se <u>In I²C mode</u> : 1 = Enables the 0 = Disables se	nous Serial Port Er hen enabled, these rial port and configur erial port and config e serial port and config erial port and config	able bit pins must be pro es SCK, SDO, SE ures these pins a gures the SDA an ures these pins a	operly configured as of and \overline{SS} as the sous s I/O port pins d SCL pins as the so s I/O port pins	s input or output rce of the serial port p purce of the serial port	ins ⁽²⁾ pins ⁽³⁾	
bit 4	CKP: Clock Pola In SPI mode: 1 = Idle state for 0 = Idle state for In I2C Slave mod SCL release con 1 = Enable clock k 0 = Holds clock l In I2C Master mod Unused in this m	rity Select bit clock is a high level clock is a low level e: trol ow (clock stretch). (<u>ide:</u> ode	Used to ensure c	lata setup time.)			
bit 3-0	$\begin{array}{l} \textbf{SSPM<3:0>:} Syr} \\ 0000 = SPI Masi \\ 0001 = SPI Masi \\ 0010 = SPI Masi \\ 0011 = SPI Masi \\ 0100 = SPI Masi \\ 0100 = SPI Slav \\ 0101 = SPI Slav \\ 1001 = Reserve \\ 1001 = Reserve \\ 1010 = SPI Masi \\ 1001 = Reserve \\ 1011 = I^2C Slave \\ 1101 = Reserve \\ 1110 = I^2C Slave \\ 1111 = I^2C Sl$	nchronous Serial Po ter mode, clock = Fc ter mode, clock = Fc ter mode, clock = Fc ter mode, clock = CC e mode, clock = SC e mode, clock = SC e mode, 10-bit addres e mode, 10-bit addres ter mode, clock = Fc d ter mode, clock = Fc d e mode, 7-bit addres e mode, 7-bit addres e mode, 7-bit addres	rt Mode Select b DSC/4 DSC/16 DSC/64 MR2 output/2 K pin, <u>SS</u> pin cor SS DSC / (4 * (SSPAE DSC/(4 * (SSPAD er mode (Slave i SS with Start and SSS with Start and SSS with Start and	its htrol enabled htrol disabled, SS c h(D+1)) ⁽⁴⁾ D+1)) ⁽⁵⁾ dle) Stop bit interrupts e l Stop bit interrupts e	an be used as I/O pin nabled enabled		
Note 1: 2: \ 3: \ 4: \$ 5: \$	n Master mode, the ov When enabled, these p When enabled, the SD/ SSPADD values of 0, 1 SSPADD value of '0' is	erflow bit is not set ins must be properly A and SCL pins mus or 2 are not suppor not supported. Use	since each new r y configured as ir st be configured a ted for I ² C mode SSPM = 0000 ir	eception (and trans put or output. as inputs.	mission) is initiated b	y writing to the SS	PBUF register.

Mnen	nonic,	Description	Cycles	14-Bit Opcode)	Status	Notoo
Oper	rands	Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f. d	Rotate Right f through Carry	1	00	1100	dfff	ffff	c	2
SUBWF	f. d	Subtract W from f	1	0.0	0010	dfff	ffff	C. DC. Z	2
SUBWFB	f. d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C. DC. Z	2
SWAPF	f. d	Swap nibbles in f	1	0.0	1110	dfff	ffff	-,, -	2
XORWE	f. d	Exclusive OR W with f	1	0.0	0110	dfff	ffff	z	2
	., -	BYTE ORIENTED SKIP O	PERATIO	ONS					
DECERT	fd	Decrement f. Skin if 0	1(2)	0.0	1011	dfff	ffff		12
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	11111	dfff	ffff		1, 2
				ΔΤΙΟΝ	19				
D 05	fb	Bit Clear f			0.055	bfff	ffff		2
BCF	f, D	Bit Set f	1	01	0000	DIII	1111 444		2
BSF	I, D		1	01	aaru	DIII	IIII		2
		BIT-ORIENTED SKIP O	PERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	OPERATIO	ŃS							•
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
-								l	

TABLE 29-3: PIC16(L)F193X ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

SWAPF	Swap Nibbles in f					
Syntax:	[<i>label</i>] SWAPF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$					
Status Affected:	None					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.					

XORLW	Exclusive OR literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .XOR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

TRIS	Load TRIS Register with W				
Syntax:	[<i>label</i>] TRIS f				
Operands:	$5 \leq f \leq 7$				
Operation:	(W) \rightarrow TRIS register 'f'				
Status Affected:	None				
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.				

XORWF	Exclusive OR W with f				
Syntax:	[<i>label</i>] XORWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C} \leq TA \leq +85°C \mbox{ for industrial} \\ \mbox{-40°C} \leq TA \leq +125°C \mbox{ for extended} \end{array}$					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D032		with TTL buffer	_		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D032A			_		0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$
D033		with Schmitt Trigger buffer	_		0.2 Vdd	V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C™ levels	—	_	0.3 Vdd	V	
		with SMBus levels	—	_	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$
D034		MCLR, OSC1 (RC mode) ⁽¹⁾	—	_	0.2 Vdd	V	
D034A		OSC1 (HS mode)	—	_	0.3 Vdd	V	
	VIH	Input High Voltage					
		I/O ports:					
D040		with TTL buffer	2.0	_	—	V	$4.5V \leq V\text{DD} \leq 5.5V$
D040A			0.25 VDD + 0.8	_	_	V	$1.8V \leq V\text{DD} \leq 4.5V$
D041		with Schmitt Trigger buffer	0.8 Vdd		—	V	$2.0V \leq V\text{DD} \leq 5.5V$
		with I ² C™ levels	0.7 VDD		—	V	
		with SMBus levels	2.1		—	V	$2.7V \leq V\text{DD} \leq 5.5V$
D042		MCLR	0.8 Vdd		—	V	
D043A		OSC1 (HS mode)	0.7 Vdd		—	V	
D043B		OSC1 (RC mode)	0.9 Vdd		—	V	(Note 1) VDD > 2.0V
	lı∟	Input Leakage Current ⁽²⁾	•				
D060		I/O ports	—	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high- impedance @ 85°C
				± 5	± 1000	nA	125°C
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \le Vpin \le Vdd @ 85^{\circ}C$
	IPUR	Weak Pull-up Current			-	-	
D070*			25	100	200		VDD = 3.3V, VPIN = VSS
			25	140	300	μA	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage ⁽⁴⁾				r	1
D080		I/O ports	_	_	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V
Voн Output High Voltage ⁽⁴⁾							
D090		I/O ports	Vdd - 0.7		—	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V

30.4 DC Characteristics: PIC16(L)F1938/39-I/E

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

FIGURE 31-6: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16F1938/9 ONLY

FIGURE 31-56: Vol VS. IoL OVER TEMPERATURE, VDD = 1.8V

FIGURE 31-66: COMPARATOR HYSTERESIS, LOW-POWER MODE (CxSP = 0, CxHYS = 1)

