



#### Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 32MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, LCD, POR, PWM, WDT                                |
| Number of I/O              | 25                                                                        |
| Program Memory Size        | 28KB (16K x 14)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 256 x 8                                                                   |
| RAM Size                   | 1K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                               |
| Data Converters            | A/D 11x10b                                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Through Hole                                                              |
| Package / Case             | 28-DIP (0.300", 7.62mm)                                                   |
| Supplier Device Package    | 28-SPDIP                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1938-i-sp |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# PIC16(L)F1938/9





# 3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
  - Configuration Words
  - Device ID
  - User ID
  - Flash Program Memory
- Data Memory
  - Core Registers
  - Special Function Registers
  - General Purpose RAM
  - Common RAM
- Data EEPROM memory<sup>(1)</sup>

Note 1: The Data EEPROM Memory and the method to access Flash memory through the EECON registers is described in Section 11.0 "Data EEPROM and Flash Program Memory Control".

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

# 3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a  $32K \times 14$  program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1938/9 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

## TABLE 3-1:DEVICE SIZES AND ADDRESSES

| Device                 | Program Memory Space (Words) | Last Program Memory Address |  |
|------------------------|------------------------------|-----------------------------|--|
| PIC16F1938/PIC16LF1938 | 16,384                       | 3FFFh                       |  |
| PIC16F1939/PIC16LF1939 | 16,384                       | 3FFFh                       |  |

# 11.2 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. Refer to **Section 30.0 "Electrical Specifications"**. If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

### 11.2.1 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADRL register, clear the EEPGD and CFGS control bits of the EECON1 register, and then set control bit RD. The data is available at the very next cycle, in the EEDATL register; therefore, it can be read in the next instruction. EEDATL will hold this value until another read or until it is written to by the user (during a write operation).

### EXAMPLE 11-1: DATA EEPROM READ

| BANKSEL | EEADRL   |       | ;                      |
|---------|----------|-------|------------------------|
| MOVLW   | DATA_EE_ | ADDR  | ;                      |
| MOVWF   | EEADRL   |       | ;Data Memory           |
|         |          |       | ;Address to read       |
| BCF     | EECON1,  | CFGS  | ;Deselect Config space |
| BCF     | EECON1,  | EEPGD | ;Point to DATA memory  |
| BSF     | EECON1,  | RD    | ;EE Read               |
| MOVF    | EEDATL,  | W     | ;W = EEDATL            |

# Note: Data EEPROM can be read regardless of the setting of the CPD bit.

# 11.2.2 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADRL register and the data to the EEDATL register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the above sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set the WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

# 11.2.3 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- · Power Glitch
- · Software Malfunction

### 11.2.4 DATA EEPROM OPERATION DURING CODE-PROTECT

Data memory can be code-protected by programming the  $\overline{CPD}$  bit in the Configuration Words to '0'.

When the data memory is code-protected, only the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from replacing your program with a program that will access the contents of the data EEPROM.

### EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG ADDR HI: PROG ADDR LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   BANKSELEEADRL; Select Bank for EEPROM registersMOVLWPROG_ADDR_LO;MOVWFEEADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWLEEADRH; Store MSB of address
            EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
            EECON1,CFGS
    BSF
              INTCON,GIE ; Disable interrupts
    BCF
                                ; Initiate read
    BSF
              EECON1,RD
    NOP
                                  ; Executed (Figure 11-1)
   NOP
                                  ; Ignored (Figure 11-1)
    BSF
            INTCON, GIE
                                ; Restore interrupts
             EEDATL,W
    MOVF
                                ; Get LSB of word
    MOVWF
           PROG_DATA_LO ; Store in user location
            EEDATH,W ; Get MSB of word
PROG_DATA_HI ; Store in user location
    MOVE
    MOVWF
```

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the write operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the write takes place (i.e., the last word of the block write). This is not Sleep mode as the clocks and peripherals will

continue to run. The processor does not stall when LWLO = 1, loading the write latches. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.





| U-0              | U-0   | R/W-1/1           | R/W-1/1 | R/W-1/1        | R/W-1/1          | R/W-1/1        | R/W-1/1      |
|------------------|-------|-------------------|---------|----------------|------------------|----------------|--------------|
| —                | —     | ANSA5             | ANSA4   | ANSA3          | ANSA2            | ANSA1          | ANSA0        |
| bit 7            |       |                   |         |                |                  |                | bit 0        |
|                  |       |                   |         |                |                  |                |              |
| Legend:          |       |                   |         |                |                  |                |              |
| R = Readable     | bit   | W = Writable      | bit     | U = Unimpler   | nented bit, read | d as '0'       |              |
| u = Bit is unch  | anged | x = Bit is unkr   | nown    | -n/n = Value a | at POR and BC    | R/Value at all | other Resets |
| '1' = Bit is set |       | '0' = Bit is clea | ared    |                |                  |                |              |

# REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSA<5:0>**: Analog Select between Analog or Digital Function on pins RA<5:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned as analog input<sup>(1)</sup>. Digital input buffer disabled.

**Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

| Name       | Bit 7  | Bit 6   | Bit 5  | Bit 4   | Bit 3      | Bit 2             | Bit 1   | Bit 0   | Register<br>on Page |
|------------|--------|---------|--------|---------|------------|-------------------|---------|---------|---------------------|
| ADCON0     | _      |         |        | CHS<4:0 | >          |                   | GO/DONE | ADON    | 155                 |
| ANSELB     | _      | _       | ANSB5  | ANSB4   | ANSB3      | ANSB2             | ANSB1   | ANSB0   | 131                 |
| APFCON     | _      | CCP3SEL | T1GSEL | P2BSEL  | SRNQSEL    | C2OUTSEL          | SSSEL   | CCP2SEL | 123                 |
| CCPxCON    | PxM≤   | <1:0>   | DCxB   | <1:0>   |            | CCPxM<            | 3:0>    |         | 228                 |
| CPSCON0    | CPSON  | CPSRM   |        | —       | CPSRNG     | <1:0>             | CPSOUT  | TOXCS   | 321                 |
| CPSCON1    | _      | _       |        | _       |            | CPSCH             | <3:>    |         | 322                 |
| INTCON     | GIE    | PEIE    | TMR0IE | INTE    | IOCIE      | TMR0IF            | INTF    | IOCIF   | 90                  |
| IOCBP      | IOCBP7 | IOCBP6  | IOCBP5 | IOCBP4  | IOCBP3     | IOCBP2            | IOCBP1  | IOCBP0  | 145                 |
| IOCBN      | IOCBN7 | IOCBN6  | IOCBN5 | IOCBN4  | IOCBN3     | IOCBN2            | IOCBN1  | IOCBN0  | 145                 |
| IOCBF      | IOCBF7 | IOCBF6  | IOCBF5 | IOCBF4  | IOCBF3     | IOCBF2            | IOCBF1  | IOCBF0  | 145                 |
| LATB       | LATB7  | LATB6   | LATB5  | LATB4   | LATB3      | LATB2             | LATB1   | LATB0   | 130                 |
| LCDCON     | LCDEN  | SLPEN   | WERR   | —       | CS<1:      | 0>                | LMUX    | <1:0>   | 327                 |
| LCDSE0     | SE7    | SE6     | SE5    | SE4     | SE3        | SE2               | SE1     | SE0     | 331                 |
| LCDSE1     | SE15   | SE14    | SE13   | SE12    | SE11       | SE10              | SE9     | SE8     | 331                 |
| OPTION_REG | WPUEN  | INTEDG  | TMR0CS | TMR0SE  | PSA        | PS<2:0>           |         | 187     |                     |
| PORTB      | RB7    | RB6     | RB5    | RB4     | RB3        | RB2               | RB1     | RB0     | 130                 |
| T1GCON     | TMR1GE | T1GPOL  | T1GTM  | T1GSPM  | T1GGO/DONE | T1GVAL T1GSS<1:0> |         | 198     |                     |
| TRISB      | TRISB7 | TRISB6  | TRISB5 | TRISB4  | TRISB3     | TRISB2            | TRISB1  | TRISB0  | 130                 |
| WPUB       | WPUB7  | WPUB6   | WPUB5  | WPUB4   | WPUB3      | WPUB2             | WPUB1   | WPUB0   | 131                 |

### TABLE 12-7: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

### 21.6.2 TIMER1 GATE SOURCE SELECTION

Timer1 gate source selections are shown in Table 21-4. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

| TABLE 21-4: | TIMER1 | GATE | SOURCES |
|-------------|--------|------|---------|
|-------------|--------|------|---------|

| T1GSS | Timer1 Gate Source                                                        |
|-------|---------------------------------------------------------------------------|
| 00    | Timer1 Gate Pin                                                           |
| 01    | Overflow of Timer0<br>(TMR0 increments from FFh to 00h)                   |
| 10    | Comparator 1 Output sync_C1OUT<br>(optionally Timer1 synchronized output) |
| 11    | Comparator 2 Output sync_C2OUT<br>(optionally Timer1 synchronized output) |

# 21.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

### 21.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

## 21.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1 gate control. The Comparator 1 output (sync\_C1OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see Section 18.4.1 "Comparator Output Synchronization".

## 21.6.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for Timer1 gate control. The Comparator 2 output (sync\_C2OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see Section 18.4.1 "Comparator Output Synchronization".

### 21.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 21-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

| Note: | Enabling Toggle mode at the same time       |  |  |  |  |  |  |
|-------|---------------------------------------------|--|--|--|--|--|--|
|       | as changing the gate polarity may result in |  |  |  |  |  |  |
|       | indeterminate operation.                    |  |  |  |  |  |  |

### 21.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 21-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 Gate source to be measured. See Figure 21-6 for timing details.

## 21.6.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

# 21.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

#### 21.7 **Timer1** Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

#### 21.8 **Timer1 Operation During Sleep**

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the  $\overline{\text{T1SYNC}}$  bit setting.

#### 21.9 ECCP/CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 23.0 "Capture/Compare/PWM Modules".

# 21.10 ECCP/CCP Special Event Trigger

When any of the CCP's are configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see Section 15.2.5 "Special Event Trigger".



#### **FIGURE 21-2:** TIMER1 INCREMENTING EDGE

# 23.1 Capture Mode

The Capture mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 23-1 shows a simplified diagram of the Capture operation.

### 23.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON register. Refer to **Section 12.1 "Alternate Pin Function**" for more details.

**Note:** If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

### FIGURE 23-1: CAPTURE MODE OPERATION BLOCK DIAGRAM



## 23.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

### 23.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

| Note: | Clocking Timer1 from the system clock   |
|-------|-----------------------------------------|
|       | (Fosc) should not be used in Capture    |
|       | mode. In order for Capture mode to      |
|       | recognize the trigger event on the CCPx |
|       | pin, Timer1 must be clocked from the    |
|       | instruction clock (Fosc/4) or from an   |
|       | external clock source.                  |

### 23.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 23-1 demonstrates the code to perform this function.

### EXAMPLE 23-1: CHANGING BETWEEN CAPTURE PRESCALERS

| BANKSEI | L CCPxCON          | ;Set Bank bits to point |  |  |  |
|---------|--------------------|-------------------------|--|--|--|
|         | ;to CCPxCON        |                         |  |  |  |
| CLRF    | CCPxCON            | ;Turn CCP module off    |  |  |  |
| MOVLW   | NEW_CAPT_P         | S;Load the W reg with   |  |  |  |
|         | ;the new prescaler |                         |  |  |  |
|         |                    | ;move value and CCP ON  |  |  |  |
| MOVWF   | CCPxCON            | ;Load CCPxCON with this |  |  |  |
|         |                    | ;value                  |  |  |  |

## 23.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state. Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.



FIGURE 23-11: **EXAMPLE OF FULL-BRIDGE PWM OUTPUT** 

# 24.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 24-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 24-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 24-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on

its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

## 24.7 Baud Rate Generator

The MSSP module has a Baud Rate Generator available for clock generation in both I<sup>2</sup>C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 24-6). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 24-40 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module

clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 24-4demonstratesclockratesbasedoninstructioncyclesandtheBRGvalueloadedintoSSPADD.

### **EQUATION 24-1:**

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

## FIGURE 24-40: BAUD RATE GENERATOR BLOCK DIAGRAM



**Note:** Values of 0x00, 0x01 and 0x02 are not valid for SSPADD when used as a Baud Rate Generator for I<sup>2</sup>C. This is an implementation limitation.

## TABLE 24-4: MSSP CLOCK RATE W/BRG

| Fosc   | Fcy   | BRG Value | Fclock<br>(2 Rollovers of BRG) |
|--------|-------|-----------|--------------------------------|
| 32 MHz | 8 MHz | 13h       | 400 kHz <sup>(1)</sup>         |
| 32 MHz | 8 MHz | 19h       | 308 kHz                        |
| 32 MHz | 8 MHz | 4Fh       | 100 kHz                        |
| 16 MHz | 4 MHz | 09h       | 400 kHz <sup>(1)</sup>         |
| 16 MHz | 4 MHz | 0Ch       | 308 kHz                        |
| 16 MHz | 4 MHz | 27h       | 100 kHz                        |
| 4 MHz  | 1 MHz | 09h       | 100 kHz                        |

**Note 1:** The I<sup>2</sup>C interface does not conform to the 400 kHz I<sup>2</sup>C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

# PIC16(L)F1938/9





For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.





FIGURE 31-11: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY



FIGURE 31-12: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY



FIGURE 31-43: IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE (CPSRM = 0, CPSRNG = 10), PIC16LF1938/9 ONLY



FIGURE 31-44: IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE (CPSRM = 0, CPSRNG = 10), PIC16F1938/9 ONLY



44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



# RECOMMENDED LAND PATTERN

|                          | N  | ILLIMETER | S     |      |
|--------------------------|----|-----------|-------|------|
| Dimension Limits         |    | MIN       | NOM   | MAX  |
| Contact Pitch            | E  | 0.80 BSC  |       |      |
| Contact Pad Spacing      | C1 |           | 11.40 |      |
| Contact Pad Spacing      | C2 |           | 11.40 |      |
| Contact Pad Width (X44)  | X1 |           |       | 0.55 |
| Contact Pad Length (X44) | Y1 |           |       | 1.50 |
| Distance Between Pads    | G  | 0.25      |       |      |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

# PIC16(L)F1938/9

NOTES:

### Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC<sup>32</sup> logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620772690

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.