

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1939-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RD6 ⁽⁴⁾ /CPS14/P1C/SEG19	RD6	ST	CMOS	General purpose I/O.
	CPS14	AN	_	Capacitive sensing input 14.
	P1C		CMOS	PWM output.
	SEG19	_	AN	LCD analog output.
RD7 ⁽⁴⁾ /CPS15/P1D/SEG20	RD7	ST	CMOS	General purpose I/O.
	CPS15	AN		Capacitive sensing input 15.
	P1D	_	CMOS	PWM output.
	SEG20	_	AN	LCD analog output.
RE0 ⁽⁵⁾ /AN5/P3A ⁽¹⁾ /CCP3 ⁽¹⁾ /	RE0	ST	CMOS	General purpose I/O.
SEG21	AN5	AN	—	A/D Channel 5 input.
	P3A	_	CMOS	PWM output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	SEG21	_	AN	LCD analog output.
RE1 ⁽⁵⁾ /AN6/P3B/SEG22	RE1	ST	CMOS	General purpose I/O.
	AN6	AN	_	A/D Channel 6 input.
	P3B	—	CMOS	PWM output.
	SEG22	_	AN	LCD analog output.
RE2 ⁽⁵⁾ /AN7/CCP5/SEG23	RE2	ST	CMOS	General purpose I/O.
	AN7	AN	_	A/D Channel 7 input.
	CCP5	ST	CMOS	Capture/Compare/PWM5.
	SEG23	_	AN	LCD analog output.
RE3/MCLR/VPP	RE3	TTL	—	General purpose input.
	MCLR	ST	—	Master Clear with internal pull-up.
	VPP	HV	—	Programming voltage.
Vdd	Vdd	Power	—	Positive supply.
Vss	Vss	Power	—	Ground reference.

	TABLE 1-2:	PIC16(L)F1938/	9 PINOUT DESCRIPTION	(CONTINUED)	
--	------------	----------------	----------------------	-------------	--

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels XTAL = Crystal

HV = High Voltage I^2C^{TM} = Schmitt Trigger input with I²C levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1938/9 devices only.

3: PIC16(L)F1938 devices only.

4: PORTD is available on PIC16(L)F1939 devices only.

5: RE<2:0> are available on PIC16(L)F1939 devices only.

TABLE 3-4: PIC16(L)F1938/9 MEMORY MAP, BANKS 8-15

	BANK 8	-	BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	INDF0	480h	INDF0	500h	INDF0	580h	INDF0	600h	INDF0	680h	INDF0	700h	INDF0	780h	INDF0
401h	INDF1	481h	INDF1	501h	INDF1	581h	INDF1	601h	INDF1	681h	INDF1	701h	INDF1	781h	INDF1
402h	PCL	482h	PCL	502h	PCL	582h	PCL	602h	PCL	682h	PCL	702h	PCL	782h	PCL
403h	STATUS	483h	STATUS	503h	STATUS	583h	STATUS	603h	STATUS	683h	STATUS	703h	STATUS	783h	STATUS
404h	FSR0L	484h	FSR0L	504h	FSR0L	584h	FSR0L	604h	FSR0L	684h	FSR0L	704h	FSR0L	784h	FSR0L
405h	FSR0H	485h	FSR0H	505h	FSR0H	585h	FSR0H	605h	FSR0H	685h	FSR0H	705h	FSR0H	785h	FSR0H
406h	FSR1L	486h	FSR1L	506h	FSR1L	586h	FSR1L	606h	FSR1L	686h	FSR1L	706h	FSR1L	786h	FSR1L
407h	FSR1H	487h	FSR1H	507h	FSR1H	587h	FSR1H	607h	FSR1H	687h	FSR1H	707h	FSR1H	787h	FSR1H
408h	BSR	488h	BSR	508h	BSR	588h	BSR	608h	BSR	688h	BSR	708h	BSR	788h	BSR
409h	WREG	489h	WREG	509h	WREG	589h	WREG	609h	WREG	689h	WREG	709h	WREG	789h	WREG
40Ah	PCLATH	48Ah	PCLATH	50Ah	PCLATH	58Ah	PCLATH	60Ah	PCLATH	68Ah	PCLATH	70Ah	PCLATH	78Ah	PCLATH
40Bh	INTCON	48Bh	INTCON	50Bh	INTCON	58Bh	INTCON	60Bh	INTCON	68Bh	INTCON	70Bh	INTCON	78Bh	INTCON
40Ch	_	48Ch	_	50Ch		58Ch		60Ch		68Ch	—	70Ch	_	78Ch	—
40Dh	—	48Dh	_	50Dh	_	58Dh	—	60Dh		68Dh	—	70Dh		78Dh	—
40Eh	—	48Eh	_	50Eh	_	58Eh	_	60Eh		68Eh	—	70Eh	_	78Eh	—
40Fh	—	48Fh	—	50Fh	—	58Fh	—	60Fh	_	68Fh	—	70Fh	—	78Fh	—
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	—	491h	—	511h	—	591h	—	611h	_	691h	—	711h	—	791h	
412h	—	492h	—	512h	—	592h	—	612h	—	692h	—	712h	—	792h	
413h	—	493h	—	513h	—	593h	—	613h	—	693h	—	713h		793h	
414h	—	494h	_	514h	_	594h	_	614h	_	694h	_	714h		794h	
415h	TMR4	495h	—	515h	—	595h	—	615h	_	695h	_	715h	_	795h	
416h	PR4	496h	—	516h	_	596h	_	616h	_	696h		716h		796h	
417h	T4CON	497h	_	517h	_	597h	_	617h	_	697h	_	717h	_	797h	
418h	_	498h	_	518h	_	598h	_	618h	_	698h	_	718h	_	798h	
419h	_	499h	_	519h	_	599h	_	619h	_	699h	_	719h	_	799h	
41Ah	—	49Ah	—	51Ah	_	59Ah		61Ah		69Ah	_	71Ah		79Ah	See Table 3-7 or
41Bh		49Bh	_	51Bh	_	59Bh		61Bh		69Bh	_	71Bh		79Bh	Table 3-8
41Ch	TMR6	49Ch		51Ch		59Ch		61Ch		69Ch	_	71Ch		79Ch	
41Dh	PR6	49Dh	_	51Dh		59Dh		61Dh		69Dh	_	71Dh	_	79Dh	
41Eh	T6CON	49Eh	_	51Eh	—	59Eh	—	61Eh		69Eh		71Eh		79Eh	
41Fh	—	49Fh	—	51Fh	—	59Fh	—	61Fh	—	69Fh	—	71Fh	_	79Fh	
420h		4A0h		520h		5A0h		620h	General Purpose	6A0h		720h		7A0h	
	General		General		General		General		Register 48 Bytes						
	Purpose		Purpose		Purpose		Purpose		40 Byles		Unimplemented		Unimplemented		
	Register 80 Bytes		Register 80 Bytes		Register 80 Bytes		Register 80 Bytes		Unimplemented		Read as '0'		Read as '0'		
	of Bytes		00 Dytes		00 Dytes		00 Dytes		Read as '0'						
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses		Accesses		Accesses		Accesses								
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh								
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 5.3 "Clock Switching"for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase-Lock Loop, HFPLL that can produce one of three internal system clock sources.

- The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase-Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast startup oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information.

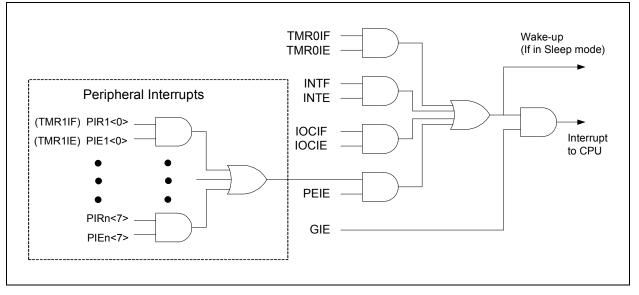
The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce Interrupts. Refer to the corresponding chapters for details.

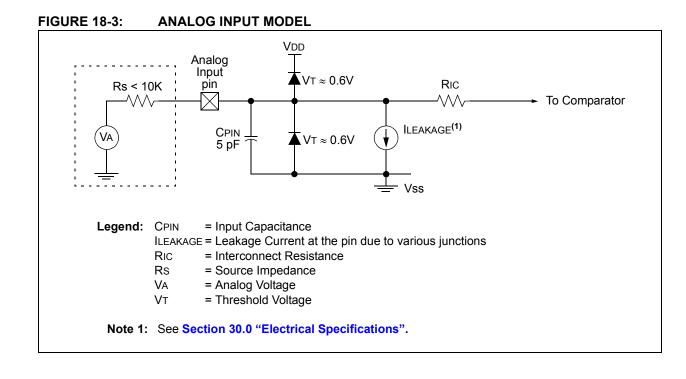

A block diagram of the interrupt logic is shown in Figure 7-1.

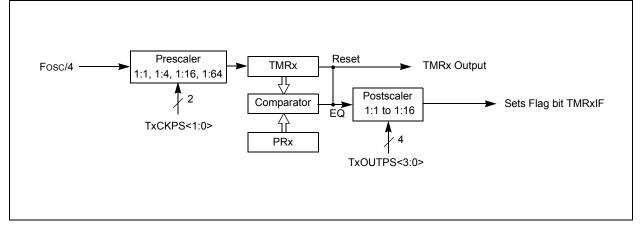
FIGURE 7-1: INTERRUPT LOGIC

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GI	= ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7	TMR1GIF: Ti	imer1 Gate Inte	errupt Flag bit				
	1 = Interrupt						
	0 = Interrupt	is not pending					
bit 6	ADIF: A/D C	onverter Interru	ıpt Flag bit				
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 5	RCIF: USAR	T Receive Inte	rrupt Flag bit				
	1 = Interrupt		1 0				
	0 = Interrupt	is not pending					
bit 4	TXIF: USAR	T Transmit Inte	rrupt Flag bit				
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 3	SSPIF: Sync	hronous Serial	Port (MSSP)	Interrupt Flag b	oit		
	1 = Interrupt		, , , , , , , , , , , , , , , , , , ,				
	0 = Interrupt	is not pending					
bit 2	CCP1IF: CC	P1 Interrupt Fla	ag bit				
	1 = Interrupt						
	•	is not pending					
bit 1		er2 to PR2 Inte	errupt Flag bit				
	1 = Interrupt						
hit O	-	is not pending	atorrupt Flog I	-:+			
bit 0	1 = Interrupt	er1 Overflow I	nterrupt Flag i	JIL			
		is not pending					
	Interrupt flag bits a						
	condition occurs, r its corresponding						
	Enable bit, GIE, o						
	User software	should ens	•				
	appropriate interru		clear prior				
	to enabling an inte	errupt.					

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

22.0 TIMER2/4/6 MODULES

There are up to three identical Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).


Note:	The 'x' variable used in this section is used to designate Timer2, Timer4, or
	Timer6. For example, TxCON references
	T2CON, T4CON, or T6CON. PRx refer-
	ences PR2, PR4, or PR6.

The Timer2/4/6 modules incorporate the following features:

- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSP module (Timer2 only)

See Figure 22-1 for a block diagram of Timer2/4/6.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	—	—	_	—	—	C5TSE	L<1:0>
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7-2	Unimplemen	ted: Read as '	0'				
bit 1-0	C5TSEL<1:0	>: CCP5 Timer	Selection				

REGISTER 23-3: CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1

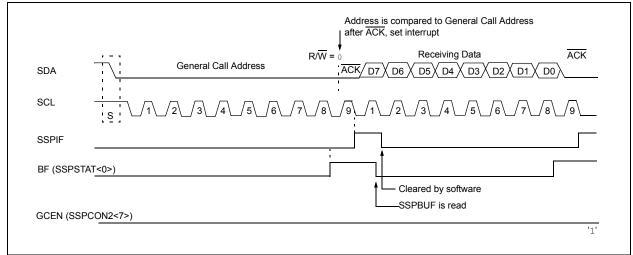
DIT 1-0 00 = CCP5 is based off Timer2 in PWM mode

01 = CCP5 is based off Timer4 in PWM mode

10 = CCP5 is based off Timer6 in PWM mode

11 = Reserved

24.5.8 GENERAL CALL ADDRESS SUPPORT


The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I²C protocol, defined as address 0x00. When the GCEN bit of the SSPCON2 register is set, the Slave module will automatically ACK the reception of this address regardless of the value stored in SSPADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave software can read SSPBUF and respond. shows a general Figure 24-24 call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the eighth falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

24.5.9 SSP MASK REGISTER

An SSP Mask (SSPMSK) register (Register 24-5) is available in I²C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero ('0') bit in the SSPMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all '1's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.

The SSP Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSP mask has no effect during the reception of the first (high) byte of the address.

24.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- · Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

24.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See Section 24.7 "Baud Rate Generator" for more detail.

25.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive
	FIFO have framing errors, repeated reads
	of the RCREG will not clear the FERR bit.

25.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

25.1.2.6 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

25.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-x/x				
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
bit 7	·						bit C				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
u = Bit is unch	nanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7		Port Enable bi									
		ort enabled (cor ort disabled (he		I and IX/CK p	ins as serial poi	rt pins)					
bit 6		eceive Enable t									
		-bit reception									
		B-bit reception									
bit 5	SREN: Single	e Receive Enal	ole bit								
	<u>Asynchronou</u>	<u>s mode</u> :									
	Don't care										
	•	mode – Maste	<u>r</u> :								
		single receive									
		single receive ared after rece	ntion is compl	oto							
		mode – Slave									
	Don't care										
bit 4	CREN: Conti	nuous Receive	Enable bit								
	<u>Asynchronou</u>	<u>s mode</u> :									
	1 = Enables										
	0 = Disables										
	Synchronous										
		continuous rec		DIE DIT CREN IS	cleared (CREN	overrides SR	EN)				
bit 3		lress Detect Er									
	<u>Asynchronou</u>	<u>s mode 9-bit (F</u>	RX9 = 1):								
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	uffer when RSR	<8> is set				
	 1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit 										
		<u>s mode 8-bit (F</u>	<u>RX9 = 0)</u> :								
	Don't care										
bit 2	FERR: Frami	0									
	1 = Framing 0 = No frami		pdated by rea	Iding RCREG I	register and rec	eive next valid	byte)				
bit 1	OERR: Over	run Error bit									
	1 = Overrun 0 = No overr	error (can be c un error	leared by clea	ring bit CREN)						
bit 0	RX9D: Ninth	bit of Received	Data								
	This can be a	ddrooo/doto bi	tor o pority bit	and must be	calculated by us	or firmuoro					

REGISTER 25-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

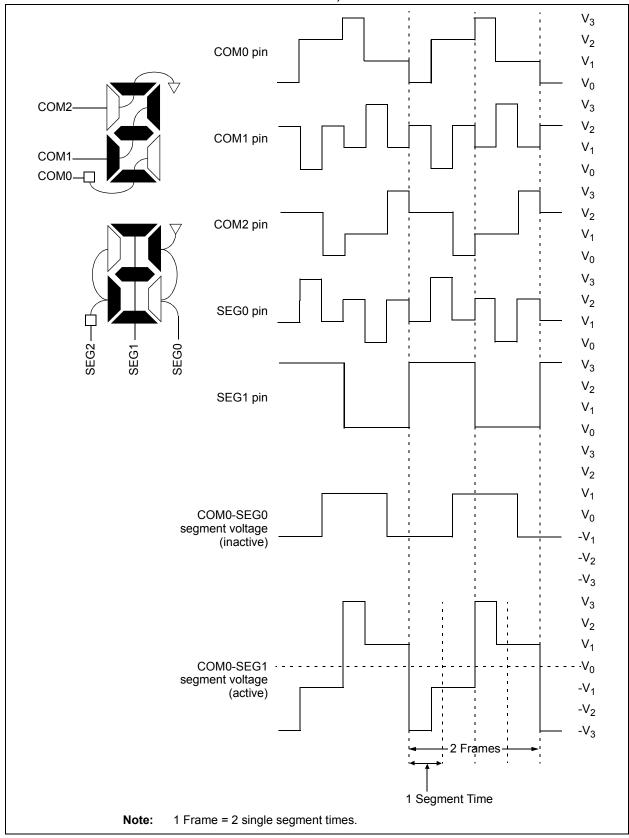


FIGURE 27-16: TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE

30.2 DC Characteristics: PIC16F/LF1938/39-I/E (Industrial, Extended) (Continued)

PIC16LF	1938/9		rd Operat		-40°C ≤ T	A ≤ +85°	erwise stated) C for industrial °C for extended
PIC16F1938/9			rd Operat ng temper		-40°C ≤ T	erwise stated) C for industrial °C for extended	
Param	Device	Min.	Тур†	Max.	Units		Conditions
No.	Characteristics		, ,,,	-		VDD	Note
D017	Supply Current (IDD) ^{(1,}	2)					
D017		—	90	160	μA	1.8	Fosc = 500 kHz
		—	120	190	μA	3.0	MFINTOSC mode
D017		—	120	190	μA	1.8	Fosc = 500 kHz
		—	150	240	μA	3.0	MFINTOSC mode (Note 5)
		—	190	320	μA	5.0	
D018		—	0.6	0.8	mA	1.8	Fosc = 8 MHz
		—	1.0	1.3	mA	3.0	HFINTOSC mode
D018		—	0.7	0.9	mA	1.8	Fosc = 8 MHz
		—	1.0	1.4	mA	3.0	HFINTOSC mode (Note 5)
		—	1.2	1.5	mA	5.0	
D019		—	1.0	1.2	mA	1.8	Fosc = 16 MHz
		—	1.6	2.0	mA	3.0	HFINTOSC mode
D019		—	1.0	1.3	mA	1.8	Fosc = 16 MHz
		—	1.6	2.0	mA	3.0	HFINTOSC mode (Note 5)
		—	1.8	2.2	mA	5.0	
D020		—	3.0	3.9	mA	3.0	Fosc = 32 MHz
		—	3.7	4.6	mA	3.6	HFINTOSC mode
D020			3.0	3.9	mA	3.0	Fosc = 32 MHz
		—	3.3	4.1	mA	5.0	HFINTOSC mode
D021		—	200	300	μA	1.8	Fosc = 4 MHz
		—	350	490	μA	3.0	EXTRC mode (Note 3)
D021		—	210	300	μA	1.8	Fosc = 4 MHz
			370	500	μA	3.0	EXTRC mode (Note 3, Note 5)
		—	460	590	μA	5.0	
D022		_	3.0	3.9	mA	3.0	Fosc = 32 MHz
		—	3.7	4.6	mA	3.6	HS Oscillator mode (Note 6)
D022		—	3.0	3.9	mA	3.0	Fosc = 32 MHz
		_	3.3	4.1	mA	5.0	HS Oscillator mode (Note 5, Note 6)

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

- 4: FVR and BOR are disabled.
- 5: 0.1 μF capacitor on VCAP (RA0).

6: 8 MHz crystal oscillator with 4x PLL enabled.

	DC C	HARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O PORT:								
D032		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D032A			—	_	0.15 VDD	V	$1.8V \le V\text{DD} \le 4.5V$			
D033		with Schmitt Trigger buffer	_	_	0.2 VDD	V	$2.0V \le V\text{DD} \le 5.5V$			
		with I ² C [™] levels	_	_	0.3 VDD	V				
		with SMBus levels		_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$			
D034		MCLR, OSC1 (RC mode) ⁽¹⁾	_	_	0.2 VDD	V				
D034A		OSC1 (HS mode)	_		0.3 VDD	V				
	VIH	Input High Voltage	,I							
		I/O ports:								
D040		with TTL buffer	2.0			V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8	_	_	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D041		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \le VDD \le 5.5V$			
		with I ² C [™] levels	0.7 Vdd		_	V				
		with SMBus levels	2.1		_	V	$2.7V \le VDD \le 5.5V$			
D042		MCLR	0.8 VDD		_	V				
D043A		OSC1 (HS mode)	0.7 VDD	_	_	V				
D043B		OSC1 (RC mode)	0.9 Vdd		_	V	(Note 1) VDD > 2.0V			
	lı∟	Input Leakage Current ⁽²⁾								
D060		I/O ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance @ 85°C			
				± 5	± 1000	nA	125°C			
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \le V \text{PIN} \le V \text{DD} \ \textcircled{0} \ 85^\circ C$			
	IPUR	Weak Pull-up Current								
D070*			25	100	200		VDD = 3.3V, VPIN = VSS			
			25	140	300	μA	VDD = 5.0V, VPIN = VSS			
	VOL	Output Low Voltage ⁽⁴⁾					1			
D080		I/O ports	_	_	0.6	v	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V			
	Voн	Output High Voltage ⁽⁴⁾	11		1	1	<u>ı</u>			
D090		I/O ports	Vdd - 0.7		_	v	ІОН = 3.5mA, VDD = 5V ІОН = 3mA, VDD = 3.3V ІОН = 1mA, VDD = 1.8V			

30.4 DC Characteristics: PIC16(L)F1938/39-I/E

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

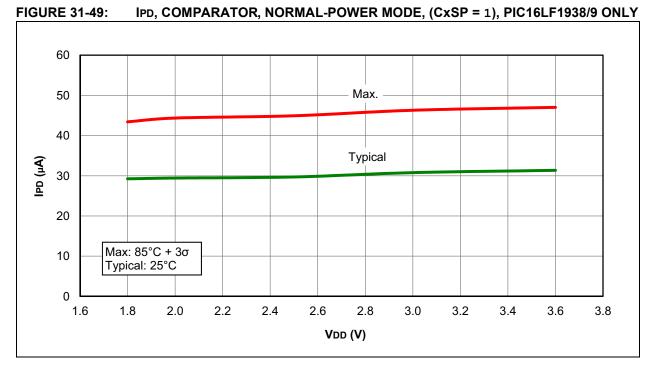
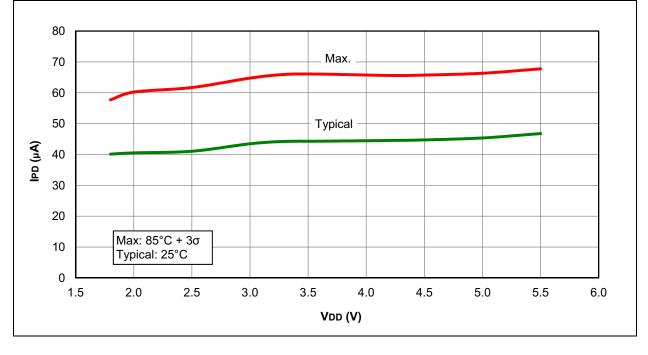
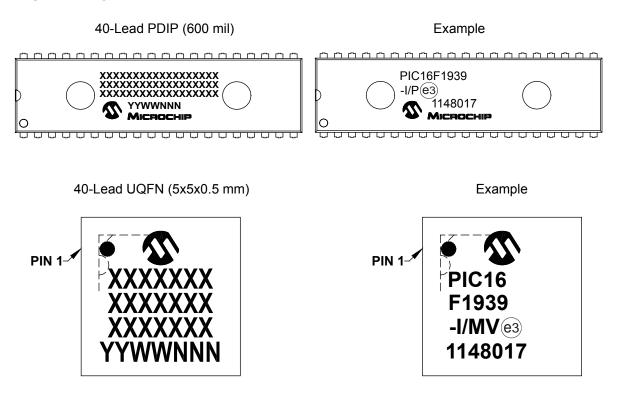
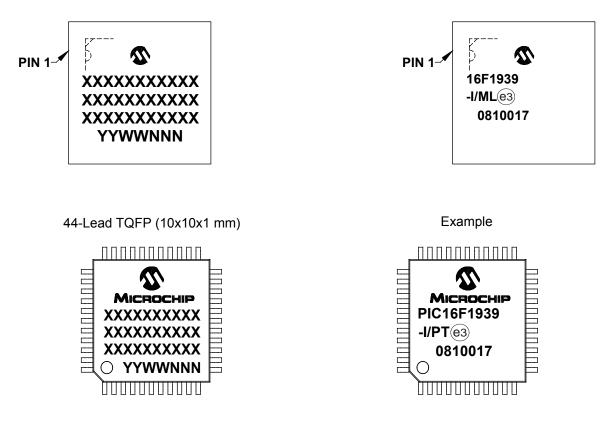




FIGURE 31-50: IPD, COMPARATOR, NORMAL-POWER MODE, (CxSP = 1), PIC16F1938/9 ONLY

Package Marking Information (Continued)

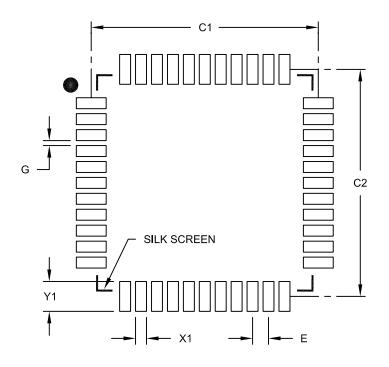


Legend	I: XXX Y YY WW NNN ©3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Continued)

44-Lead QFN (8x8x0.9 mm)


Legen	d: XXX Y YY WW NNN e3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it wi be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Example

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620772690

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.