

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1939t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.6 Register Definitions: Interrupt Control

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF
bit 7							bit
Legend:							
R = Readable		W = Writable		-	nented bit, read		
u = Bit is uncl	0	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all of	her Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	GIE: Global I	Interrupt Enable	e bit				
	1 = Enables a 0 = Disables	all active interru all interrupts	upts				
bit 6	1 = Enables	eral Interrupt E all active periph all peripheral ir	neral interrupts	3			
bit 5	1 = Enables f	ner0 Overflow Ir the Timer0 inte the Timer0 inte	rrupt	e bit			
bit 4	1 = Enables f	kternal Interrupt the INT externa the INT externa	al interrupt				
bit 3	1 = Enables f	upt-on-Change the interrupt-on the interrupt-or	-change				
bit 2	1 = TMR0 reg	ner0 Overflow Ir gister has over gister did not o	flowed	it			
bit 1	1 = The INT	kternal Interrupt external interru external interru	pt occurred	ır			
bit 0		upt-on-Change least one of the	e interrupt-on-o	change pins ch			

Note 1: The IOCIF Flag bit is read-only and cleared when all the Interrupt-on-Change flags in the IOCBF register have been cleared by software.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0				
OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF				
bit 7	·						bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
u = Bit is u	0	x = Bit is unk		-n/n = Value a	at POR and BOF	R/Value at all	other Resets				
'1' = Bit is :	set	'0' = Bit is cle	ared								
bit 7	OSFIF: Osci	llator Fail Interr	upt Flag								
	1 = Interrupt										
	0 = Interrupt	is not pending									
bit 6	C2IF: Comp	arator C2 Interr	upt Flag								
	1 = Interrupt										
6.4 F	•	is not pending									
bit 5	•	C1IF: Comparator C1 Interrupt Flag									
		1 = Interrupt is pending 0 = Interrupt is not pending									
bit 4	•	EEIF: EEPROM Write Completion Interrupt Flag bit									
		1 = Interrupt is pending									
	0 = Interrupt	is not pending									
bit 3	BCLIF: MSS	SP Bus Collision	Interrupt Flag) bit							
		1 = Interrupt is pending									
hit O		is not pending	nt Eloa hit								
bit 2	1 = Interrupt	Module Interru	pt Flag bit								
		is not pending									
bit 1	Unimpleme	nted: Read as	0'								
bit 0	CCP2IF: CC	P2 Interrupt Fla	ng bit								
	1 = Interrupt										
	0 = Interrupt	is not pending									
Note:	Interrupt flag bits	are set when ar	interrunt								
	condition occurs,										
	its corresponding										
	Enable bit, GIE, User software	of the INTCON should ens	•								
	appropriate interru										
	to enabling an inte										

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

11.3 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash Program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum block size that can be erased by user software.

Flash program memory may only be written or erased if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT<1:0> of Configuration Words.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the EEDATH:EEDATL register pair.

Note:	If the user wants to modify only a portion
	of a previously programmed row, then the
	contents of the entire row must be read
	and saved in RAM prior to the erase.

The number of data write latches may not be equivalent to the number of row locations. During programming, user software may need to fill the set of write latches and initiate a programming operation multiple times in order to fully reprogram an erased row. For example, a device with a row size of 32 words and eight write latches will need to load the write latches with data and initiate a programming operation four times.

The size of a program memory row and the number of program memory write latches may vary by device. See Table 11-1 for details.

11.3.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the Least and Most Significant address bits to the EEADRH:EEADRL register pair.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD control bit of the EECON1 register.
- 4. Then, set control bit RD of the EECON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATH:EEDATL register pair; therefore, it can be read as two bytes in the following instructions.

EEDATH:EEDATL register pair will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a two-cycle instruction on the next instruction after the RD bit is set.
 - 2: Flash program memory can be read regardless of the setting of the CP bit.

TABLE 11-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Erase Block (Row) Size/Boundary	Number of Write Latches/Boundary
PIC16(L)F1938 PIC16(L)F1939	32 words, EEADRL<4:0> = 00000	32 words, EEADRL<4:0> = 00000

12.9 PORTD Registers (PIC16(L)F1939 only)

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 12-14). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTD register (Register 12-14) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATD).

Note:	PORTD is available on PIC16(L)F1939
	only.

The TRISD register (Register 12-15) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.9.1 ANSELD REGISTER

The ANSELD register (Register 12-17) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELD bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.9.2 PORTD FUNCTIONS AND OUTPUT PRIORITIES

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-10.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in priority list.

Pin Name	Function Priority ⁽¹⁾
RD0	COM3 (LCD) RD0
RD1	CCP4 (CCP) RD1
RD2	P2B (CCP) RD2
RD3	SEG16 (LCD) P2C (CCP) RD3
RD4	SEG17 (LCD) P2D (CCP) RD4
RD5	SEG18 (LCD) P1B (CCP) RD5
RD6	SEG19 (LCD) P1C (CCP) RD6
RD7	SEG20 (LCD) P1D (CCP) RD7

TABLE 12-10: PORTD OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

16.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

16.1 Circuit Operation

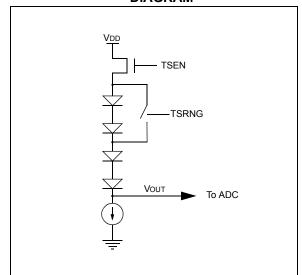
Figure 16-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 16-1 describes the output characteristics of the temperature indicator.

EQUATION 16-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 16-1: TEMPERATURE CIRCUIT DIAGRAM

16.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 16-1 shows the recommended minimum VDD vs.range setting.

TABLE 16-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

16.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 15.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

16.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
CCP1CON	P1M·	<1:0>	DC1B	<1:0>		CCP1N	1<3:0>		228
CCP2CON	P2M·	<1:0>	DC2B	<1:0>		CCP2N	1<3:0>		228
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						193*		
TMR1L	Holding Regi	ster for the Le	east Significa	nt Byte of the	16-bit TMR1	Register			193*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	134
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	197
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	198

TABLE 21-5:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1
-------------	---

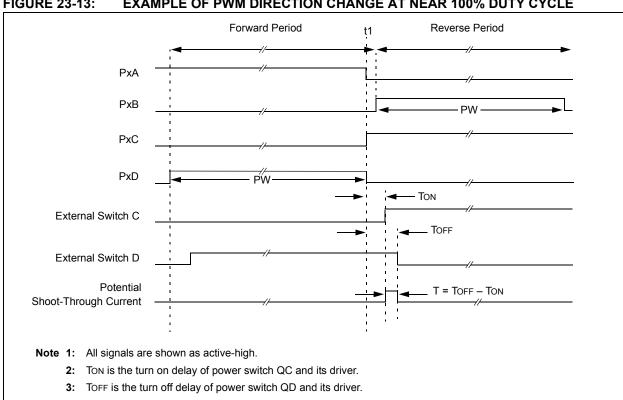
Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

23.1.6 ALTERNATE PIN LOCATIONS

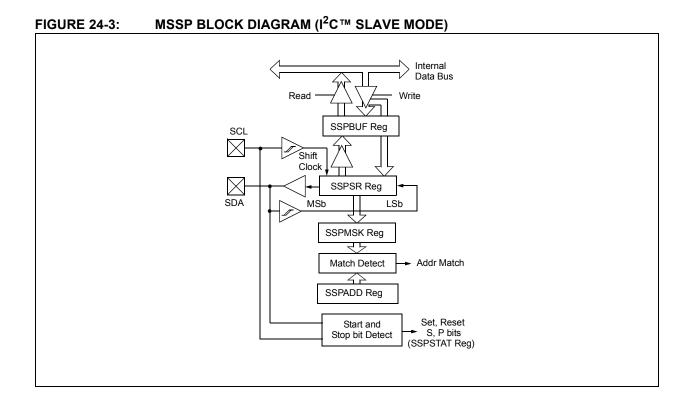
This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	123
CCPxCON	PxM<1:0> ⁽¹⁾ DCxB<1:0> CCPxM<3:0>								228
CCPRxL	Capture/Co	mpare/PWM	Register x l	Low Byte (LS	SB)				206
CCPRxH	Capture/Co	mpare/PWM	Register x I	High Byte (M	ISB)				206
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	92
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE		TMR4IE	—	93
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	95
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	95
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	197
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	198
TMR1L	Holding Reg	gister for the	Least Signif	ficant Byte of	f the 16-bit TMR	1 Register			193
TMR1H	Holding Reg	gister for the	Most Signifi	cant Byte of	the 16-bit TMR1	Register			193
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	125
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	134
TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	137
TRISE				—	(3)	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	140


TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Capture mode.

Note 1: Applies to ECCP modules only.


2: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

3: Unimplemented, read as '1'.

FIGURE 23-13: **EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE**

NOTES:

24.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON1 register is set. The BOEN bit of the SSPCON3 register modifies this operation. For more information see Register 24-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPIF, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPCON1 register, except sometimes in 10-bit mode. See Section 24.2.3 "SPI Master Mode" for more detail.

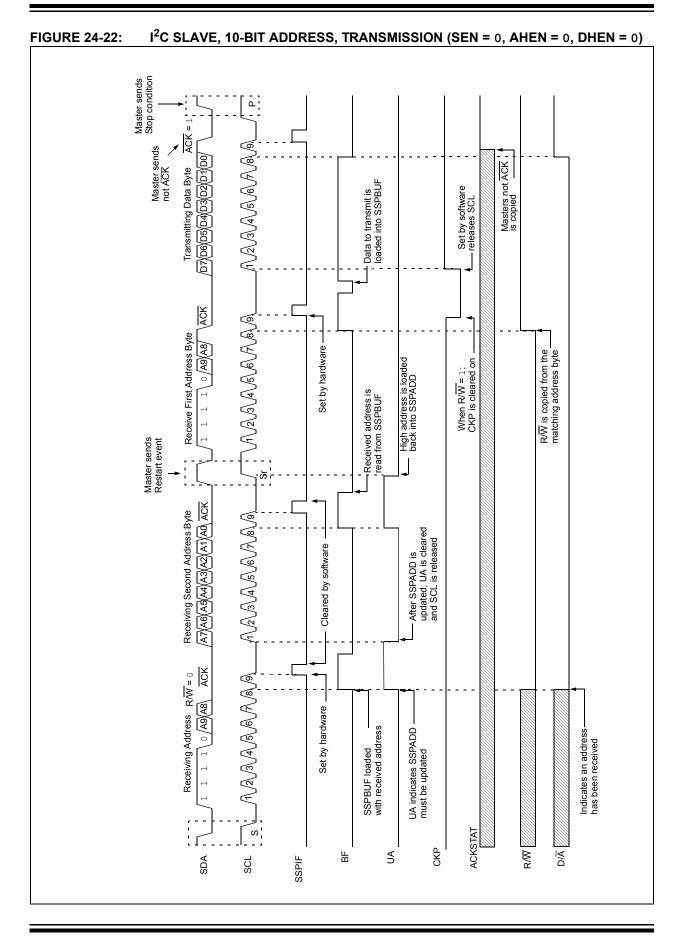
24.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C Slave in 7-bit Addressing mode. All decisions made by hardware or software and their effect on reception. Figure 24-14 and Figure 24-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSPIF bit.
- 5. Software clears the SSPIF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSPIF bit.
- 10. Software clears SSPIF.
- 11. Software reads the received byte from SSPBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the Master.
- 13. Master sends Stop condition, setting P bit of SSPSTAT, and the bus goes idle.

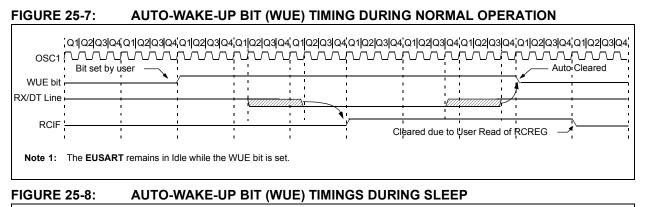
24.5.2.2 7-bit Reception with AHEN and DHEN

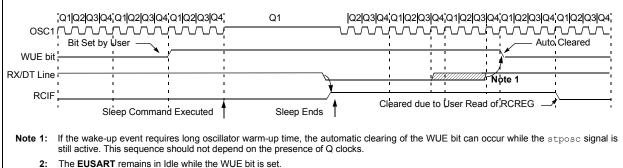

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 24-16 displays a module using both address and data holding. Figure 24-17 includes the operation with the SEN bit of the SSPCON2 register set.

- 1. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSPIF.
- Slave can look at the ACKTIM bit of the SSPCON3 register to <u>determine</u> if the SSPIF was after or before the ACK.
- 5. Slave reads the address value from SSPBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPIF.

Note: SSPIF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSPIF not set


- 11. SSPIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.



R/W-0/0 R-0/0 R/W-0/0 R/S/HS-0/0 R/S/HS-0/0 R/S/HS-0/0 R/S/HS-0/0 R/W/HS-0/0 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared HC = Cleared by hardware S = User set **GCEN:** General Call Enable bit (in I²C Slave mode only) bit 7 1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPSR 0 = General call address disabled ACKSTAT: Acknowledge Status bit (in I²C mode only) bit 6 1 = Acknowledge was not received 0 = Acknowledge was received bit 5 **ACKDT:** Acknowledge Data bit (in I²C mode only) In Receive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge 0 = Acknowledge ACKEN: Acknowledge Sequence Enable bit (in I²C Master mode only) bit 4 In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence idle **RCEN:** Receive Enable bit (in I²C Master mode only) bit 3 1 = Enables Receive mode for I^2C 0 = Receive idle bit 2 **PEN:** Stop Condition Enable bit (in I²C Master mode only) SCKMSSP Release Control: 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle **RSEN:** Repeated Start Condition Enabled bit (in I²C Master mode only) bit 1 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle bit 0 SEN: Start Condition Enable/Stretch Enable bit In Master mode: 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is disabled

REGISTER 24-3: SSPCON2: SSP CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

26.9 Register Definitions: CPS Control

REGISTER 26-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	
CPSON	CPSRM	_	_	CPSRNG<1:0>		CPSOUT	TOXCS	
bit 7	·			•			bit C	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	1 = CPS mo	S Module Enab dule is enabled dule is disablec						
bit 6	1 = Capacitiv		lule is in Vari	Mode bit able Voltage Re ed Variable Volta				
bit 5-4	Unimplemented: Read as '0'							
bit 3-2	<u>If CPSRM = 0</u> 00 = Oscillate 01 = Oscillate 10 = Oscillate	0>: Capacitive <u>o</u> (Fixed Voltage or is off or is in Low-Cut or is in Medium or is in High-Cut	<u>e Reference</u> rrent Range -Current Ran	<u>mode)</u> :				
	00 = Oscillate 01 = Oscillate 10 = Oscillate	1 (Variable Volta or is on. Noise l or is in Low-Cul or is in Medium or is in High-Cu	Detection mo rent Range. -Current Ran	ige.				
bit 1	CPSOUT: Capacitive Sensing Oscillator Status bit 1 = Oscillator is sourcing current (Current flowing out of the pin) 0 = Oscillator is sinking current (Current flowing into the pin)							
bit 0	TOXCS: Timer0 External Clock Source Select bit <u>If TMR0CS = 1:</u> The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0: 1 = Timer0 clock source is the capacitive sensing oscillator, CPSCLK 0 = Timer0 clock source is the T0CKI pin <u>If TMR0CS = 0:</u> Timer0 clock source is controlled by the core/Timer0 module and is Fosc/4							

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.

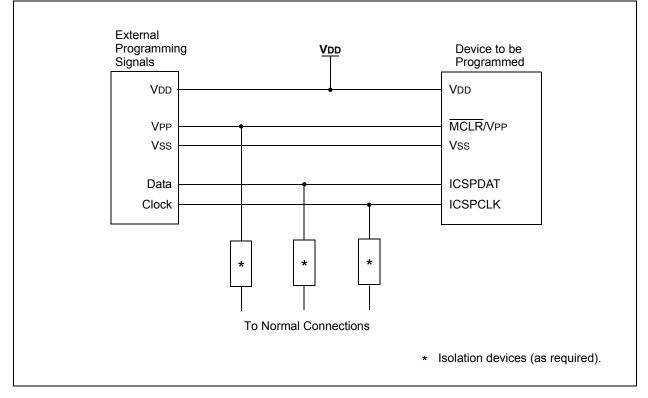


FIGURE 31-11: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY

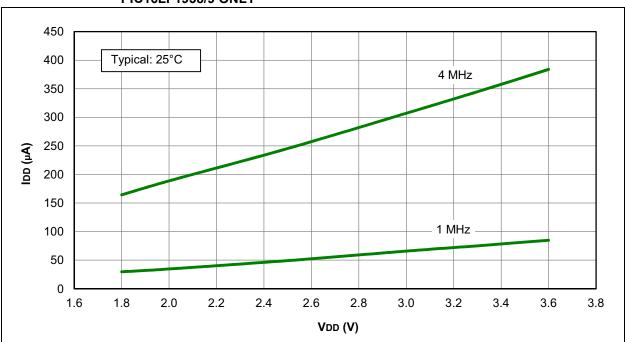
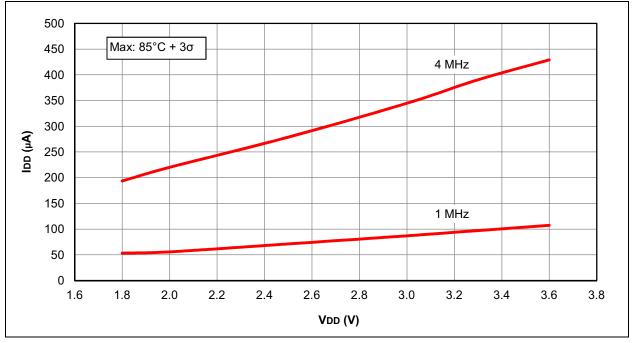
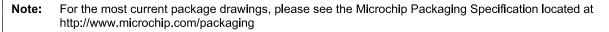
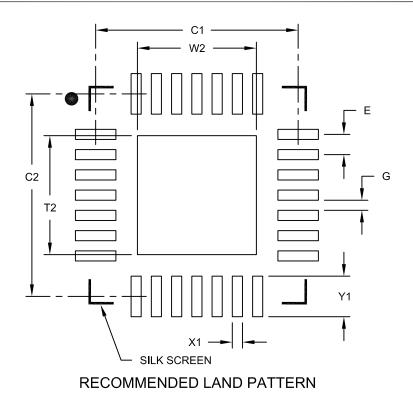
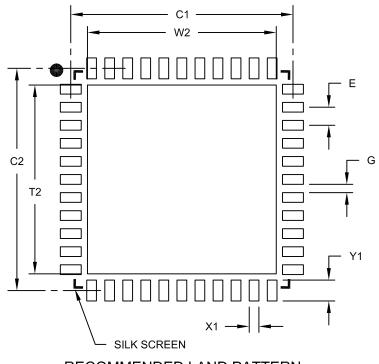





FIGURE 31-12: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Optional Center Pad Width	W2			2.35
Optional Center Pad Length	T2			2.35
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A

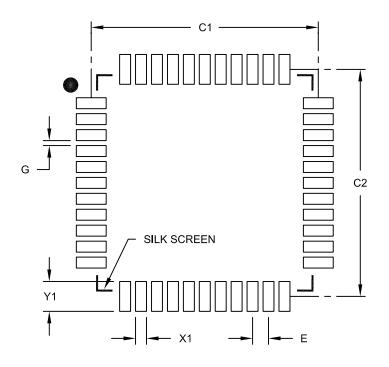
44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B