

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1938-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB4/AN11/CPS4/P1D/COM0	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN11	AN	_	A/D Channel 11 input.
	CPS4	AN	—	Capacitive sensing input 4.
	P1D	_	CMOS	PWM output.
	COM0	_	AN	LCD Analog output.
RB5/AN13/CPS5/P2B/CCP3 ⁽¹⁾ / P3A ⁽¹⁾ /T1G ⁽¹⁾ /COM1	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN13	AN	_	A/D Channel 13 input.
	CPS5	AN	—	Capacitive sensing input 5.
	P2B	_	CMOS	PWM output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	P3A	_	CMOS	PWM output.
	T1G	ST	—	Timer1 Gate input.
	COM1	_	AN	LCD Analog output.
RB6/ICSPCLK/ICDCLK/SEG14	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	ICSPCLK	ST	—	Serial Programming Clock.
	ICDCLK	ST	—	In-Circuit Debug Clock.
	SEG14	_	AN	LCD Analog output.
RB7/ICSPDAT/ICDDAT/SEG13	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	CMOS	In-Circuit Data I/O.
	SEG13	_	AN	LCD Analog output.
RC0/T1OSO/T1CKI/P2B ⁽¹⁾	RC0	ST	CMOS	General purpose I/O.
	T10S0	XTAL	XTAL	Timer1 oscillator connection.
	T1CKI	ST	—	Timer1 clock input.
	P2B	_	CMOS	PWM output.
RC1/T10SI/CCP2 ⁽¹⁾ /P2A ⁽¹⁾	RC1	ST	CMOS	General purpose I/O.
	T10SI	XTAL	XTAL	Timer1 oscillator connection.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
	P2A	_	CMOS	PWM output.
RC2/CCP1/P1A/SEG3	RC2	ST	CMOS	General purpose I/O.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
	P1A	_	CMOS	PWM output.
	SEG3	_	AN	LCD Analog output.
RC3/SCK/SCL/SEG6	RC3	ST	CMOS	General purpose I/O.
	SCK	ST	CMOS	SPI clock.
	SCL	I ² C	OD	I ² C [™] clock.
	SEG6	_	AN	LCD Analog output.

TABLE 1-2: PIC16(L)F1938/9 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels XTAL = Crystal

 I^2C^{TM} = Schmitt Trigger input with I^2C levels HV = High Voltage

Note 1: Pin function is selectable via the APFCON register.

- 2: PIC16F1938/9 devices only.
- 3: PIC16(L)F1938 devices only.
- 4: PORTD is available on PIC16(L)F1939 devices only.
- 5: RE<2:0> are available on PIC16(L)F1939 devices only.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

FIGURE 5-8: TWO-SPEED START-UP

10.6 Register Definitions: Watchdog Control

REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
	—			WDTPS<4:0>			SWDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-m/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set '0' = Bit is cleared							
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-1	WDTPS<4:0>	: Watchdog Ti	mer Period Se	elect bits			
	Bit Value = P	Prescale Rate					
	00000 = 1:3	2 (Interval 1 m	s typ)				
	00001 = 1:6	4 (Interval 2 m	s typ)				
	00010 = 1:1	28 (Interval 4 r	ns typ) ns typ)				
	00011 = 1.2 00100 = 1.5	12 (Interval 16	ms typ)				
	00101 = 1:1	024 (Interval 3	2 ms typ)				
	00110 = 1:2	048 (Interval 6	4 ms typ)				
	00111 = 1:4	096 (Interval 1	28 ms typ)				
	01000 = 1:8	192 (Interval 2	56 ms typ)				
	01001 = 1.1	2768 (Interval	51∠ms typ) 1s typ)				
	01010 = 1:6	5536 (Interval	2s tvp) (Rese	et value)			
	01100 = 1:1	31072 (2 ¹⁷) (Ir	iterval 4s typ)	,			
	01101 = 1:2	62144 (2 ¹⁸) (Ir	iterval 8s typ)				
	01110 = 1:5	24288 (2 ¹⁹) (Ir	iterval 16s typ)			
	01111 = 1:1	$048576(2^{20})($	Interval 32s ty	(p)			
	10000 = 1.2 10001 = 1.4	.097152(2)(.194304(2 ²²)(Interval 128s	γρ) tvn)			
	10010 = 1.4	388608 (2 ²³) (Interval 256s	typ)			
				517			
	10011 = Re	served. Result	s in minimum	interval (1:32)			
	•						
	•						
	11111 = Re:	served. Result	s in minimum	interval (1:32)			
bit 0	SWDTEN: So	oftware Enable/	Disable for W	atchdog Timer b	oit		
	<u>If WDTE<1:0></u>	> = <u>00</u> :					
	This bit is igno	ored.					
	If WDTE<1:0>	<u>> = 01</u> :					
		urned on					
		> = 1x					
	This bit is igno	ored.					
	5						

12.10 Register Definitions: PORTD Control

REGISTER 12-14: PORTD: PORTD REGISTER⁽¹⁾

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RD<7:0>**: PORTD General Purpose I/O Pin bits 1 = Port pin is > VIH 0 = Port pin is < VIL

Note 1: PORTD is not implemented on PIC16(L)F1938 devices, read as '0'.

REGISTER 12-15: TRISD: PORTD TRI-STATE REGISTER⁽¹⁾

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISD<7:0>:** PORTD Tri-State Control bits

- 1 = PORTD pin configured as an input (tri-stated)
- 0 = PORTD pin configured as an output
- Note 1: TRISD is not implemented on PIC16(L)F1938 devices, read as '0'.
 - 2: PORTD implemented on PIC16(L)F1939 devices only.

16.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

16.1 Circuit Operation

Figure 16-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 16-1 describes the output characteristics of the temperature indicator.

EQUATION 16-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 16-1: TEMPERATURE CIRCUIT DIAGRAM

16.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 16-1 shows the recommended minimum VDD vs.range setting.

TABLE 16-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0				
3.6V	1.8V				

16.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 15.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.

16.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM1CON0	C10N	C1OUT	C10E	C1POL		C1SP	C1HYS	C1SYNC	175
CM2CON0	C2ON	C2OUT	C2OE	C2POL		C2SP	C2HYS	C2SYNC	175
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	_	_	C1NCH<1:0>		176
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	_	—	C2NCI	C2NCH<1:0>	
CMOUT	_	—	—	—		—	MC2OUT	MC10UT	176
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	SRNG CDAFVR<1:0> AD				148
DACCON0	DACEN	DACLPS	DACOE	—	DACPSS<1:0>		_	DACNSS	168
DACCON1	_	_	_			DACR<4:0>			168
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	92
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	-	CCP2IF	95
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	125
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	126
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

bit 0

21 11 Register Definitions: Timer1 Control

REGISTER	21-1: T1CO	N: TIMER1 C	ONTROL RI	EGISTER				
R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u	
TMR1	CS<1:0>	T1CKF	PS<1:0>	T1OSCEN	T1SYNC	_	TMR10N	
bit 7							bit	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unchanged x = Bit is unknow			nown	-n/n = Value a	at POR and BC	R/Value at al	l other Resets	
'1' = Bit is set '0' = Bit is cleared			ared					
bit 7-6	TMR1CS<1: 11 = Timer1 10 = Timer1 <u>If T1OS</u> Externa <u>If T1OS</u> Crystal 01 = Timer1 00 = Timer1	TMR1CS<1:0>: Timer1 Clock Source Select bits 11 = Timer1 clock source is Capacitive Sensing Oscillator (CPSCLK) 10 = Timer1 clock source is pin or oscillator: If T1OSCEN = 0: External clock from T1CKI pin (on the rising edge) If T1OSCEN = 1: Crystal oscillator on T1OSI/T1OSO pins 01 = Timer1 clock source is system clock (Fosc) 00 = Timer1 clock source is instruction clock (Fosc)						
bit 5-4	T1CKPS<1:(11 = 1:8 Pre: 10 = 1:4 Pre: 01 = 1:2 Pre:	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value						

bit 1	Unimplemented: Read as '0'
bit 0	TMR1ON: Timer1 On bit
	1 - Enables Timer1

00 = 1:1 Prescale value

bit 3

bit 2

T1OSCEN: LP Oscillator Enable Control bit

1 = Dedicated Timer1 oscillator circuit enabled 0 = Dedicated Timer1 oscillator circuit disabled

T1SYNC: Timer1 Synchronization Control bit 1 = Do not synchronize asynchronous clock input

0 = Synchronize asynchronous clock input with system clock (Fosc)

1 = Enables Timer1 0 = Stops Timer1

Clears Timer1 gate flip-flop

23.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 23-4.

EQUATION 23-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 23-5:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 23-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 23-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

24.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- · Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

24.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See Section 24.7 "Baud Rate Generator" for more detail.

25.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

25.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

25.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is

set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

25.5.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

25.5.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

REGISTER 27-4: LCDCST: LCD CONTRAST CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	—	—	—		LCDCST<2:0>	
bit 7					•		bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		

C = Only clearable bit

bit 7-3 Unimplemented: Read as '0'

'1' = Bit is set

bit 2-0 LCDCST<2:0>: LCD Contrast Control bits Selects the resistance of the LCD contrast control resistor ladder

'0' = Bit is cleared

Bit Value = Resistor ladder

000 = Minimum Resistance (maximum contrast). Resistor ladder is shorted.

001 = Resistor ladder is at 1/7th of maximum resistance

010 = Resistor ladder is at 2/7th of maximum resistance

011 = Resistor ladder is at 3/7th of maximum resistance

100 = Resistor ladder is at 4/7th of maximum resistance

101 = Resistor ladder is at 5/7th of maximum resistance

110 = Resistor ladder is at 6/7th of maximum resistance

111 = Resistor ladder is at maximum resistance (minimum contrast).

FIGURE 27-18: TYPE-B WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE

28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F193X devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.4 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP™ header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W	COMF	Complement f
Syntax:	[label] CALLW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \le f \le 127$ $d \in [0, 1]$
Operation:	$\begin{array}{l} (PC) +1 \rightarrow TOS, \\ (W) \rightarrow PC < 7:0>, \end{array}$	Operation:	$(\bar{f}) \rightarrow (destination)$
(PC	$(PCLATH<6:0>) \rightarrow PC<14:8>$	Status Affected:	Z
Status Affected:	None	Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a two-cycle instruction.		stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{(f)} \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W	/ from literal		
Syntax:	[<i>label</i>] SL	JBLW k		
Operands:	$0 \leq k \leq 255$			
Operation:	k - (W) → (W	()		
Status Affected:	C, DC, Z	C, DC, Z		
Description:	The W register is subtracted (2's com- plement method) from the 8-bit literal 'k'. The result is placed in the W regis- ter.			
	C = 0	W > k		
	C = 1	$W \leq k$		
	DC = 0	W<3:0> > k<3:0>		
	DC = 1	W<3:0> ≤ k<3:0>		

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT,} \\ 0 \rightarrow \underline{\text{WDT}} \text{ prescaler,} \\ 1 \rightarrow \underline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W	from f	
Syntax:	[label] SL	JBWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) - (W) \rightarrow (destination)		
Status Affected:	C, DC, Z		
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.		
	C = 0	W > f	
	C = 1	$W \leq f$	
	DC = 0	W<3:0> > f<3:0>	

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

DC = 1

 $W<3:0> \le f<3:0>$

CCP1CON Register	37, 38
CCPR1H Register	37, 38
CCPR1L Register	37. 38
CCPTMRS0 Register	229
CCPTMRS1 Register	230
CCPvAS Pagistor	
CCPXCON (ECCPy) Desister	
Clock Accuracy with Asynchronous Operation	
Clock Sources	
External Modes	61
EC	61
HS	61
IP	61
0st	62
031	
KU	
X1	61
Internal Modes	64
HFINTOSC	64
Internal Oscillator Clock Switch Timing	66
LFINTOSC	65
MEINTOSC	64
Clock Switching	68
CMOLIT Register	176
CMxCON1 Register	
Code Examples	
A/D Conversion	
Changing Between Capture Prescalers	
Initializing PORTA	
Initializing PORTE	140
Write Verify	117
Writing to Elash Program Momony	115
Comparator	477 470
Associated Registers	177, 178
Operation	
Comparator Module	
Cx Output State Versus Input Conditions	
Comparator Specifications	
Comparators	
C20UT as T1 Gate	191
Compare Module See Enhanced Capture/	
	E A
CONFIG2 Register	
Core Registers	
CPSCON0 Register	
CPSCON1 Register	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	483

D

DACCONU (Digital-to-Analog Converter Control U)	
Register	168
DACCON1 (Digital-to-Analog Converter Control 1)	
Register	168
Data EEPROM Memory	107
Associated Registers	120
Code Protection	108
Reading	108
Writing	108
Data Memory	
DC and AC Characteristics	409
Graphs and Tables	409
DC Characteristics	
Extended and Industrial (PIC16(L)F1938/9)	387

Industrial and Extended (PIC16(L)F1938/9)	380
Development Support	445
Device Configuration	53
Code Protection	57
Configuration Word	53
User ID	57, 58
Device Overview	11, 103
Digital-to-Analog Converter (DAC)	165
Effects of a Reset	166
Specifications	400

Е

ECCP/CCP. See Enhanced Capture/Compare/PWM	
EEADR Registers	107
EEADRH Registers	107
EEADRL Register	118
EEADRL Registers	107
EECON1 Register 107,	119
EECON2 Register 107,	120
EEDATH Register	118
EEDATL Register	118
EEPROM Data Memory	
Avoiding Spurious Write	108
Write Verify	117
Effects of Reset	
PWM mode	213
Electrical Specifications (PIC16(L)F1938/9)	377
Enhanced Capture/Compare/PWM (ECCP)	205
Enhanced PWM Mode	214
Auto-Restart	223
Auto-shutdown	222
Direction Change in Full-Bridge Output Mode	220
Full-Bridge Application	218
Full-Bridge Mode	218
Half-Bridge Application	217
Half-Bridge Application Examples	224
Half-Bridge Mode	217
Output Relationships (Active-High and	045
ACTIVE-LOW)	215
Output Relationships Diagram	216
Programmable Dead Band Delay	224
Shoot-through Current	224
Start-up Considerations	220
Specifications	397
Enhanced Mid-Fange CPU	19
Enhanced Universal Synchronous Asynchronous	207
Erroto	201
	9 297
Associated Peristers	201
Baud Rate Concrator	300
Asynchronous Mode	280
12-bit Break Transmit and Receive	307
Associated Registers	007
Receive	295
Transmit	200
Auto-Wake-up on Break	305
Baud Rate Generator (BRG)	299
Clock Accuracy	296
Receiver	292
Setting up 9-bit Mode with Address Detect	294
Transmitter	289
Baud Rate Generator (BRG)	
Auto Baud Rate Detect	304
Baud Rate Error, Calculating	299
Baud Rates, Asynchronous Modes	301
· •	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support