

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1938-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 5-3:

QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- ote 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 5-4: CERAMIC RESONATOR OPERATION

(XT OR HS MODE)

3: An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

5.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see Section 5.4 "Two-Speed Clock Start-up Mode").

5.2.1.4 4X PLL

The oscillator module contains a 4X PLL that can be used with both external and internal clock sources to provide a system clock source. The input frequency for the 4X PLL must fall within specifications. See the PLL Clock Timing Specifications in the applicable Electrical Specifications Chapter.

The 4X PLL may be enabled for use by one of two methods:

- 1. Program the PLLEN bit in Configuration Words to a '1'.
- Write the SPLLEN bit in the OSCCON register to a '1'. If the PLLEN bit in Configuration Words is programmed to a '1', then the value of SPLLEN is ignored.

5.6 Register Definitions: Oscillator Control

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0	
SPLLEN		IRCF	<3:0>			SCS	<1:0>	
bit 7	÷						bit 0	
Legend:								
R = Readal	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is s	set	'0' = Bit is cle	ared					
bit 7	SPLLEN: So <u>If PLLEN in 0</u> SPLLEN bit <u>If PLLEN in 0</u> 1 = 4x PLL 0 = 4x PLL	oftware PLL Ena <u>Configuration W</u> is ignored. 4x P <u>Configuration W</u> Is enabled is disabled	able bit ′ <u>ords = 1:</u> LL is always e ′ <u>ords = 0:</u>	enabled (subjec	t to oscillator re	quirements)		
bit 6-3	<pre></pre>							
bit 2 bit 1-0	Unimpleme SCS<1:0>: 3 1x = Interna 01 = Timer1 00 = Clock c	nted: Read as ' System Clock S I oscillator block oscillator letermined by F	0' elect bits S OSC<2:0> in	Configuration V	Vords.			
Note 1:	Duplicate frequer	ncy derived from	HFINTOSC.					

6.12 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 6-2.

6.13 Register Definitions: Power Control (PCON)

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	—	RMCLR	RI	POR	BOR
bit 7						•	bit 0

Legend:				
HC = Bit is cleared by hardwa	are	HS = Bit is set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets		
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition		

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or set to '0' by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or set to '0' by firmware
bit 5-4	Unimplemented: Read as '0'
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A $\overline{\text{MCLR}}$ Reset has not occurred or set to '1' by firmware
	0 = A MCLR Reset has occurred (set to '0' in hardware when a MCLR Reset occurs)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (set to '0' in hardware upon executing a RESET instruction)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
	occurs)

FIGURE 7	'-2: II	NTERRUPT	LATENCY					
OSC1								
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT			Interru during	pt Sampled Q1				
Interrupt								
GIE								
PC	PC-1	PC	PC	+1	0004h	0005h		
Execute	1 Cycle Instr	uction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
			/					
Interrupt		I						
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h		
Execute-	2 Cycle Instr	uction at PC	Inst(PC)	NOP	NOP	Inst(0004h)	L	
		/		1				
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h	
Execute	3 Cycle Instr	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC	+2	0004h	0005h
Execute	3 Cycle Instr	ruction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)

12.4 Register Definitions: PORTA Control

REGISTER 12-2: PORTA: PORTA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is > VIH 0 = Port pin is < VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

TABLE 15-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock Period (TAD)		Device Frequency (Fosc) Device Frequency (Fosc)						
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz	
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs	
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾	
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾	
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾	
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾	
FRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 µs for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

TCY - TAD	TAD1	TAD2	TAD3	TAD4	TAD5	Tad6	TAD7	Tad8	TAD9	TAD10	TAD11	l I	
≜ ↑ 1		b9	b8	b7	b6	b5	b4	b3	b2	b1	b0		
	Conver	sion sta	arts										
Holding	g capa	citor is	discon	nected	from a	nalog i	nput (t	ypically	/ 100 n	s)			
 Set CO	hit												
Sel GO	DIL				~	a tha f	↓ allouin						
					A	DRES	H:ADR	g cycle ESL is	loadeo	d. GO b	oit is cle	eared,	
					A	DIF bit	is set,	holdin	g capa	citor is	connec	cted to analog i	nput.

18.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 18-1) contain Control and Status bits for the following:

- Enable
- · Output selection
- Output polarity
- Speed/Power selection
- · Hysteresis enable
- Output synchronization

The CMxCON1 registers (see Register 18-2) contain Control bits for the following:

- Interrupt enable
- Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

18.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

18.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

18.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 18-1 shows the output state versus input conditions, including polarity control.

TABLE 18-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

18.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

22.0 TIMER2/4/6 MODULES

There are up to three identical Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).

Note:	The 'x' variable used in this section is
	used to designate Timer2, Timer4, or
	Timer6. For example, TxCON references
	T2CON, T4CON, or T6CON. PRx refer-
	ences PR2, PR4, or PR6.

The Timer2/4/6 modules incorporate the following features:

- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSP module (Timer2 only)

See Figure 22-1 for a block diagram of Timer2/4/6.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PxRSEN				PxDC<6:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	PxRSEN: P	WM Restart Ena	able bit						
1 = Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away the PWM restarts automatically							ent goes away;		
0 = Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM									
bit 6-0	bit 6-0 PxDC<6:0>: PWM Delay Count bits								
PxDCx = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signation should transition active and the actual time it transitions active						a PWM signal			

REGISTER 23-5: PWMxCON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

24.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 24-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 24-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 24-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on

its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

25.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in Synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 25-1 and Figure 25-2.

FIGURE 25-1: EUSART TRANSMIT BLOCK DIAGRAM

25.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 25-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

25.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note 1: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

25.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 25.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no additional					
	characters will be received until the overrun					
	condition is cleared. See Section 25.1.2.5					
	"Receive Overrun Error" for more					
	information on overrun errors.					

25.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- · RCIE interrupt enable bit of the PIE1 register
- PEIE peripheral interrupt enable bit of the INTCON register
- GIE global interrupt enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

FIGURE 27-18: TYPE-B WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE

RETFIE	Return from Interrupt						
Syntax:	[label] RETFIE						
Operands:	None						
Operation:	$TOS \rightarrow PC,$ 1 $\rightarrow GIE$						
Status Affected:	None						
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction						
Words:	1						
Cycles:	2						
Example:	RETFIE						
	After Interrupt PC = TOS GIE = 1						

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \to PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.					

RETLW	Return with literal in W	RLF	Rotate Left f through Carry				
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d				
Operands:	0 ≤ k ≤ 255	Operands:	$0 \leq f \leq 127$				
Operation:	$k \rightarrow (W);$		d ∈ [0,1]				
	$TOS \rightarrow PC$	Operation:	See description below				
Status Affected:	None	Status Affected:	С				
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1		C Register f				
Cycles:	2	\\/ordo;	1				
Example:	CALL TABLE;W contains table	vvorus.					
	;offset value	Cycles:	1				
	 ;W now has table value 	Example:	RLF REG1,0				
TABLE	•		Before Instruction				
	ADDWF PC $:W = offset$		REG1 = 1110 0110				
	RETLW k1 ;Begin table		C = 0				
	RETLW k2 ;		After Instruction				
	•		REGI = III0 UII0				
	•		W = 1100 1100				
	•		6 – 1				
	RETLW kn ; End of table						
	Before Instruction W = 0x07 After Instruction W = value of k8						

30.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F1938/39	0.3V to +6.5V
Voltage on VCAP pin with respect to Vss, PIC16F1938/39	0.3V to +4.0V
Voltage on VDD with respect to Vss, PIC16LF1938/39	0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial	255 mA
Maximum current out of Vss pin, -40°C \leq TA \leq +125°C for extended	105 mA
Maximum current into VDD pin, -40°C \leq TA \leq +85°C for industrial	170 mA
Maximum current into VDD pin, -40°C \leq TA \leq +125°C for extended	70 mA
Clamp current, Iк (VPIN < 0 or VPIN > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD IOL).) – Vон) х Iон} + ∑(Vol х
+ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause pe	ermanent damage to the

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

30.2 DC Characteristics: PIC16F/LF1938/39-I/E (Industrial, Extended)

PIC16LF1938/9		Standa Operati	rd Operat	i ng Cond ature	litions (ur -40°C ≤ 1 -40°C ≤ 1	lless oth ¯A ≤ +85°(¯A ≤ +125	erwise stated) C for industrial °C for extended		
PIC16F1938/9		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param	Device	Min	Tynt	Max	Unito	Conditions			
No.	Characteristics		1961	mux.	onno	VDD	Note		
	Supply Current (IDD) ^{(1,}	2)							
D009	LDO Regulator		350	—	μA	_	HS, EC OR INTOSC/INTOSCIO (8-16 MHz) Clock modes with all VCAP pins disabled		
		_	50		μA		All VCAP pins disabled		
		_	30		μΑ	_	VCAP enabled on RA0, RA5 or RA6		
		—	5	—	μA	—	LP Clock mode and Sleep (requires FVR and BOR to be disabled)		
D010		_	5.2	16	μA	1.8	Fosc = 32 kHz		
		—	7.6	20	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C		
D010			26	45	μA	1.8	Fosc = 32 kHz		
			32	50	μA	3.0	LP Oscillator mode (Note 4, 5), $-40^{\circ}C < TA < +85^{\circ}C$		
		—	35	55	μA	5.0			
D010A			5.2	16	μA	1.8	Fosc = 32 kHz		
		—	7.6	20	μA	3.0	LP Oscillator mode (Note 4) -40°C \leq TA \leq +125°C		
D010A			26	55	μA	1.8	Fosc = 32 kHz		
			32	70	μA	3.0	LP Oscillator mode (Note 4, 5) $-40^{\circ}C < T_{A} < +125^{\circ}C$		
		—	35	75	μA	5.0			
D011		_	54	130	μA	1.8	Fosc = 1 MHz		
		—	110	170	μA	3.0	X1 Oscillator mode		
D011			80	150	μA	1.8	Fosc = 1 MHz		
			140	210	μA	3.0	XT Oscillator mode (Note 5)		
		—	190	280	μA	5.0			
D012			200	300	μΑ	1.8	Fosc = 4 MHz		
			350	480	μΑ	3.0			
D012			220	320	μA	1.8	Fosc = 4 MHz		
			390	520	μA	3.0			
		—	470	630	μA	5.0			

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

- 4: FVR and BOR are disabled.
- 5: 0.1 μ F capacitor on VCAP (RA0).

6: 8 MHz crystal oscillator with 4x PLL enabled.

FIGURE 30-19: SPI SLAVE MODE TIMING (CKE = 1)

NOTES:

Package Marking Information (Continued)

44-Lead QFN (8x8x0.9 mm)

Le	egend:	XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
N	ote: I k	n the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available of or customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Example