

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1938-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 44-Pin QFN 8x8

Pin Diagram – 44-Pin TQFP

EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

* This code bloc * memory at the PROG_AD * data will be * PROG_DA	k will read 1 word of pr memory address: DR_HI: PROG_ADDR_ returned in the variable FA_HI, PROG_DATA_I	ogram LO es; .O	
BANKSEL MOVLW MOVWF MOVLW MOVWL	EEADRL PROG_ADDR_LO EEADRL PROG_ADDR_HI EEADRH	; Select Bank for EEPROM registers ; ; Store LSB of address ; ; Store MSB of address	
BCF BSF BSF NOP NOP BSF	EECON1,CFGS EECON1,EEPGD INTCON,GIE EECON1,RD	; Do not select Configuration Space ; Select Program Memory ; Disable interrupts ; Initiate read ; Executed (Figure 11-1) ; Ignored (Figure 11-1) ; Restore interrupts	
MOVF MOVWF MOVF MOVWF	EEDATL,W PROG_DATA_LO EEDATH,W PROG_DATA_HI	; Get LSB of word ; Store in user location ; Get MSB of word ; Store in user location	

PIC16(L)F1938/9

11.7 Register Definitions: EEPROM and Flash Control

REGISTER 11-1: EEDATL: EEPROM DATA LOW-BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
	EEDAT<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit L			U = Unimplem	ented bit, read as	s 'O'					
u = Bit is unchan	ged	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets			Resets			
'1' = Bit is set		'0' = Bit is cleare	ed							

bit 7-0

7-0 EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH-BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		EEDAT<13:8>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

hit 7-6	Unimplemented: Read as '0
DIL 7-0	Unimplemented. Read as 0

bit 5-0 EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS LOW-BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
EEADR<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH-BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_				EEADR<14:8	>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 12-1. For this device family, the following functions can be moved between different pins.

- SS (Slave Select)
- P2B output
- CCP2/P2A output
- CCP3/P3A output
- Timer1 Gate
- SR Latch SRNQ output
- Comparator C2 output

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- · ADC positive reference
- Comparator positive input
- Digital-to-Analog Converter (DAC)
- · Capacitive Sensing (CPS) module
- · LCD bias generator

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators, DAC and CPS is routed through two independent programmable gain amplifiers. Each amplifier can be configured to amplify the reference voltage by 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0** "**Analog-to-Digital Converter** (**ADC**) **Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC, CPS and Comparator module. Reference Section 17.0 "Digital-to-Analog Converter (DAC) Module", Section 18.0 "Comparator Module" and Section 26.0 "Capacitive Sensing (CPS) Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See in the applicable Electrical Specifications Chapter for the minimum delay requirement.

15.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 15-1: ADC BLOCK DIAGRAM

Note 1: When ADON = 0, all multiplexer inputs are disconnected.

2: Not available on PIC16(L)F1938.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin
- Capacitive Sensing module (CPS)

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

$\frac{IF DACEN = 1}{VOUT}$ $VOUT = \left((VSOURCE - VSOURCE) \times \frac{DACR[4:0]}{2^5} + VSOURCE \right)$ $\frac{IF DACEN = 0 \& DACLPS = 1 \& DACR[4:0] = 11111}{VOUT}$ VOUT = VSOURCE + $\frac{IF DACEN = 0 \& DACLPS = 0 \& DACR[4:0] = 00000}{VOUT}$ VOUT = VSOURCE - VSOURCE + VDD, VREF, or FVR BUFFER 2

VSOURCE = VSS

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Section 30.0 "Electrical Specifications".

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

The DAC output voltage is determined by the following equations:

17.3 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 17-2 shows an example buffering technique.

17.7 Register Definitions: DAC Control REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0			
DACEN	DACLPS	DACOE	_	DACP	SS<1:0>	—	DACNSS			
bit 7							bit 0			
Legend:										
R = Readable b	it	W = Writable bi	t	U = Unimpleme	ented bit, read as	ʻ0'				
u = Bit is uncha	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other	Resets			
'1' = Bit is set		'0' = Bit is clear	ed							
bit 7	DACEN: DAC	Enable bit								
	1 = DAC is en	1 = DAC is enabled								
	0 = DAC is dis	sabled								
bit 6	DACLPS: DAC	Low-Power Volt	age State Selec	ct bit						
	1 = DAC Posit	1 = DAC Positive reference source selected								
bit E	DAC Nega									
DIL 5	1 = DAC volta	de level is also a	n output on the	DACOUT pin						
	0 = DAC volta	oltage level is disconnected from the DACOUT pin								
bit 4	Unimplemente	ed: Read as '0'								
bit 3-2	DACPSS<1:0>	: DAC Positive S	ource Select bi	ts						
	11 = Reserve	11 = Reserved, do not use								
	10 = FVR Buf	ffer2 output								
	01 = VREF + pi 00 = VDD	in								
bit 1		d. Bead as '0'								
		Nogotivo Source	o Soloot hito							
DILU	$1 = V_{REF}$	- Negative Source	e Select Dits							
	0 = Vss									

REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVF	۲<1:0>	148
DACCON0	DACEN	DACLPS	DACOE	—	DACPSS<1:0>		_	DACNSS	168
DACCON1	_	-				DACR<4:0>			168

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz

TABLE 19-1: SRCLK FREQUENCY TABLE

bit 0

Register Definitions: Timer0 Control 20.2

REGISTER 2	0-1: OPTIO	N_REG: OP	TION REGIS	STER			
R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7	·	·					bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown				-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set '0' = Bit is cleared			ared				
bit 7	WPUEN: Wea 1 = All weak p 0 = Weak pull	ak Pull-up Enal pull-ups are dis l-ups are enabl	ole bit abled (except ed by individu	t MCLR, if it is a ual WPUx latch	enabled) values		
bit 6	INTEDG: Inte 1 = Interrupt o 0 = Interrupt o	errupt Edge Sel on rising edge o on falling edge	ect bit of INT pin of INT pin				
bit 5	TMR0CS: Tin 1 = Transition 0 = Internal in	ner0 Clock Sou on T0CKI pin istruction cycle	rce Select bit clock (Fosc/	4)			
bit 4	TMR0SE: Tim	ner0 Source Ec	lge Select bit				
	1 = Incremen	t on high-to-low	r transition on	1 T0CKI pin			

F

1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is not assigned to the Timer0 module
0 = Prescaler is assigned to the Timer0 module

-

Bit Value	Timer0 Rate
000	1:2
001	1:4
010	1:8
011	1:16
100	1:32
101	1:64
110	1 : 128
111	1 : 256

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CPSCON0	CPSON	CPSRM	—	—	CPSRN	IG<1:0>	CPSOUT	TOXCS	321
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		187
TMR0	Timer0 Mo	dule Regist	er						185*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	125

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

PIC16(L)F1938/9

CCP1CON Register	37, 38
CCPR1H Register	37, 38
CCPR1L Register	37. 38
CCPTMRS0 Register	229
CCPTMRS1 Register	230
CCPvAS Pagistor	231
CCPXCON (ECCPy) Desister	
Clock Accuracy with Asynchronous Operation	
Clock Sources	
External Modes	61
EC	61
HS	61
IP	61
0st	62
031	
KU	
X1	61
Internal Modes	64
HFINTOSC	64
Internal Oscillator Clock Switch Timing	66
LFINTOSC	65
MEINTOSC	64
Clock Switching	68
CMOLIT Register	176
CMxCON1 Register	
Code Examples	
A/D Conversion	
Changing Between Capture Prescalers	
Initializing PORTA	
Initializing PORTE	140
Write Verify	117
Writing to Elash Program Momony	115
Comparator	477 470
Associated Registers	177, 178
Operation	
Comparator Module	
Cx Output State Versus Input Conditions	
Comparator Specifications	
Comparators	
C20UT as T1 Gate	191
Compare Module See Enhanced Capture/	
	E A
CONFIG2 Register	
Core Registers	32
CPSCON0 Register	
CPSCON1 Register	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	483

D

DACCONU (Digital-to-Analog Converter Control U)	
Register	168
DACCON1 (Digital-to-Analog Converter Control 1)	
Register	168
Data EEPROM Memory	107
Associated Registers	120
Code Protection	108
Reading	108
Writing	108
Data Memory	
DC and AC Characteristics	409
Graphs and Tables	409
DC Characteristics	
Extended and Industrial (PIC16(L)F1938/9)	387

Industrial and Extended (PIC16(L)F1938/9)	380
Development Support	445
Device Configuration	53
Code Protection	57
Configuration Word	53
User ID	57, 58
Device Overview	11, 103
Digital-to-Analog Converter (DAC)	165
Effects of a Reset	166
Specifications	400

Е

ECCP/CCP. See Enhanced Capture/Compare/PWM	
EEADR Registers	107
EEADRH Registers	107
EEADRL Register	118
EEADRL Registers	107
EECON1 Register 107,	119
EECON2 Register 107,	120
EEDATH Register	118
EEDATL Register	118
EEPROM Data Memory	
Avoiding Spurious Write	108
Write Verify	117
Effects of Reset	
PWM mode	213
Electrical Specifications (PIC16(L)F1938/9)	377
Enhanced Capture/Compare/PWM (ECCP)	205
Enhanced PWM Mode	214
Auto-Restart	223
Auto-shutdown	222
Direction Change in Full-Bridge Output Mode	220
Full-Bridge Application	218
Full-Bridge Mode	218
Half-Bridge Application	217
Half-Bridge Application Examples	224
Half-Bridge Mode	217
Output Relationships (Active-High and	045
ACTIVE-LOW)	215
Output Relationships Diagram	216
Programmable Dead Band Delay	224
Shoot-through Current	224
Start-up Considerations	220
Specifications	397
Enhanced Mid-Fange CPU	19
Enhanced Universal Synchronous Asynchronous	207
Erroto	201
	9 297
Associated Peristers	201
Baud Rate Concrator	300
Asynchronous Mode	280
12-bit Break Transmit and Receive	307
Associated Registers	007
Receive	295
Transmit	200
Auto-Wake-up on Break	305
Baud Rate Generator (BRG)	299
Clock Accuracy	296
Receiver	292
Setting up 9-bit Mode with Address Detect	294
Transmitter	289
Baud Rate Generator (BRG)	
Auto Baud Rate Detect	304
Baud Rate Error, Calculating	299
Baud Rates, Asynchronous Modes	301
· •	

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	[X] ⁽¹⁾ X /XX XXX T I I I Tape and Reel Temperature Package Pattern Option Range	 Examples: a) PIC16LF1938 - I/P = Industrial temp., Plastic DIP package, low-voltage VDD limits. b) PIC16F1939 - I/PT = Industrial temp., TQFP package, standard VDD limits.
Device:	PIC16F1938, PIC16LF1938 PIC16F1939, PIC16LF1939	 c) PIC16F1939 - E/ML = Extended temp., QFN package, standard VDD limits.
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:		
Package:	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	3-Digit Pattern Code for QTP (blank otherwise)	