

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1938-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.0	Device Overview	11
2.0	Enhanced Mid-Range CPU	19
3.0	Memory Organization	21
4.0	Device Configuration	53
5.0	Oscillator Module (With Fail-Safe Clock Monitor)	59
6.0	Resets	77
7.0	Interrupts	85
8.0	Low Dropout (LDO) Voltage Regulator	
9.0	Power-Down Mode (Sleep)	101
10.0	Watchdog Timer (WDT)	103
11.0	Data EEPROM and Flash Program Memory Control	107
12.0	I/O Ports	121
13.0	Interrupt-On-Change	143
14.0	Fixed Voltage Reference	147
15.0	Analog-to-Digital Converter (ADC) Module	151
16.0	Temperature Indicator Module	165
17.0	Digital-to-Analog Converter (DAC) Module	167
18.0	Comparator Module	171
19.0	SR Latch	181
20.0	Timer0 Module	187
21.0	Timer1 Module with Gate Control	191
22.0	Timer2/4/6 Modules	203
23.0	Capture/Compare/PWM Modules (ECCP1, ECCP2, ECCP3, CCP4, CCP5)	207
24.0	Master Synchronous Serial Port (MSSP) Module	237
25.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	289
26.0	Capacitive Sensing Module	317
27.0	Liquid Crystal Display (LCD) Driver Module	327
28.0	In-Circuit Serial Programming™ (ICSP™)	361
29.0	Instruction Set Summary	365
30.0	Electrical Specifications	379
31.0	DC and AC Characteristics Graphs and Charts	411
32.0	Development Support	445
33.0	Packaging Information	451
Appe	endix A: Data Sheet Revision History	473
Appe	endix B: Migrating From Other PIC [®] Devices	473
Index	κ	475
The I	Microchip Web Site	483
Custo	omer Change Notification Service	483
Custo	omer Support	483
Read	der Response	484
Produ	uct Identification System	485

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

REGISTER 3-1:

3.3

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 29.0 "Instruction Set Summary").

Note 1:	The C and DC bits operate as Borrow
	and Digit Borrow out bits, respectively, in
	subtraction.

Register Definitions: Status

STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
—	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

bit of the source register.

PIC16(L)F1938/9

TABLE 3-7:PIC16(L)F1938 MEMORY MAP,
BANK 15

		Bank 15	
Г	791h	LCDCON	
	792h	LCDPS	1
	793h	LCDREF	
	794h	LCDCST	
	705h	I CDRI	
	706h	_	
-	707h		
-	7006		
-	7901		
-	799h	LCDGET	
-	79Ah		
-	79Bh		
	79Ch	—	
	79Dh		
I L	79Eh	_	
I L	79Fh	—	
	7A0h	LCDDATA0	
-	7A1h	LCDDATA1	
-	7A2h		
-	7A3N 7A4b		
-	7456		
I F	746h		
	7A7h	LCDDATA7	
	7A8h	_	
	7A9h	LCDDATA9	
	7AAh	LCDDATA10	
IL	7ABh	_	
L	7ACh	—	
	7ADh	—	
	7AEh	_	
ΙΓ	7AFh	_	
Ι Γ	7B0h	_	
	7B1h	_	
	7B2h	_	
	7B3h		
	7B4h		
	785h		
-	7B6h		
-	7 D011		
I F	7D0h		
-	/ DOII		
		Unimplemented	
		Read as '0'	
L			
	7EFh		
Leger	nd:	= Unimplemented d	ata memory locations, read
_	as	'0'.	

TABLE 3-8:PIC16(L)F1939 MEMORY MAP,
BANK 15

	Bank 15	
791h	LCDCON	
792h	LCDPS	
793h	LCDREF	
794h	LCDCST	
795h	LCDRL	
796h	_	
797h	_	
798h	LCDSE0	
799h	LCDSE1	
79Ah	LCDSE2	
79Bh	_	
79Ch	_	
79Dh	_	
79Eh	_	
79Fh	_	
7A0h	LCDDATA0	
7A1h	LCDDATA1	
7A2h	LCDDATA2	
7A30 7A4h		
7A5h	LCDDATA5	
7A6h	LCDDATA6	
7A7h	LCDDATA7	
7A8h	LCDDATA8	
7A90 7AAh	LCDDATA9	
7ABh	LCDDATA11	
7ACh	—	
7ADh	_	
7AEh	_	
7AFh	_	
7B0h	_	
7B1h	_	
7B2h	_	
7B3h	—	
7B4h	—	
7B5h	—	
7B6h	—	
7B7h	—	
7B8h		
	Unimplemented Read as '0'	
7EFh		
Legend: as	= Unimplemented d	ata memory locations, read

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

PIC16(L)F1938/9

NOTES:

9.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 9-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP Oscillator mode assumed.

2: CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference.

3: Tost = 1024 Tosc (drawing not to scale). This delay applies only to XT, HS or LP Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	145
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	145
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	145
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE		CCP2IE	92
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE		TMR4IE	_	93
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	95
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	96
STATUS	—	_		TO	PD	Z	DC	С	24
WDTCON				N	NDTPS<4:0>	>		SWDTEN	105

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

10.6 Register Definitions: Watchdog Control

REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0				
	—			WDTPS<4:0>			SWDTEN				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-m/n = Value a	at POR and BC	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7-6	Unimplemen	ted: Read as '	0'								
bit 5-1	WDTPS<4:0>	: Watchdog Ti	mer Period Se	elect bits							
	Bit Value = P	Prescale Rate									
	00000 = 1:3	2 (Interval 1 m	s typ)								
	00001 = 1:6	4 (Interval 2 m	s typ)								
	00010 = 1:1	28 (Interval 4 r	ns typ) ns typ)								
	00011 = 1.2 00100 = 1.5	12 (Interval 16	ms typ)								
	00101 = 1:1	024 (Interval 3	2 ms typ)								
	00110 = 1:2	10110 = 1:2048 (Interval 64 ms typ)									
	00111 = 1:4	00111 = 1:4096 (Interval 128 ms typ)									
	01000 = 1:8	01000 = 1:8192 (Interval 256 ms typ)									
	01001 = 1.1	 1:16384 (Interval 512 ms typ) 1:22768 (Interval 1a typ) 									
	01010 = 1:6	5536 (Interval	2s tvp) (Rese	et value)							
	01100 = 1:1	31072 (2 ¹⁷) (Ir	iterval 4s typ)	,							
	01101 = 1:2	62144 (2 ¹⁸) (Ir	iterval 8s typ)								
	01110 = 1:5	24288 (2 ¹⁹) (Ir	iterval 16s typ)							
	01111 = 1:1	$048576(2^{20})($	Interval 32s ty	(p)							
	10000 = 1.2 10001 = 1.4	.097152(2)(.194304(2 ²²)(Interval 128s	γρ) tvn)							
	10010 = 1:4	388608 (2 ²³) (Interval 256s	typ)							
				517							
	10011 = Re	served. Result	s in minimum	interval (1:32)							
	•										
	•										
	11111 = Re:	served. Result	s in minimum	interval (1:32)							
bit 0	SWDTEN: So	oftware Enable/	Disable for W	atchdog Timer b	oit						
	<u>If WDTE<1:0></u>	> = <u>00</u> :									
	This bit is igno	ored.									
	If WDTE<1:0>	<u>> = 01</u> :									
		urned on									
		> = 1x									
	This bit is igno	ored.									
	5										

18.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 30.0 "Electrical Specifications"** for more information.

18.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 21.6 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

18.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from either comparator, C1 or C2, can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 21-1) for more information.

18.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a Falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

18.6 Comparator Positive Input Selection

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN+ analog pin
- DAC Output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See Section 14.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

23.5 Register Definitions: CCP Control

REGISTER 23-1: CCPxCON: CCPx CONTROL REGISTER

R/W-00	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PxM<	:1:0> ⁽¹⁾	DCxB<	<1:0>		CCPxM	<3:0>	
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpleme	nted bit, read as	0'	
u = Bit is uncha	nged	x = Bit is unknow	/n	-n/n = Value at I	POR and BOR/Va	alue at all other	Reset
'1' = Bit is set		'0' = Bit is cleare	d				
bit 7-6	₽xM<1:0>: En	hanced PWM Out	out Configurat	ion hits(1)			
	Capture mode:		put oormgulut				
	Unused	-					
	Compare mode	<u>ə:</u>					
	Unused						
	$\frac{\text{If CCPxM<3:2}}{\text{WW} = \text{PxA} as}$	$\geq = 00, 01, 10$	Compare inpu		assigned as port	nine	
	lf CCPxM<3.2	> = 11.		, 1 x , 1 x	assigned as port	pino	
	00 = Single 0	output; PxA modul	ated; PxB, Px	C, PxD assigned a	s port pins		
	01 = Full-Bri	dge output forward	I; PxD modula	ted; PxA active; P	xB, PxC inactive	acianad on nor	taina
	11 = Full-Bri	dge output, PXA, P dge output reverse	; PxB modulated	ted; PxC active; P	xA, PxD inactive	issigned as por	t pins
bit 5-4	DCxB<1:0>: P	WM Duty Cycle Le	east Significar	it bits			
	<u>Capture mode:</u> Unused		-				
	Compare mode	<u>e:</u>					
	PWM mode:						
	These bits are	the two LSbs of th	e PWM duty o	cycle. The eight M	Sbs are found in (CCPRxL.	
bit 3-0	CCPxM<3:0>:	ECCPx Mode Sel	ect bits				
	0000 = Captu	ure/Compare/PWN	1 off (resets E0	CCPx module)			
	0001 = Rese	rved	output on mot	ch			
	0010 - Comp 0011 - Rese	rved	ouipui on mai	GII			
	0100 = Captu	ure mode: every fa	lling edge				
	0101 = Capit	ire mode: every 18	h rising edge				
	0111 = Captu	ure mode: every 16	6th rising edge	•			
	1000 = Comr	pare mode: initializ	e FCCPx pin l	ow: set output on	compare match (set CCPxIF)	
	1001 = Comp	pare mode: initializ	e ECCPx pin l	nigh; clear output of	on compare matc	h (set CCPxIF)	
	1010 = Comp	pare mode: genera	te software in	terrupt only; ECCF	Px pin reverts to I/	O state	
	1011 = Comp modu	bare mode: Specia lle is enabled) ⁽¹⁾	l Event Trigger	(ECCPx resets Ti	mer, sets CCPxIF	bit starts A/D c	onversion if A/D
	<u>CCP4/CCP5 o</u>	<u>nly:</u>					
	11xx = PWM	/I mode					
	ECCP1/ECCP	2/ECCP3 only:	a athra istaite D		F		
	1100 = PWM	mode: PXA, PXC	active-nigh; P: active-high: P:	KB, PXD active-hig KB, PXD active-low	n /		
	1110 = PWM	mode: PxA, PxC	active-low; Px	B, PxD active-high	1		
	1111 = PWM	mode: PxA, PxC	active-low; Px	B, PxD active-low			

Note 1: These bits are not implemented on CCP4 and CCP5.

24.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 24-28).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

24.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out.

24.6.6.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

24.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge (ACK = 0) and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

24.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
- 2. SSPIF is set by hardware on completion of the Start.
- 3. SSPIF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSPBUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 9. The user loads the SSPBUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

25.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 25-3 contains the formulas for determining the baud rate. Example 25-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 25-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is Idle before changing the system clock.

EXAMPLE 25-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{FOSC}{64([SPBRGH:SPBRG] + 1)}$

Solving for SPBRGH:SPBRGL:

27.2 Register Definitions: LCD Control

REGISTER 27-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER

r.///////	R/W-0/0	R/C-0/0	U-0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1					
LCDEN	SLPEN	WERR	_	CS<	<1:0>	LMU>	(<1:0>					
bit 7							bit C					
Legend:												
R = Readable	e bit	W = Writable bit		U = Unimplen	nented bit, read	as '0'						
u = Bit is unchanged x = Bit is u			vn	-n/n = Value a	t POR and BOI	R/Value at all c	ther Resets					
'1' = Bit is set	t	'0' = Bit is cleare	d	C = Only clea	rable bit							
bit 7	LCDEN: LCD	Driver Enable bit										
	1 = LCD Driv	er module is enab	led									
	0 = LCD Driv	er module is disat	oled									
bit 6	SLPEN: LCD	Driver Enable in	Sleep Mod	e bit								
	1 = LCD Driv 0 = LCD Driv	er module is disat er module is enab	led in Slee led in Slee	ep mode p mode								
bit 5	WERR: LCD	Write Failed Error	bit									
	1 = LCDDAT	An register writte	n while the	e WA bit of the	e LCDPS regis	ter = 0 (must	be cleared in					
	software)			· ·	·						
	0 = No I CD v	write orror										
					Linimplemented: Read as '0'							
bit 4	Unimplemen	ted: Read as '0'										
bit 4 bit 3-2	Unimplemen CS<1:0>: Clo	ted: Read as '0' ock Source Select	bits									
bit 4 bit 3-2	Unimplemen CS<1:0>: Clo 00 = Fosc/25	ted: Read as '0' ock Source Select	bits									
bit 4 bit 3-2	Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC	ted: Read as '0' ock Source Select 66 (Timer1)	bits									
bit 4 bit 3-2	Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO	ted: Read as '0' ock Source Select 6 (Timer1) SC (31 kHz)	bits									
bit 4 bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	ted: Read as '0' ock Source Select 6 (Timer1) SC (31 kHz) Commons Select	bits									
bit 4 bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	ted: Read as '0' ock Source Select 6 (Timer1) SC (31 kHz) Commons Select	bits bits	Maximum	Number of Pixel	ls	Pige					
bit 4 bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	ted: Read as '0' ock Source Select 6 (Timer1) SC (31 kHz) Commons Select Multiplex	bits bits PIC	Maximum	Number of Pixel	ls (L)F1939	- Bias					
bit 4 bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T10SC 1x = LFINTO LMUX<1:0>: 00	ted: Read as '0' ock Source Select (Timer1) SC (31 kHz) Commons Select Multiplex Static (COM0)	bits bits PIC	Maximum M 16(L)F1938 16	Number of Pixel	ls i(L)F1939 24	- Bias Static					
bit 4 bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>: 00 01	ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz) Commons Select Multiplex Static (COM0) 1/2 (COM<1:0>)	bits PIC	Maximum M 16(L)F1938 16 32	Number of Pixel	ls (L)F1939 24 48	Bias Static 1/2 or 1/3					
bit 4 bit 3-2 bit 1-0	Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>: 00 01 10	ted: Read as '0' ock Source Select 66 (Timer1) SC (31 kHz) Commons Select Multiplex Static (COM0) 1/2 (COM<1:0>) 1/3 (COM<2:0>)	bits PIC	Maximum N 16(L)F1938 16 32 48	Number of Pixel	ls (L)F1939 24 48 72	Bias Static 1/2 or 1/3 1/2 or 1/3					

Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

27.3 LCD Clock Source Selection

The LCD module has three possible clock sources:

- Fosc/256
- T10SC
- LFINTOSC

The first clock source is the system clock divided by 256 (Fosc/256). This divider ratio is chosen to provide about 1 kHz output when the system clock is 8 MHz. The divider is not programmable. Instead, the LCD prescaler bits LP<3:0> of the LCDPS register are used to set the LCD frame clock rate.

The second clock source is the T1OSC. This also gives about 1 kHz when a 32.768 kHz crystal is used with the Timer1 oscillator. To use the Timer1 oscillator as a clock source, the T1OSCEN bit of the T1CON register should be set.

The third clock source is the 31 kHz LFINTOSC, which provides approximately 1 kHz output.

The second and third clock sources may be used to continue running the LCD while the processor is in Sleep.

Using bits CS<1:0> of the LCDCON register can select any of these clock sources.

27.3.1 LCD PRESCALER

A 4-bit counter is available as a prescaler for the LCD clock. The prescaler is not directly readable or writable; its value is set by the LP<3:0> bits of the LCDPS register, which determine the prescaler assignment and prescale ratio.

The prescale values are selectable from 1:1 through 1:16.

FIGURE 27-2: LCD CLOCK GENERATION

Mnemonic, Operands		Description	Cycles	14-Bit Opcode)	Status	Natas
				MSb			LSb	Affected	Notes
	BYTE-ORIENTED FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED SKIP (PERATIO	ONS					
DECESZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST	ER OPER	ATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
5750.0		BIT-ORIENTED SKIP O	PERATIO	NS				[
BIFSC	f, D	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BIESS	t, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL OPERATIONS									
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

TABLE 29-3: PIC16(L)F193X ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

PIC16(L)F1938/9

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

TRIS	Load TRIS Register with W
Syntax:	[<i>label</i>] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f
Syntax:	[<i>label</i>] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

TABLE 30-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
30	ТмсL	MCLR Pulse Width (low)	2	—	_	μS		
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	V _{DD} = 3.3V-5V 1:16 Prescaler used	
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾	_	1024	_	Tosc		
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms		
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.0	μS		
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55 1.80	2.7 1.9	2.85 2.11	V V	BORV = 0 BORV = 1	
36*	VHYST	Brown-out Reset Hysteresis	20	35	60	mV	-40°C to +85°C	
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$V \text{DD} \leq V \text{BOR}$	

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

FIGURE 31-35: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16LF1938/9 ONLY 14 Max. 12 10 Typical 8 (Pu (JuA) 6 4 Max: 85°C + 3σ 2 Typical: 25°C 0 1.8 2.0 2.2 1.6 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V)

3.5

4.0

VDD (V)

4.5

5.0

5.5

6.0

FIGURE 31-36: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16F1938/9 ONLY

20

0 1.5 Typical: 25°C

2.5

3.0

2.0

PIC16(L)F1938/9

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	40			
Pitch		0.40 BSC			
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60	3.70	3.80	
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.70	3.80	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch		0.65 BSC			
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B