

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1938-i-ss

Email: info@E-XFL.COM

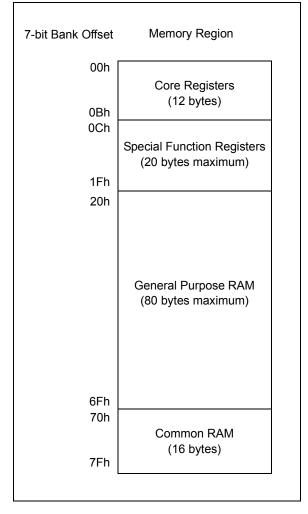
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.1 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.2 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank.


3.3.2.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See Section 3.6.2 "Linear Data Memory" for more information.

3.3.3 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-2: BANKED MEMORY PARTITIONING

3.3.4 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-2.

TABLE 3-2: MEMORY MAP TABLES

Device	Banks	Table No.
PIC16F1938	0-7	Table 3-3
PIC16LF1938	8-15	Table 3-4, Table 3-7
	16-23	Table 3-5
	23-31	Table 3-6, Table 3-9
PIC16F1939	0-7	Table 3-3
PIC16LF1939	8-15	Table 3-4, Table 3-8
	16-23	Table 3-5
	23-31	Table 3-6, Table 3-9

6.12 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 6-2.

6.13 Register Definitions: Power Control (PCON)

REGISTER 6-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	—	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:		
HC = Bit is cleared by har	dware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or set to '0' by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or set to '0' by firmware
bit 5-4	Unimplemented: Read as '0'
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A $\overline{\text{MCLR}}$ Reset has not occurred or set to '1' by firmware
	0 = A MCLR Reset has occurred (set to '0' in hardware when a MCLR Reset occurs)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (set to '0' in hardware upon executing a RESET instruction)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset
	occurs)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is und		x = Bit is unkr	nown	•	at POR and BO		ther Resets
'1' = Bit is se	•	'0' = Bit is cle	ared				
L:4 7		iment Cata Inte	www.wt Enchlau	.:4			
bit 7		imer1 Gate Inte the Timer1 Gate					
		the Timer1 Gat					
bit 6	ADIE: A/D C	onverter (ADC)	Interrupt Ena	ble bit			
		the ADC interru					
		the ADC interru	•				
bit 5		T Receive Inter	•	it			
		the USART rec the USART rec					
bit 4		T Transmit Inter	•				
		the USART trar	•				
	0 = Disables	the USART tra	nsmit interrup	t			
bit 3	SSPIE: Sync	hronous Serial	Port (MSSP)	Interrupt Enabl	e bit		
		the MSSP inter the MSSP inter					
bit 2	CCP1IE: CC	P1 Interrupt En	able bit				
		the CCP1 interr					
bit 1			•	nable bit			
	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt						
bit 0		ner1 Overflow Ir		•			
		the Timer1 over					
	0 = Disables	the Timer1 ove	rflow interrupt	:			
Note: B	it PEIE of the IN		must bo				
	et to enable any						

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

TABLE 10-3:	SUMMA	ARY OF R	EGISTER	S ASSOCI		IDOG TIM	ER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>			_	SCS	<1:0>	73
STATUS	—			TO	PD	Z	DC	С	24
WDTCON	_	_			WDTPS<4:0>	>		SWDTEN	105

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_	_	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	54
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		54

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

12.6 Register Definitions: PORTB Control

REGISTER 12-6: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
bit 7							bit 0	
Legend:								
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RB<7:0>**: PORTB I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 12-7: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TRISB<7:0>:** PORTB Tri-State Control bits 1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

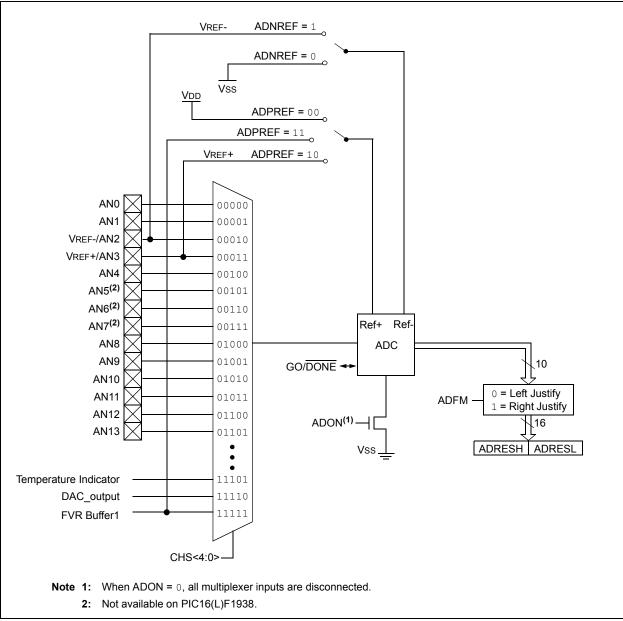
REGISTER 12-8: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.


15.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 15-1: ADC BLOCK DIAGRAM

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the									
	same instruction that turns on the ADC.									
	Refer to Section 15.2.6 "A/D Conver-									
	sion Procedure".									

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

15.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx/ECCPX module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 15-2: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F193X	CCP5

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 23.0 "Capture/Compare/PWM Modules" for more information.

NOTES:

Name	Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						Register on Page
CCP2CON	P2M<	<1:0>	DC2B	3<1:0>		CCP2M<3:0>			
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIE3		CCP5IE	CCP4IE	CCP3IE	TMR6IE		TMR4IE	_	93
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
PIR3	—	CCP5IF	F CCP4IF CCP3IF TMR6IF — TMR4IF —					96	
PR2	Timer2 Mod	dule Period	Register	•					201*
PR4	Timer4 Mod	dule Period	Register						201*
PR6	Timer6 Mod	dule Period	Register						201*
T2CON	—		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	203
T4CON	—		T4OUTI	PS<3:0>		TMR4ON	T4CKP	S<1:0>	203
T6CON	_		T6OUTI	PS<3:0>		TMR2ON	T6CKP	S<1:0>	203
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					201*
TMR4	Holding Re	gister for the	e 8-bit TMR4	4 Register ⁽¹⁾					201*
TMR6	Holding Re	gister for the	e 8-bit TMR	6 Register ⁽¹⁾					201*

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

23.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 23-4.

EQUATION 23-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 23-5:EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 23-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 23-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0		
_	—	—	_	—	—	C5TSEL<1:0>			
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is se	et	'0' = Bit is clea	ared						
bit 7-2	Unimplemen	ted: Read as '	0'						
bit 1-0	C5TSEL<1:0	>: CCP5 Timer							

REGISTER 23-3: CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1

DIT 1-0 00 = CCP5 is based off Timer2 in PWM mode

01 = CCP5 is based off Timer4 in PWM mode

10 = CCP5 is based off Timer6 in PWM mode

11 = Reserved

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CCPxASE	CCPxAS2	CCPxAS1	CCPxAS0	PSSxA	.C<1:0>	PSSxB	D<1:0>
bit 7							bit 0
Legend:							
R = Readat		W = Writable		•	nented bit, read		
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7	CCPxASE: (CPx Auto-Shu	tdown Event S	tatus bit			
		wn event has o tputs are opera		outputs are in	shutdown state	e	
bit 6	1 = Auto-shu	CPx Auto-Shu utdown 2 source utdown 2 source	e is enabled, V				
bit 5	1 = Auto-shu	CPx Auto-Shu utdown 1 sourc utdown 1 sourc	e is enabled, a),(2) output low		
bit 4	1 = Auto-shu	CPx Auto-Shu utdown 0 sourc	e is enabled, a		⁾ output low		
bit 3-2	00 = Drive pi 01 = Drive pi	D>: Pins PxA and Px ns PxA and Px ns PxA and Px A and PxC tri-s	C to '0' C to '1'	wn State Contr	ol bits		
bit 1-0	00 = Drive pi 01 = Drive pi	D>: Pins PxB ar ns PxB and Px ns PxB and Px B and PxD tri-s	D to '0' D to '1'	wn State Contr	ol bits		
2 : a	f CxSYNC is ena async_CxOUT = a async_CxOUT = a	async_C2OUT	(for CCP1 and		I.		

REGISTER 23-4: CCPxAS: CCPX AUTO-SHUTDOWN CONTROL REGISTER

NOTES:

FIGURE 25-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	
TX/CK pin	
SREN bit	·0'
RCIF bit (Interrupt) Read RXREG	
Note: Timing dia	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

TABLE 25-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	298
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
RCREG	EUSART R	eceive Dat	a Register						292*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	297
SPBRGL				BRG	<7:0>				299*
SPBRGH				BRG<	:15:8>				299*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	134
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	296

Legend: — = unimplemented location read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA			ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	126
ANSELB	_		ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	138
CPSCON0	CPSON	CPSRM	_	_	CPSRNG<1:0>		CPSOUT	TOXCS	321
CPSCON1	_		_	_		CPSCH<3:0>			322
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	187
T1CON	TMR1C	:S<1:0>	T1CKP	S<1:0>	T1OSCEN T1SYNC		-	TMR10N	197
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	125
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	137

TABLE 26-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CPS module.

Note 1: PIC16(L)F1939 only.

MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	 W → INDFn Effective address is determined by FSR + 1 (preincrement) FSR - 1 (predecrement) FSR + k (relative offset) After the Move, the FSR value will be either: FSR + 1 (all increments) FSR - 1 (all decrements) Unchanged
Status Affected:	None

Mode	Syntax	mm	
Preincrement	++FSRn	00	
Predecrement	FSRn	01	
Postincrement	FSRn++	10	
Postdecrement	FSRn	11	

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W				
Syntax:	[label] OPTION				
Operands:	None				
Operation:	(W) \rightarrow OPTION_REG				
Status Affected:	None				
Description:	Move data from W register to OPTION_REG register.				
Words:	1				
Cycles:	1				
Example:	OPTION				
	Before Instruction OPTION_REG = 0xFF W = 0x4F				
	After Instruction OPTION_REG = 0x4F W = 0x4F				

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

30.1 DC Characteristics: PIC16(L)F1938/39-I/E (Industrial, Extended)

PIC16LF1938/39			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
PIC16F1938/39			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
		PIC16LF1938/39	1.8 2.5	_	3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D001		PIC16F1938/39	1.8 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾					·	
		PIC16LF1938/39	1.5	_	_	V	Device in Sleep mode	
D002*		PIC16F1938/39	1.7		—	V	Device in Sleep mode	
	VPOR*	Power-on Reset Release Voltage						
D002A		PIC16LF1938/39	_	1.6		V		
D002A		PIC16F1938/39	—	1.6	_	V		
	VPORR*	Power-on Reset Rearm Voltage						
D002B		PIC16LF1938/39	_	0.8		V	Device in Sleep mode	
D002B		PIC16F1938/39	_	1.5		V	Device in Sleep mode	
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-8	_	6	%	1.024V, VDD ≥ 2.5V 2.048V, VDD ≥ 2.5V 4.096V, VDD ≥ 4.75V	
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC	-11	—	7	%	$\begin{array}{l} 1.024V, VDD \geq 2.5V\\ 2.048V, VDD \geq 2.5V\\ 4.096V, VDD \geq 4.75V \end{array}$	
D003B	VLCDFVR	Fixed Voltage Reference Voltage for LCD Bias, Initial Accuracy	-11	—	10	%	$3.072V, VDD \geq 3.6V$	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 6.1 "Power-on Reset (POR)" for details.	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

*

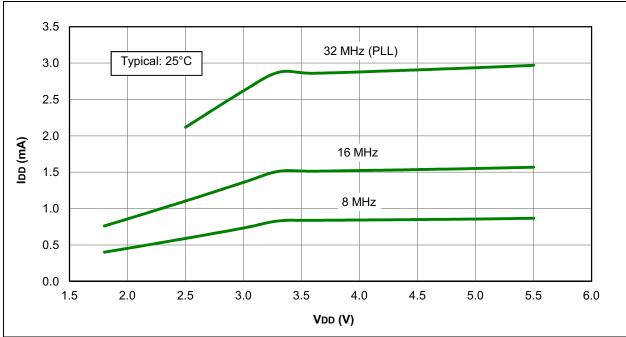
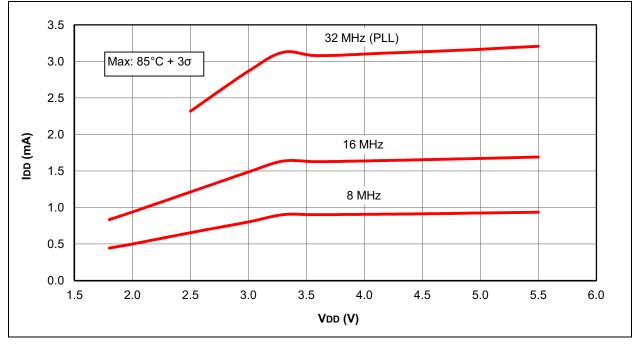
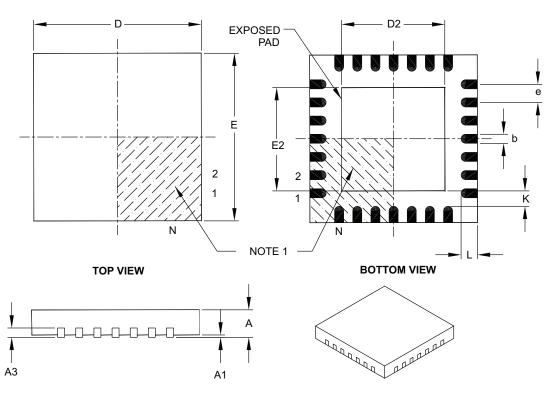
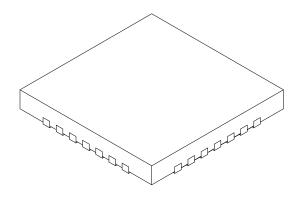




FIGURE 31-18: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16F1938/9 ONLY

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits			MAX	
Number of Pins	N	28			
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65 3.70 4.20		4.20	
Overall Length D			6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	K	0.20	_	_	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Number of Pins	N	28				
Pitch	е		0.40 BSC			
Overall Height	A	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E		4.00 BSC			
Exposed Pad Width	E2	2.55	2.65	2.75		
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2.55	2.65	2.75		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad		0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2