

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1938t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-9: PIC16(L)F1938/9 MEMORY MAP, BANK 31

	Bank 31								
	F8Ch								
		Unimplemented Read as '0'							
	FE3h								
	FE4h	STATUS_SHAD							
	FE5h	WREG_SHAD							
	FE6h	BSR_SHAD							
	FE7h	PCLATH_SHAD							
	FE8h	FSR0L_SHAD							
	FE9h	FSR0H_SHAD							
	FEAh	FSR1L_SHAD							
	FEBh	FSR1H_SHAD							
	FECh	—							
	FEDh	STKPTR							
	FEEh	TOSL							
	FEFh	TOSH							
Lege	Legend: = Unimplemented data memory locations, read as '0'.								

3.3.5 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register Summary for the device family are as follows:

Device	Bank(s)	Page No.
	0	32
	1	33
	2	34
	3	35
	4	36
	5	37
PIC16(L)F1938/9	6	38
	7	39
	8	40
	9-14	41
	15	42
	16-30	44
	31	45

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		ot	on all her sets
Banks 1	6-30												
x00h/ x80h ⁽²⁾	INDF0		Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)									XXXX	XXXX
x00h/ x81h ⁽²⁾	INDF1		Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								XXXX	XXXX	XXXX
x02h/ x82h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	int Byte					0000	0000	0000	0000
x03h/ x83h ⁽²⁾	STATUS	—	—	—	TO	PD	Z	DC	С	1	1000	d	quuu
x04h/ x84h ⁽²⁾	FSR0L	Indirect Dat	Indirect Data Memory Address 0 Low Pointer								0000	uuuu	uuuu
x05h/ x85h ⁽²⁾	FSR0H	Indirect Dat	Indirect Data Memory Address 0 High Pointer								0000	0000	0000
x06h/ x86h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ac	Idress 1 Low	Pointer					0000	0000	uuuu	uuuu
x07h/ x87h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ac	ldress 1 High	Pointer					0000	0000	0000	0000
x08h/ x88h ⁽²⁾	BSR	—	—	—			BSR<4:0>			0	0000	0	0000
x09h/ x89h ⁽²⁾	WREG	Working Re	egister		•					0000	0000	uuuu	uuuu
x0Ah/ x8Ah ^{(1),(2)}	PCLATH	—	Write Buffer for the upper 7 bits of the Program Counter								0000	-000	0000
x0Bh/ x8Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000	0000	0000	0000
x0Ch/ x8Ch	—	Unimpleme	Unimplemented								-	-	_
 x1Fh/ x9Fh													

 $\label{eq:Legend: Legend: Le$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

4: Unimplemented, read as '1'.

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/q	R-0/q			
T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS			
bit 7			1	1		1	bit 0			
<u> </u>										
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is cle	ared	q = Condition	nal					
bit 7 T1OSCR: Timer1 Oscillator Ready bit <u>If T1OSCEN = 1</u> : 1 = Timer1 oscillator is ready 0 = Timer1 oscillator is not ready <u>If T1OSCEN = 0</u> : 1 = Timer1 clock source is always ready										
bit 6	PLLR 4x PLL 1 = 4x PLL 0 = 4x PLL	₋ Ready bit is ready								
bit 5	1 = Running	lator Start-up T g from the clocl g from an interr	c defined by the	e FOSC<2:0>	bits of the Confi 00)	guration Word	S			
bit 4	1 = HFINTO	h-Frequency lı SC is ready SC is not ready		or Ready bit						
bit 3	1 = HFINTO	h-Frequency Ir SC is at least 2 SC is not 2% a	2% accurate	or Locked bit						
bit 2	MFIOFR: Medium-Frequency Internal Oscillator Ready bit 1 = MFINTOSC is ready 0 = MFINTOSC is not ready									
bit 1	t 1 LFIOFR: Low-Frequency Internal Oscillator Ready bit 1 = LFINTOSC is ready 0 = LFINTOSC is not ready									
bit 0	 0 = LFINTOSC is not ready HFIOFS: High-Frequency Internal Oscillator Stable bit 1 = HFINTOSC is at least 0.5% accurate 0 = HFINTOSC is not 0.5% accurate 									

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0				
CxINTP	CxINTN	CxINTN CxPCH<1:0>		_	—	– CxNCł					
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
u = Bit is unc	hanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets				
'1' = Bit is set	t	'0' = Bit is clea	ared								
bit 7	CxINTP: Con	nparator Interru	pt on Positive	Going Edge E	nable bits						
	1 = The CxIF	interrupt flag v	vill be set upo	n a positive goi	ng edge of the	CxOUT bit					
	0 = No interr	upt flag will be	set on a positi	ve going edge	of the CxOUT b	bit					
bit 6	CxINTN: Con	CxINTN: Comparator Interrupt on Negative Going Edge Enable bits									
	1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit										
	0 = No interr	upt flag will be	set on a negat	ive going edge	of the CxOUT	bit					
bit 5-4	CxPCH<1:0>	Comparator F	Positive Input (Channel Select	bits						
	11 = CxVP connects to Vss										
	10 = CxVP connects to FVR Voltage Reference										
	01 = CxVP connects to DAC Voltage Reference 00 = CxVP connects to CxIN+ pin										
bit 3-2			•								
	-	Unimplemented: Read as '0'									
bit 1-0		CxNCH<1:0>: Comparator Negative Input Channel Select bits 11 = CxVN connects to C12IN3- pin									
		onnects to C12									
		01 = CxVN connects to C12IN1- pin 00 = CxVN connects to C12IN0- pin									

REGISTER 18-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 18-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0			
—	_	_	_	_	—	MC2OUT	MC1OUT			
bit 7 bit 0										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

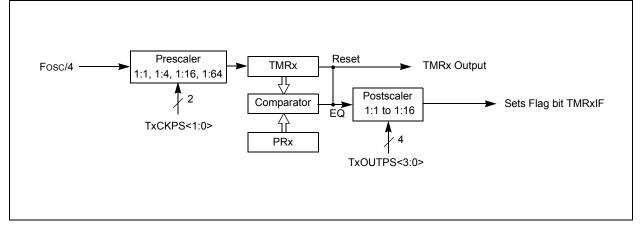
bit 1 MC2OUT: Mirror Copy of C2OUT bit

bit 0 MC1OUT: Mirror Copy of C1OUT bit

FIGURE 21-5:	TIMER1 GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GG <u>O/</u> DONE	Cleared by hardware on falling edge of T1GVAL
t1g_in	rising edge of T1G
Т1СКІ	
T1GVAL	
Timer1	N N + 1 N + 2
TMR1GIF	Cleared by software Cleared by hardware on falling edge of T1GVAL

22.0 TIMER2/4/6 MODULES

There are up to three identical Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).


Note:	The 'x' variable used in this section is used to designate Timer2, Timer4, or
	Timer6. For example, TxCON references
	T2CON, T4CON, or T6CON. PRx refer-
	ences PR2, PR4, or PR6.

The Timer2/4/6 modules incorporate the following features:

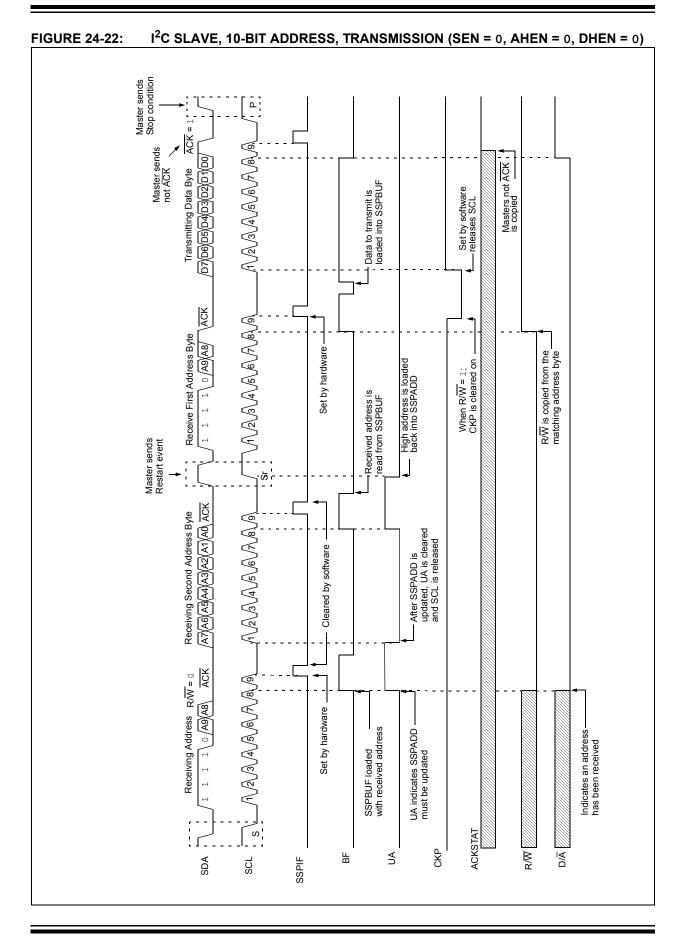
- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSP module (Timer2 only)

See Figure 22-1 for a block diagram of Timer2/4/6.

23.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	123
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB	<1:0>		CCPxM<	:3:0>		228
CCPRxL	Capture/Co	mpare/PWM	Register x l	Low Byte (LS	SB)				206
CCPRxH	Capture/Co	mpare/PWM	Register x I	High Byte (M	ISB)				206
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	92
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE		TMR4IE	—	93
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	95
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	95
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	197
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	198
TMR1L	Holding Reg	gister for the	Least Signif	ficant Byte of	f the 16-bit TMR	1 Register			193
TMR1H	Holding Reg	gister for the	Most Signifi	cant Byte of	the 16-bit TMR1	Register			193
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	125
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	134
TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	137
TRISE				—	(3)	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	140

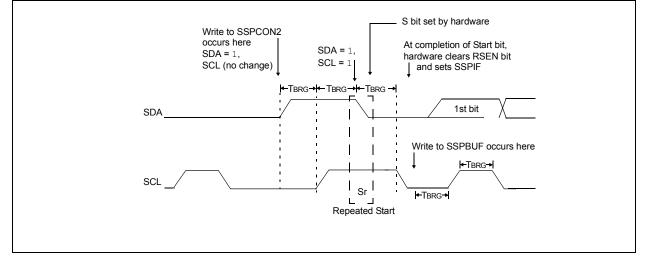

TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

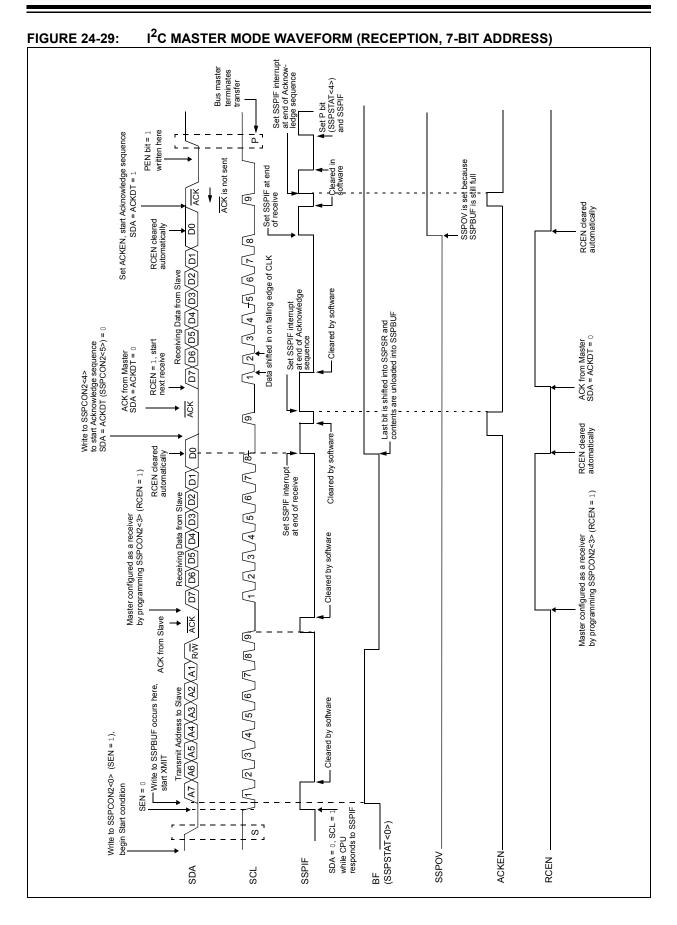
Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Capture mode.

Note 1: Applies to ECCP modules only.

2: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

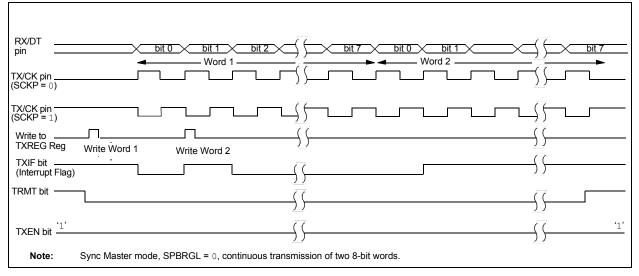
3: Unimplemented, read as '1'.

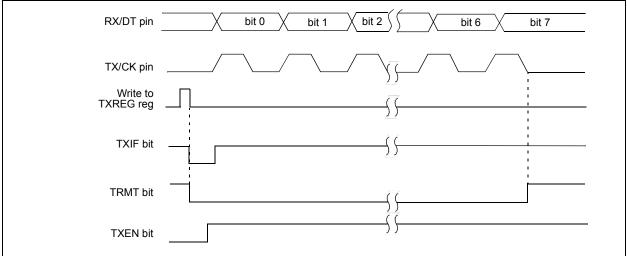



24.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the Master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.




REGISTER 24-2: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV SSPEN CKP			SSPM<3:0>			
bit 7							bit (
L egend: R = Readable I	nit.	W = Writable bit		II = I Inimplemen	ited bit, read as '0'		
u = Bit is uncha		x = Bit is unknow	n	•	OR and BOR/Value	at all other Posets	
	linged						
1' = Bit is set		'0' = Bit is cleared	1	HS = Bit is set by	naruware	C = User cleared	
bit 7	WCOL: Write Collision Detect bit <u>Master mode:</u> 1 = A write to the SSPBUF register was attempted while the I ² C conditions were not valid for a transmission to be started 0 = No collision <u>Slave mode:</u> 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision						
pit 6	<u>In SPI mode:</u> 1 = A new byte Overflow ca setting overfl SSPBUF re 0 = No overflow <u>In I²C mode:</u> 1 = A byte is re	 SSPOV: Receive Overflow Indicator bit⁽¹⁾ In SPI mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register (must be cleared in software). 0 = No overflow In 1²C mode: 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software). 					
bit 5	 SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output <u>In SPI mode:</u> 1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins <u>In I²C mode:</u> 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins⁽³⁾ 0 = Disables serial port and configures these pins as I/O port pins 						
bit 4	CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I ² C Slave mode: SCL release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I ² C Master mode: Unused in this mode						
bit 3-0	SSPM<3:0>: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4 0011 = SPI Master mode, clock = Fosc/64 0011 = SPI Master mode, clock = TMR2 output/2 0100 = SPI Slave mode, clock = SCK pin, <u>SS</u> pin control enabled 0101 = SPI Slave mode, clock = SCK pin, <u>SS</u> pin control disabled, <u>SS</u> can be used as I/O pin 0110 = I ² C Slave mode, 7-bit address 0111 = I ² C Slave mode, clock = Fosc / (4 * (SSPADD+1)) ⁽⁴⁾ 1001 = Reserved 1010 = SPI Master mode, clock = Fosc / (4 * (SSPADD+1)) ⁽⁵⁾ 1011 = I ² C firmware controlled Master mode (Slave idle) 1100 = Reserved 1101 = Reserved 1101 = Reserved 1101 = Reserved 1101 = Reserved 1101 = Reserved						
2: V 3: V 4: S	n Master mode, the over Vhen enabled, these pi Vhen enabled, the SDA SPADD values of 0, 1 SPADD value of '0' is	ins must be properl A and SCL pins mu or 2 are not suppo	y configured as in st be configured a rted for I ² C mode	nput or output. as inputs.	mission) is initiated	by writing to the SS	PBUF register.

TABLE 25-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	298
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	297
SPBRGL	BRG<7:0>							299*	
SPBRGH	BRG<15:8>						299*		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	134
TXREG	EUSART Transmit Data Register						289*		
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	296

Legend: — = unimplemented location read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

26.7.3 FREQUENCY THRESHOLD

The frequency threshold should be placed midway between the value of nominal frequency and the reduced frequency of the capacitive sensing oscillator. Refer to Application Note AN1103, "*Software Handling for Capacitive Sensing*" (DS01103) for more detailed information on the software required for CPS module.

Note:	For more information on general capacitive sensing refer to Application Notes:
	 AN1101, "Introduction to Capacitive Sensing" (DS01101)
	 AN1102, "Layout and Physical Design Guidelines for Capacitive

26.8 Operation during Sleep

Sensing" (DS01102)

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts.

Note: Timer0 does not operate when in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

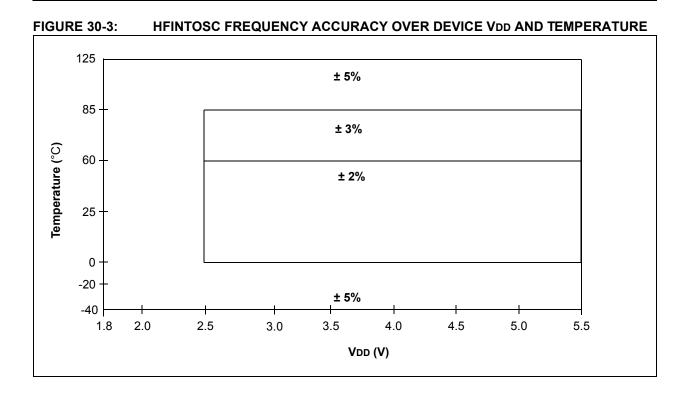
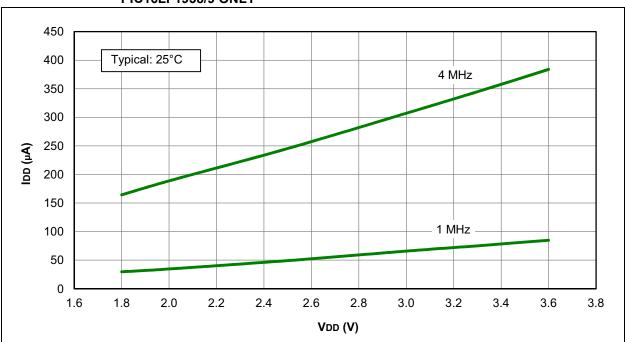
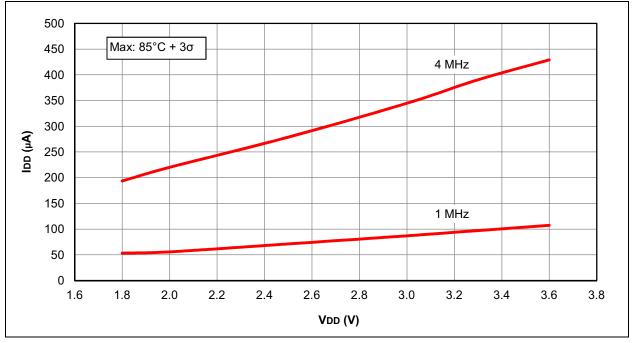
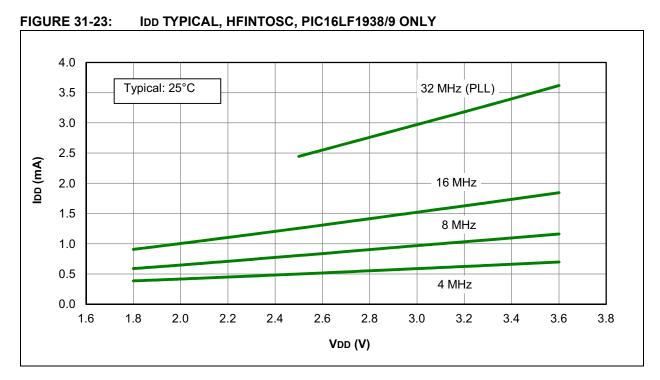
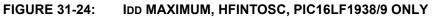
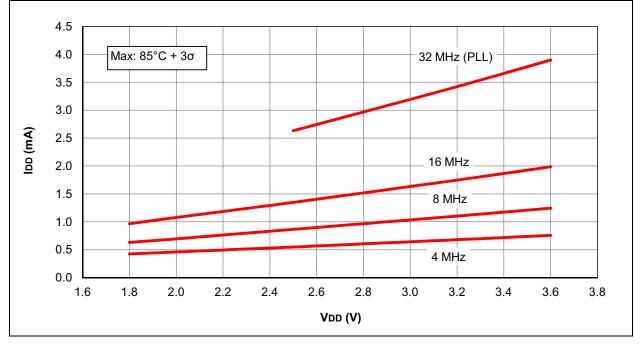
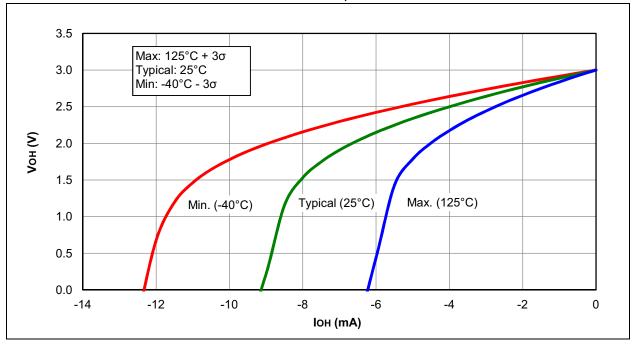
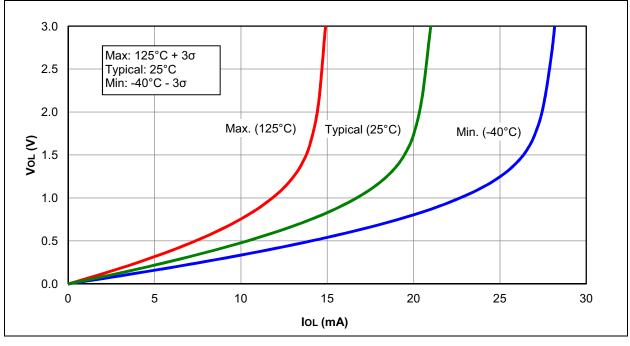
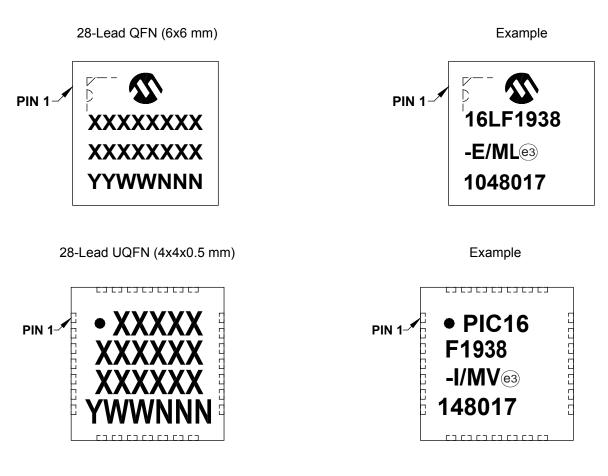


FIGURE 31-11: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY

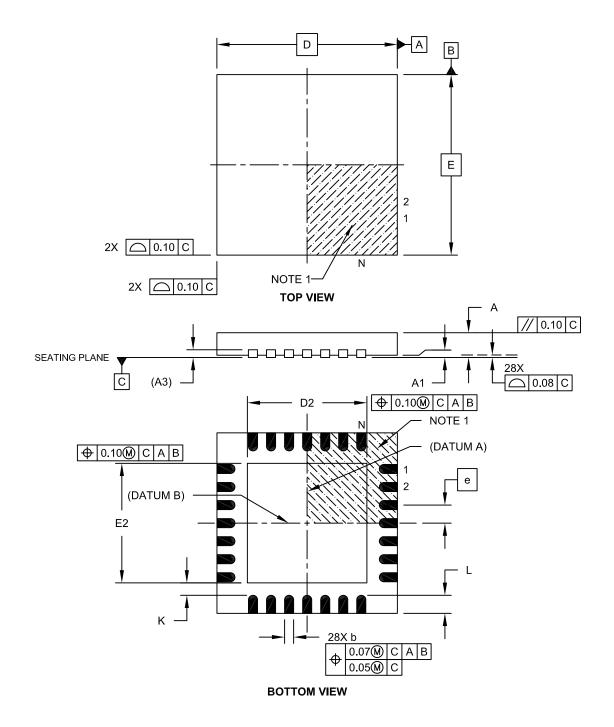







FIGURE 31-12: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY





Package Marking Information (Continued)



Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - <u>X</u> /XX XXX │ │ │ Tape and Reel Temperature Package Pattern Option Range	 Examples: a) PIC16LF1938 - I/P = Industrial temp., Plastic DIP package, low-voltage VDD limits. b) PIC16F1939 - I/PT = Industrial temp., TQFP package, standard VDD limits.
Device:	PIC16F1938, PIC16LF1938 PIC16F1939, PIC16LF1939	 c) PIC16F1939 - E/ML = Extended temp., QFN package, standard VDD limits.
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	
Temperature Range:	$ \begin{array}{rcl} I &=& -40^{\circ}\text{C to } +85^{\circ}\text{C} \\ E &=& -40^{\circ}\text{C to } +125^{\circ}\text{C} \end{array} \end{array} $	
Package:	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	3-Digit Pattern Code for QTP (blank otherwise)	