

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1938t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB4/AN11/CPS4/P1D/COM0	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN11	AN	—	A/D Channel 11 input.
	CPS4	AN	_	Capacitive sensing input 4.
	P1D	_	CMOS	PWM output.
	COM0	_	AN	LCD Analog output.
RB5/AN13/CPS5/P2B/CCP3 ⁽¹⁾ / P3A ⁽¹⁾ /T1G ⁽¹⁾ /COM1	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN13	AN		A/D Channel 13 input.
	CPS5	AN		Capacitive sensing input 5.
	P2B	_	CMOS	PWM output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	P3A	_	CMOS	PWM output.
	T1G	ST		Timer1 Gate input.
	COM1	_	AN	LCD Analog output.
RB6/ICSPCLK/ICDCLK/SEG14	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	ICSPCLK	ST		Serial Programming Clock.
	ICDCLK	ST		In-Circuit Debug Clock.
	SEG14		AN	LCD Analog output.
RB7/ICSPDAT/ICDDAT/SEG13	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
	ICDDAT	ST	CMOS	In-Circuit Data I/O.
	SEG13		AN	LCD Analog output.
RC0/T1OSO/T1CKI/P2B ⁽¹⁾	RC0	ST	CMOS	General purpose I/O.
	T10S0	XTAL	XTAL	Timer1 oscillator connection.
	T1CKI	ST		Timer1 clock input.
	P2B		CMOS	PWM output.
RC1/T10SI/CCP2 ⁽¹⁾ /P2A ⁽¹⁾	RC1	ST	CMOS	General purpose I/O.
	T10SI	XTAL	XTAL	Timer1 oscillator connection.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
	P2A		CMOS	PWM output.
RC2/CCP1/P1A/SEG3	RC2	ST	CMOS	General purpose I/O.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
	P1A	_	CMOS	PWM output.
	SEG3	—	AN	LCD Analog output.
RC3/SCK/SCL/SEG6	RC3	ST	CMOS	General purpose I/O.
	SCK	ST	CMOS	SPI clock.
	SCL	I ² C	OD	I ² C™ clock.
	SEG6		AN	LCD Analog output.

TABLE 1-2: PIC16(L)F1938/9 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels XTAL = Crystal

 I^2C^{TM} = Schmitt Trigger input with I^2C levels HV = High Voltage

Note 1: Pin function is selectable via the APFCON register.

- 2: PIC16F1938/9 devices only.
- 3: PIC16(L)F1938 devices only.
- 4: PORTD is available on PIC16(L)F1939 devices only.
- 5: RE<2:0> are available on PIC16(L)F1939 devices only.

TABLE 3-4: PIC16(L)F1938/9 MEMORY MAP, BANKS 8-15

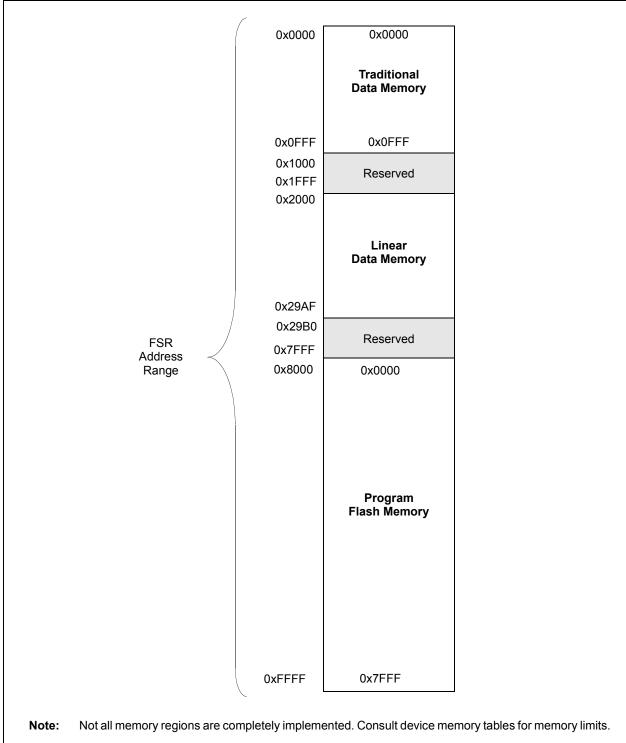
	BANK 8	-	BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	INDF0	480h	INDF0	500h	INDF0	580h	INDF0	600h	INDF0	680h	INDF0	700h	INDF0	780h	INDF0
401h	INDF1	481h	INDF1	501h	INDF1	581h	INDF1	601h	INDF1	681h	INDF1	701h	INDF1	781h	INDF1
402h	PCL	482h	PCL	502h	PCL	582h	PCL	602h	PCL	682h	PCL	702h	PCL	782h	PCL
403h	STATUS	483h	STATUS	503h	STATUS	583h	STATUS	603h	STATUS	683h	STATUS	703h	STATUS	783h	STATUS
404h	FSR0L	484h	FSR0L	504h	FSR0L	584h	FSR0L	604h	FSR0L	684h	FSR0L	704h	FSR0L	784h	FSR0L
405h	FSR0H	485h	FSR0H	505h	FSR0H	585h	FSR0H	605h	FSR0H	685h	FSR0H	705h	FSR0H	785h	FSR0H
406h	FSR1L	486h	FSR1L	506h	FSR1L	586h	FSR1L	606h	FSR1L	686h	FSR1L	706h	FSR1L	786h	FSR1L
407h	FSR1H	487h	FSR1H	507h	FSR1H	587h	FSR1H	607h	FSR1H	687h	FSR1H	707h	FSR1H	787h	FSR1H
408h	BSR	488h	BSR	508h	BSR	588h	BSR	608h	BSR	688h	BSR	708h	BSR	788h	BSR
409h	WREG	489h	WREG	509h	WREG	589h	WREG	609h	WREG	689h	WREG	709h	WREG	789h	WREG
40Ah	PCLATH	48Ah	PCLATH	50Ah	PCLATH	58Ah	PCLATH	60Ah	PCLATH	68Ah	PCLATH	70Ah	PCLATH	78Ah	PCLATH
40Bh	INTCON	48Bh	INTCON	50Bh	INTCON	58Bh	INTCON	60Bh	INTCON	68Bh	INTCON	70Bh	INTCON	78Bh	INTCON
40Ch	_	48Ch	_	50Ch		58Ch		60Ch		68Ch	—	70Ch	_	78Ch	—
40Dh	—	48Dh	_	50Dh	_	58Dh	—	60Dh		68Dh	—	70Dh		78Dh	—
40Eh	—	48Eh	_	50Eh	_	58Eh	_	60Eh		68Eh	—	70Eh	_	78Eh	—
40Fh	—	48Fh	—	50Fh	—	58Fh	—	60Fh	_	68Fh	—	70Fh	—	78Fh	—
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	—	491h	—	511h	—	591h	—	611h	_	691h	—	711h	—	791h	
412h	—	492h	—	512h	—	592h	—	612h	—	692h	—	712h	—	792h	
413h	—	493h	—	513h	—	593h	—	613h	—	693h	—	713h		793h	
414h	—	494h	_	514h	_	594h	_	614h	_	694h	_	714h		794h	
415h	TMR4	495h	—	515h	—	595h	—	615h	_	695h	_	715h	_	795h	
416h	PR4	496h	—	516h	_	596h	_	616h	_	696h		716h		796h	
417h	T4CON	497h	_	517h	_	597h	_	617h	_	697h	_	717h	_	797h	
418h	_	498h	_	518h	_	598h	_	618h	_	698h	_	718h	_	798h	
419h	_	499h	_	519h	_	599h	_	619h	_	699h	_	719h	_	799h	
41Ah	—	49Ah	—	51Ah	_	59Ah		61Ah		69Ah	_	71Ah	_	79Ah	See Table 3-7 or
41Bh		49Bh	_	51Bh	_	59Bh		61Bh		69Bh	_	71Bh		79Bh	Table 3-8
41Ch	TMR6	49Ch		51Ch		59Ch		61Ch		69Ch	_	71Ch		79Ch	
41Dh	PR6	49Dh	_	51Dh		59Dh		61Dh		69Dh	_	71Dh	_	79Dh	
41Eh	T6CON	49Eh	_	51Eh	—	59Eh	—	61Eh		69Eh		71Eh		79Eh	
41Fh	—	49Fh	—	51Fh	—	59Fh	—	61Fh	—	69Fh	—	71Fh	_	79Fh	
420h		4A0h		520h		5A0h		620h	General Purpose	6A0h		720h		7A0h	
	General		General		General		General		Register 48 Bytes						
	Purpose		Purpose		Purpose		Purpose		40 Byles		Unimplemented		Unimplemented		
	Register 80 Bytes		Register 80 Bytes		Register 80 Bytes		Register 80 Bytes		Unimplemented		Read as '0'		Read as '0'		
	of Bytes		00 Dytes		00 Dytes		00 Dytes		Read as '0'						
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses		Accesses		Accesses		Accesses								
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh								
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
100h ⁽²⁾	INDF0		ddressing this location uses contents of FSR0H/FSR0L to address data memory ot a physical register)								****
101h ⁽²⁾	INDF1		Addressing this location uses contents of FSR1H/FSR1L to address data memory not a physical register)								****
102h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
103h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
104h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ac	Idress 0 Low	Pointer					0000 0000	uuuu uuuu
105h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ac	ldress 0 High	Pointer					0000 0000	0000 0000
106h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ac	Idress 1 Low	Pointer					0000 0000	uuuu uuuu
107h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ac	ldress 1 High	Pointer					0000 0000	0000 0000
108h ⁽²⁾	BSR	_	—	—		I	BSR<4:0>			0 0000	0 0000
109h ⁽²⁾	WREG	Working Re	Vorking Register							0000 0000	uuuu uuuu
10Ah ^(1, 2)	PCLATH	_	Write Buffer for the upper 7 bits of the Program Counter						-000 0000	-000 0000	
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
10Ch	LATA	PORTA Dat	PORTA Data Latch								uuuu uuuu
10Dh	LATB	PORTB Da	PORTB Data Latch								uuuu uuuu
10Eh	LATC	PORTC Da	PORTC Data Latch							XXXX XXXX	uuuu uuuu
10Fh ⁽³⁾	LATD	PORTD Da	ta Latch							XXXX XXXX	uuuu uuuu
110h	LATE	_	—	—	—	—	LATE2 ⁽³⁾	LATE1 ⁽³⁾	LATE0 ⁽³⁾	xxx	uuu
111h	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NC	H<1:0>	000000	000000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	_	C2NC	H<1:0>	000000	000000
115h	CMOUT	_	_	_	_	_	_	MC2OUT	MC1OUT	00	00
116h	BORCON	SBOREN	_	_	_	_	_		BORRDY	1 q	u u
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR1	CDAFVR0	ADFV	R<1:0>	0q00 00p0	0q00 0000
118h	DACCON0	DACEN	DACLPS	DACOE		DACPS	S<1:0>		DACNSS	000- 00-0	000- 00-0
119h	DACCON1					D	ACR<4:0>		•	0 0000	0 0000
11Ah	SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
11Bh	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
11Ch	_	Unimpleme	nted					•	•	_	_
11Dh	APFCON	_	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	-000 0000	-000 0000
11Eh	_	Unimpleme	nted		I			1	1	_	_
11Fh	- Unimplemented										

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:


Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

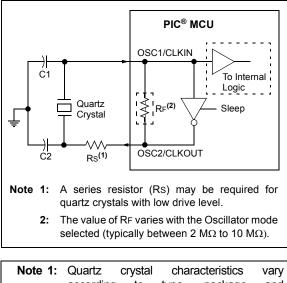
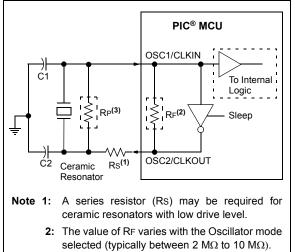

4: Unimplemented, read as '1'.

FIGURE 5-3:


QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- ote 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 5-4: CERAMIC RESONATOR OPERATION

(XT OR HS MODE)

 An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation.

5.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see Section 5.4 "Two-Speed Clock Start-up Mode").

5.2.1.4 4X PLL

The oscillator module contains a 4X PLL that can be used with both external and internal clock sources to provide a system clock source. The input frequency for the 4X PLL must fall within specifications. See the PLL Clock Timing Specifications in the applicable Electrical Specifications Chapter.

The 4X PLL may be enabled for use by one of two methods:

- 1. Program the PLLEN bit in Configuration Words to a '1'.
- Write the SPLLEN bit in the OSCCON register to a '1'. If the PLLEN bit in Configuration Words is programmed to a '1', then the value of SPLLEN is ignored.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

11.7 **Register Definitions: EEPROM and Flash Control**

REGISTER 11-1: EEDATL: EEPROM DATA LOW-BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit	t	U = Unimplem	ented bit, read as	ʻ0'	
u = Bit is unchar	nged	x = Bit is unknown		-n/n = Value at	POR and BOR/V	alue at all other f	Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0

EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH-BYTE REGISTER

	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
	_	—			EEDA	T<13:8>		
bit	7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'

bit 5-0 EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS LOW-BYTE REGISTER

EEADR<7:0>								
EEADR<7:0>								
bit 7	bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH-BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—				EEADR<14:8	>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

12.3 PORTA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 12-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 12-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

The TRISA register (Register 12-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.3.1 ANSELA REGISTER

The ANSELA register (Register 12-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

12.3.2 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-3.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, comparator and CapSense inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 12-3.

TABLE 12-3. FURTA OUTFUT FRIORIT	TABLE 12-3 :	PORTA OUTPUT PRIORITY
----------------------------------	---------------------	-----------------------

Pin Name	Function Priority ⁽¹⁾
RA0	VCAP SEG12 (LCD) SRNQ (SR Latch) C2OUT (Comparator) RA0
RA1	SEG7 (LCD) RA1
RA2	COM2 (LCD) DACOUT (DAC) RA2
RA3	COM3 (LCD) 28-pin only SEG15 RA3
RA4	SEG4 (LCD) SRQ (SR Latch) C1OUT (Comparator) CCP5, 28-pin only RA4
RA5	VCAP (enabled by Config. Word) SEG5 (LCD) SRNQ (SR Latch) C2OUT (Comparator) RA5
RA6	VCAP (enabled by Config. Word) OSC2 (enabled by Config. Word) CLKOUT (enabled by Config. Word) SEG1 (LCD) RA6
RA7	OSC1/CLKIN (enabled by Config. Word) SEG2 (LCD) RA7

Note 1: Priority listed from highest to lowest.

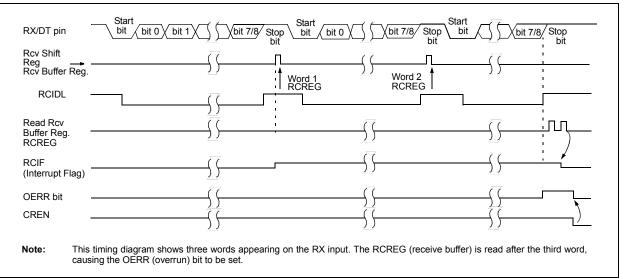
					520
ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 23-9: **EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES**

Note 1: PWM Steering enables outputs in Single mode.

FIGURE 23-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

PxM<1:0>	Signal	⁰	PRX+1
		-	- Period
00 (Single Output)	PxA Modulated		
	PxA Modulated	Delay	Delay ➡━
10 (Half-Bridge)	PxB Modulated	-	
	PxA Active	- <u>-</u>	
(Full-Bridge,	PxB Inactive		
⁰¹ Forward)	PxC Inactive		
	PxD Modulated		
	PxA Inactive	- :	
(Full-Bridge,	PxB Modulated	:	
Reverse)	PxC Active		
	PxD Inactive	- !	


Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

- 25.1.2.8 Asynchronous Reception Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

25.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 25-5: ASYNCHRONOUS RECEPTION

25.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for Synchronous slave operation:

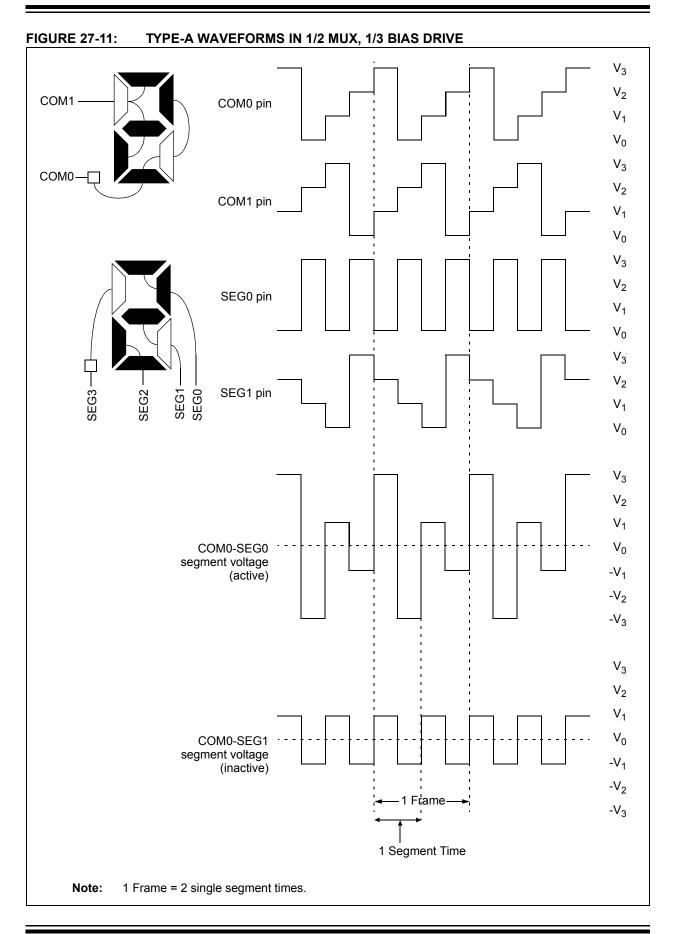
- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

25.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 25.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 25.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.


TABLE 25-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	298
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	297
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	134
TXREG	EUSART Transmit Data Register					289*			
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	296

Legend: — = unimplemented location read as '0'. Shaded cells are not used for synchronous slave transmission. * Page provides register information.

REGISTER 27-2: LCDPS: LCD PHASE REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1
WFT	BIASMD	LCDA	WA		LP<	:3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is unch	nanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	C = Only clea	rable bit		
bit 7	WFT: Wavefo	orm Type bit					
		phase changes					
	• • • •	bhase changes		common type			
bit 6		as Mode Select	bit				
	When LMUX		t a at this hit t	- (1)			
	When LMUX	as mode (do no <1:0> = 01:		J⊥)			
	1 = 1/2 Bias I						
	0 = 1/3 Bias I	mode					
	When LMUX						
	1 = 1/2 Bias I						
	0 = 1/3 Bias i When LMUX						
		mode (do not s	et this bit to '	1')			
bit 5		Active Status b		,			
	1 = LCD Driv	er module is a	ctive				
	0 = LCD Driver module is inactive						
bit 4	WA: LCD Wr	ite Allow Status	s bit				
		the LCDDATA the LCDDATA					
bit 3-0	LP<3:0>: LC	D Prescaler Se	election bits				
	1111 = 1:16						
	1110 = 1:15						
	1101 = 1:14 1100 = 1:13						
	1011 = 1 : 1 2						
	1010 = 1:11						
	1001 = 1:10						
	1000 = 1:9 0111 = 1:8						
	0110 = 1:7						
	0101 = 1:6						
	0100 = 1:5 0011 = 1:4						
	0011 = 1.4 0010 = 1:3						
	0001 = 1:2						
	0000 = 1:1						

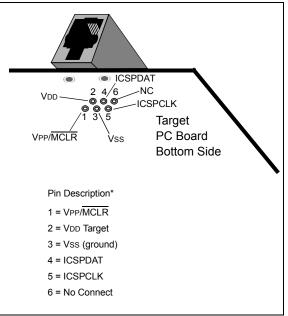
28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F193X devices to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. $\overline{\text{MCLR}}$ is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.4 "MCLR"** for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

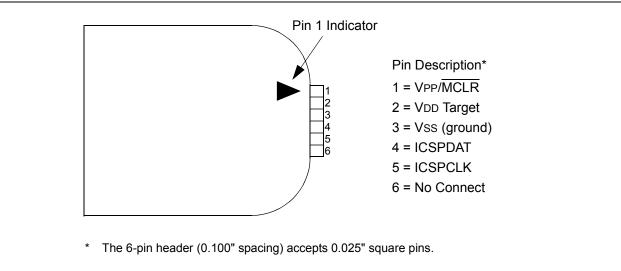

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	 W → INDFn Effective address is determined by FSR + 1 (preincrement) FSR - 1 (predecrement) FSR + k (relative offset) After the Move, the FSR value will be either: FSR + 1 (all increments) FSR - 1 (all decrements) Unchanged
Status Affected:	None

Mode	Syntax	mm	
Preincrement	++FSRn	00	
Predecrement	FSRn	01	
Postincrement	FSRn++	10	
Postdecrement	FSRn	11	

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	(W) \rightarrow OPTION_REG
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F
	After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

30.3 DC Characteristics: PIC16(L)F1938/39-I/E (Power-Down)

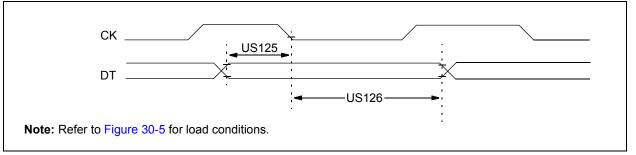
PIC16LF1938/39 PIC16F1938/39		$\begin{array}{llllllllllllllllllllllllllllllllllll$					lustrial		
		Standard Operating Cond Operating temperature			ditions (unless otherwise s -40°C \leq TA \leq +85°C for ind -40°C \leq TA \leq +125°C for ex			lustrial	
Param	Device Characteristics	Min.	Тур†	Max. +85°C	Max. +125°C	Units	Conditions		
No.			וקעי				VDD	Note	
	Power-down Base Current	(IPD) ⁽²⁾							
D023	Base IPD	—	0.06	1.0	8.0	μA	1.8	WDT, BOR, FVR, and T1OSC	
		—	0.08	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive	
D023	Base IPD	—	15	35	45	μA	1.8	WDT, BOR, FVR, and T1OSC	
		_	18	40	50	μA	3.0	disabled, all Peripherals Inactive	
		—	19	45	55	μA	5.0		
D024			0.5	6.0	9.0	μA	1.8	LPWDT Current (Note 1)	
		—	0.8	7.0	10	μA	3.0		
D024			16	35	45	μA	1.8	LPWDT Current (Note 1)	
			19	40	50	μA	3.0		
		—	20	45	55	μA	5.0		
D025			8.5	23	30	μA	1.8	FVR current	
		—	8.5	26	33	μA	3.0		
D025			32	55	70	μA	1.8	FVR current (Note 4)	
			39	72	80	μA	3.0		
		—	70	100	110	μA	5.0		
D026		—	7.5	25	28	μA	3.0	BOR Current (Note 1)	
D026		_	34	57	67	μA	3.0	BOR Current (Note 1, Note 4)	
		—	67	120	130	μA	5.0		
D027		_	0.6	5.0	9.0	μA	1.8	T1OSC Current (Note 1)	
			1.8	6.0	12	μA	3.0		
D027		_	16	45	50	μA	1.8	T1OSC Current (Note 1)	
		_	21	50	55	μA	3.0		
			25	55	65	μA	5.0		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.


3: A/D oscillator source is FRC.

4: 0.1 μF capacitor on VCAP (RA0).

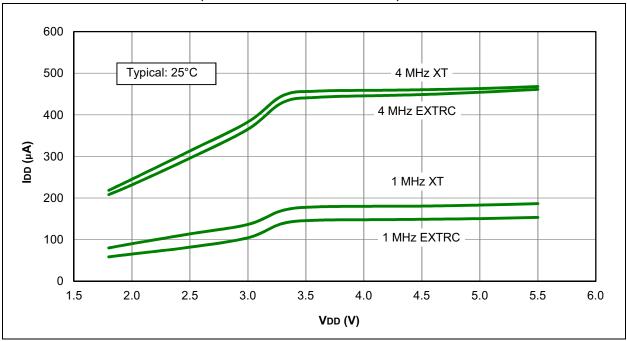
TABLE 30-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions	
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns		
	С	Clock high to data-out valid	1.8-5.5V		100	ns		
US121	21 TCKRF Clock out rise time and fall time	3.0-5.5V	—	45	ns			
		(Master mode)	1.8-5.5V	—	50	ns		
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	—	45	ns		
			1.8-5.5V	—	50	ns		

FIGURE 30-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 30-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before $CK \downarrow$ (DT hold time)	10	_	ns		
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	—	ns		


TABLE 30-16: I²C[™] BUS DATA REQUIREMENTS

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100* THIGH Clock hi		Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	_		
SP101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	—		
SP102* TR SDA and SC		SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDA and SCL fall	100 kHz mode	—	250	ns	
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	Data input setup	100 kHz mode	250		ns	(Note 2)
		time	400 kHz mode	100	_	ns	
SP109*	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	(Note 1)
		clock	400 kHz mode	_	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loadir	ng	—	400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C [™] bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TsU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

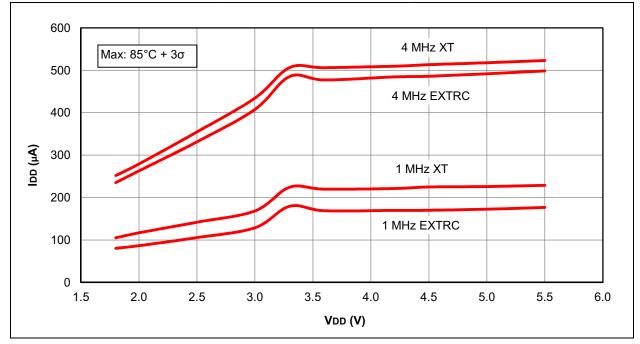


FIGURE 31-6: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16F1938/9 ONLY

Formulas	
High Baud Rate Select (BRGH Bit)	
Synchronous Master Mode	
Associated Registers	
Receive	311
Transmit	
Reception	
Transmission	
Synchronous Slave Mode	
Associated Registers	
Receive	313
Transmit	
Reception	
Transmission	
Extended Instruction Set	0.07
ADDFSR	
F	
Fail-Safe Clock Monitor	71
Fail-Safe Condition Clearing	71
Fail-Safe Detection	71
Fail-Safe Operation	71

Fail-Safe Operation	
Reset or Wake-up from Sleep	71
Firmware Instructions	363
Fixed Voltage Reference (FVR)	
Associated Registers	148
Flash Program Memory	107
Erasing	112
Modifying	116
Writing	112
FSR Register 32, 33, 34, 35, 36, 37, 38, 39, 40, 41	, 42, 44, 45
FVRCON (Fixed Voltage Reference Control) Regi	ister 148

| |²/

I ² C Mode (MSSP)	
Acknowledge Sequence Timing	4
Bus Collision	
During a Repeated Start Condition	8
During a Stop Condition27	9
Effects of a Reset	5
I ² C Clock Rate w/BRG28	1
Master Mode	
Operation	6
Reception272	
Start Condition Timing	9
Transmission27	0
Multi-Master Communication, Bus Collision	
and Arbitration27	5
Multi-Master Mode27	
Read/Write Bit Information (R/W Bit)	1
Slave Mode	
Transmission25	6
Sleep Operation27	5
Stop Condition Timing274	
INDF Register 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 44	5
Indirect Addressing4	9
Instruction Format	4
Instruction Set	3
ADDLW	7
ADDWF	7
ADDWFC	7
ANDLW	7
ANDWF	
BCF	
BRA	
BSF	8

PIC16(L)	F1938/9
----------	---------

BTFSC	368
BTFSS	368
CALL	369
CALLW	
CLRF	369
CLRW	369
CLRWDT	369
COMF	
DECF	369
DECFSZ	370
GOTO	370
INCF	
INCFSZ	370
IORLW	370
IORWF	370
LSLF	
LSRF	
MOVF	371
MOVIW	372
MOVLB	372
MOVLW	
MOVWF	372
MOVWI	373
NOP	373
OPTION	
RESET	373
RETFIE	374
RETLW	374
RETURN	
RLF	
RRF	375
SLEEP	375
SUBLW	
SUBWF	
SUBWFB	375
SWAPF	376
TRIS	376
XORLW	
XORWF	
INTCON Register	. 90
Internal Oscillator Block	
INTOSC	
	~~~
Specifications	
Internal Sampling Switch (Rss) Impedance	159
Internet Address	483
Interrupt-On-Change	
Associated Registers	
Interrupts	85
ADC	154
Associated registers w/ Interrupts	97
Configuration Word w/ Clock Sources	
TMR1	
INTOSC Specifications	393
IOCBF Register	145
IOCBN Register	
IOCBP Register	145
L	
L	
LATA Register 125,	134
LATB Register	
LATD Register	
LATE Register	141
LCD	
Bias Voltage Generation	334
Clock Source Selection	
	222
Configuring the Module	