

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1939-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

REGISTER 3-1:

3.3

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 29.0 "Instruction Set Summary").

Note 1:	The C and DC bits operate as Borrow
	and Digit Borrow out bits, respectively, in
	subtraction.

Register Definitions: Status

STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
—	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction
	0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	1 = The result of an arithmetic or logic operation is zero
	0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the 4th low-order bit of the result occurred
	0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

bit of the source register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3									-		
180h ⁽²⁾	INDF0	Addressing (not a phys	this location ical register)	uses contents	s of FSR0H/F	SR0L to addr	ess data me	mory		XXXX XXXX	XXXX XXXX
181h ⁽²⁾	INDF1	Addressing (not a phys	Addressing this location uses contents of FSR1H/FSR1L to address data memory not a physical register)								XXXX XXXX
182h ⁽²⁾	PCL	Program C	Program Counter (PC) Least Significant Byte								0000 0000
183h ⁽²⁾	STATUS	—	—	—	TO	PD	Z	DC	С	1 1000	q quuu
184h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ad	ddress 0 Low	Pointer					0000 0000	uuuu uuuu
185h ⁽²⁾	FSR0H	Indirect Dat	ta Memory Ad	ddress 0 High	Pointer					0000 0000	0000 0000
186h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ad	ddress 1 Low	Pointer					0000 0000	uuuu uuuu
187h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ad	ddress 1 High	Pointer					0000 0000	0000 0000
188h ⁽²⁾	BSR	—	—	—		I	BSR<4:0>			0 0000	0 0000
189h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
18Ah ^(1, 2)	PCLATH	—	Write Buffer	for the upper	7 bits of the F	Program Cour	iter			-000 0000	-000 0000
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
18Ch	ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111
18Dh	ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
18Eh	—	Unimpleme	nted							—	_
18Fh ⁽³⁾	ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111
190h ⁽³⁾	ANSELE	—	—	_	_	—	ANSE2	ANSE1	ANSE0	111	111
191h	EEADRL	EEPROM /	Program Me	mory Address	Register Lov	v Byte				0000 0000	0000 0000
192h	EEADRH	(4)	EEPROM / F	Program Mem	ory Address	Register High	Byte			1000 0000	1000 0000
193h	EEDATL	EEPROM /	Program Me	mory Read D	ata Register L	ow Byte				XXXX XXXX	uuuu uuuu
194h	EEDATH	_	_	EEPROM / F	Program Mem	ory Read Dat	a Register H	igh Byte		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	0000 x000	0000 q000
196h	EECON2	EEPROM of	control registe	er 2						0000 0000	0000 0000
197h	—	Unimpleme	nted							_	_
198h	—	Unimpleme	nted							—	_
199h	RCREG	USART Re	ceive Data R	egister						0000 0000	0000 0000
19Ah	TXREG	USART Tra	insmit Data R	egister						0000 0000	0000 0000
19Bh	SPBRGL				BRG<	7:0>				0000 0000	0000 0000
19Ch	SPBRGH				BRG<1	15:8>				0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-10.

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'. 3:

4: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu POR,	e on BOR	Value oti Res	on all her sets
Banks 1	6-30	30											
x00h/ x80h ⁽²⁾	INDF0	Addressing (not a phys	this location ical register)	uses contents	s of FSR0H/F	SR0L to addr	ess data mei	mory		XXXX	XXXX	XXXX	XXXX
x00h/ x81h ⁽²⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								XXXX	XXXX	XXXX	XXXX
x02h/ x82h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	int Byte					0000	0000	0000	0000
x03h/ x83h ⁽²⁾	STATUS	—	-	-	TO	PD	Z	DC	С	1	1000	d	quuu
x04h/ x84h ⁽²⁾	FSR0L	Indirect Data Memory Address 0 Low Pointer									0000	uuuu	uuuu
x05h/ x85h ⁽²⁾	FSR0H	Indirect Data Memory Address 0 High Pointer								0000	0000	0000	0000
x06h/ x86h ⁽²⁾	FSR1L	Indirect Data Memory Address 1 Low Pointer									0000	uuuu	uuuu
x07h/ x87h ⁽²⁾	FSR1H	Indirect Data Memory Address 1 High Pointer									0000	0000	0000
x08h/ x88h ⁽²⁾	BSR	_	_	_		I	BSR<4:0>			0	0000	0	0000
x09h/ x89h ⁽²⁾	WREG	Working Register									0000	uuuu	uuuu
x0Ah/ x8Ah ^{(1),(2)}	PCLATH	Write Buffer for the upper 7 bits of the Program Counter							-000	0000	-000	0000	
x0Bh/ x8Bh ⁽²⁾	INTCON	GIE PEIE TMROIE INTE IOCIE TMROIF INTF IOCIF						0000	0000	0000	0000		
x0Ch/ x8Ch 	_	Unimpleme	nted							-	_	-	-

 $\label{eq:Legend: Legend: Le$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

4: Unimplemented, read as '1'.

4.2 Register Definitions: Configuration

REGISTER 4-1: CONFIGURATION WORD 1

		R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1
		FCMEN	IESO	CLKOUTEN	BORE	EN<1:0>	CPD
		bit 13	1	1			bit 8
R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1	R/P-1/1
CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>	
bit7	•	•	•				bit 0
Legend:							
R = Readable bit		P = Programma	able bit	U = Unimpleme	nted bit, read	as '1'	
'0' = Bit is cleared		'1' = Bit is set		-n = Value wher	n blank or after	Bulk Erase	
bit 13	FCMEN: Fail-Sa 1 = Fail-Safe Cl 0 = Fail-Safe Cl	afe Clock Monitor E ock Monitor is enal	Enable bit bled bled				
hit 12	IFSO: Internal F	External Switchove	r hit				
51(12	1 = Internal/Exte	ernal Switchover m	ode is enabled				
	0 = Internal/Exte	ernal Switchover m	ode is disabled				
bit 11	CLKOUTEN: C	lock Out Enable bit					
	1 = CLKOUT fill = CLKOUT fil	unction is disabled	. I/O or oscillato	or function on RA6	CLKOUT		
bit 10.0		Brown out Bosot E	nable bite(1)				
bit 10-9	11 = BOR enab	led					
	10 = BOR enab	led during operation	n and disabled	in Sleep			
	01 = BOR contr	olled by SBOREN	bit of the PCON	l register			
hit 8		e Protection hit(2)					
DILO	1 = Data memor	rv code protection	is disabled				
	0 = Data memor	ry code protection	is enabled				
bit 7	CP: Code Prote	ction bit ⁽³⁾					
	1 = Program me	emory code protect	ion is disabled				
h # 0		CL D (122 Dia Fuer	ion is enabled				
DILO	If I VP bit = 1	ICLR/VPP PIn Fund	ction Select bit				
	This bit is ig	nored.					
	If LVP bit = 0 :						
	1 = RE3/MO0 = RE3/MO	CLR/VPP pin functio	n is MCLR; Wea	Ak pull-up enabled.	isahled: Weak	null-un under con	trol of WPLIE3
	bit		in io algital input,				
bit 5	PWRTE: Power	-up Timer Enable I	oit ⁽¹⁾				
	1 = PWRT disa	abled					
	0 = PWRT ena	bled					
bit 4-3	WDTE<1:0>: W	atchdog Timer Ena	able bit				
	11 = WDT enable 10 = WDT enable 10	olea oled while running :	and disabled in	Sleen			
	01 = WDT cont	rolled by the SWD	TEN bit in the W	VDTCON register			
	00 = WDT disal	bled		-			
Note 1. Frah	ling Brown-out Pe	set does not autor	matically enable	Power-un Timer			

- 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
- **3:** The entire program memory will be erased when the code protection is turned off.

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The Low Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.

5.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The output of the 16 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- HFINTOSC
 - 32 MHz (requires 4X PLL)
 - 16 MHz
 - 8 MHz
 - 4 MHz
 - 2 MHz
 - 1 MHz
 - 500 kHz (Default after Reset)
 - 250 kHz
 - 125 kHz
 - 62.5 kHz
 - 31.25 kHz
- LFINTOSC
 - 31 kHz
- Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	_			TUN	<5:0>						
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOR/Value at all other Re						
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7-6	Unimplemer	nted: Read as '	0'								
bit 5-0	TUN<5:0>: F	Frequency Tunir	ng bits								
	100000 = M	linimum frequer	псу								
	•										
	•										
	• 111111 =										
	000000 = O	000000 = Oscillator module is running at the factory-calibrated frequency.									
	000001 =		C C	-		-					
	•										
	•										
	•										
	011111 = M	laximum freque	ncy								

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

	TABLE 5-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES
--	------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
OSCCON	SPLLEN		IRCF	<3:0>		_	SCS	73			
OSCSTAT	T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	74		
OSCTUNE	_			TUN<5:0>							
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE		CCP2IE ⁽¹⁾	92		
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF ⁽¹⁾	95		
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC		TMR10N	197		

Note 1: PIC16F1934 only.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8		_	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	54
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>	FOSC<2:0>		54	
0015100	13:8	_	_	LVP	DEBUG	_	BORV	STVREN	PLLEN	50
CONFIG2	7:0			VCAPEN	I<1:0> ⁽¹⁾	_		WRT	<1:0>	56

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F193X only.

R/W-0/	/0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF
bit 7	•						bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is u	unchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BOI	R/Value at all	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	OSFIF: Oscill 1 = Interrupt i 0 = Interrupt i	ator Fail Interr s pending	upt Flag				
bit 6	C2IF: Compa 1 = Interrupt i 0 = Interrupt i	rator C2 Interr s pending s not pending	upt Flag				
bit 5	C1IF: Comparator C1 Interrupt Flag 1 = Interrupt is pending 0 = Interrupt is pot pending						
bit 4	EEIF: EEPRO 1 = Interrupt i 0 = Interrupt i	EEIF: EEPROM Write Completion Interrup 1 = Interrupt is pending 0 = Interrupt is not pending					
bit 3	BCLIF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending						
bit 2	LCDIF: LCD Module Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is pot pending						
bit 1	Unimplemen	ted: Read as '	0'				
bit 0	CCP2IF: CCF	P2 Interrupt Fla	ıg bit				
	 1 = Interrupt is pending 0 = Interrupt is not pending 						
Note:	Interrupt flag bits a condition occurs, re its corresponding e Enable bit, GIE, c User software appropriate interrup to enabling an inter	re set when an egardless of th enable bit or th of the INTCON should ensu pt flag bits are c rrupt.	interrupt e state of ne Global register. ure the clear prior				

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

EXAMPLE 11-4: ERASING ONE ROW OF PROGRAM MEMORY

;	This	row erase r	outine assumes	the following:
;	1. A	valid addre	ess within the e	rase block is loaded in ADDRH:ADDRL
;	2. AI	DDRH and ADD	RL are located	in shared data memory 0x70 - 0x7F (common RAM)
		BCF	INTCON, GIE	; Disable ints so required sequences will execute properly
		BANKSEL	EEADRL	
		MOVF	ADDRL,W	; Load lower 8 bits of erase address boundary
		MOVWF	EEADRL	
		MOVF	ADDRH,W	; Load upper 6 bits of erase address boundary
		MOVWF	EEADRH	
		BSF	EECON1, EEPGD	; Point to program memory
		BCF	EECON1,CFGS	; Not configuration space
		BSF	EECON1, FREE	; Specify an erase operation
		BSF	EECON1,WREN	; Enable writes
		MOVLW	55h	; Start of required sequence to initiate erase
		MOVWF	EECON2	; Write 55h
	be e	MOVLW	0AAh	;
	uire Jer	MOVWF	EECON2	; Write AAh
	equ	BSF	EECON1,WR	; Set WR bit to begin erase
	шŵ	NOP		; Any instructions here are ignored as processor
				; halts to begin erase sequence
		NOP		; Processor will stop here and wait for erase complete.
				; after erase processor continues with 3rd instruction
		BCF	EECON1,WREN	; Disable writes
		BSF	INTCON,GIE	; Enable interrupts

REGISTER 15-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—	—	—	ADRE	S<9:8>
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 15-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADRES | 6<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADRES<7:0>**: ADC Result Register bits Lower eight bits of 10-bit conversion result

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin
- Capacitive Sensing module (CPS)

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

$\frac{IF DACEN = 1}{VOUT} = \left((VSOURCE+ - VSOURCE-) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE \frac{IF DACEN = 0 \& DACLPS = 1 \& DACR[4:0] = 11111}{VOUT} = VSOURCE +$

<u>IF DACEN = 0 & DACLPS = 0 & DACR[4:0] = 00000</u>

VOUT = VSOURCE -

VSOURCE+ = VDD, VREF, or FVR BUFFER 2

VSOURCE - = VSS

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Section 30.0 "Electrical Specifications".

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

The DAC output voltage is determined by the following equations:

17.3 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 17-2 shows an example buffering technique.

23.4.2 FULL-BRIDGE MODE

In Full-Bridge mode, all four pins are used as outputs. An example of Full-Bridge application is shown in Figure 23-10.

In the Forward mode, pin CCPx/PxA is driven to its active state, pin PxD is modulated, while PxB and PxC will be driven to their inactive state as shown in Figure 23-11.

In the Reverse mode, PxC is driven to its active state, pin PxB is modulated, while PxA and PxD will be driven to their inactive state as shown Figure 23-11.

PxA, PxB, PxC and PxD outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cleared to configure the PxA, PxB, PxC and PxD pins as outputs.

FIGURE 23-10: EXAMPLE OF FULL-BRIDGE APPLICATION

25.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

25.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

25.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

25.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

25.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 25.5.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{•} \ &\text{FSR} + 1 \ (\text{preincrement}) \\ &\text{•} \ &\text{FSR} + 1 \ (\text{predecrement}) \\ &\text{•} \ &\text{FSR} + k \ (\text{relative offset}) \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{•} \ &\text{FSR} + 1 \ (\text{all increments}) \\ &\text{•} \ &\text{FSR} - 1 \ (\text{all decrements}) \\ &\text{•} \ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \le k \le 15$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>]MOVLP k
Operands:	$0 \le k \le 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The seven-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W

Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

MOVWF	Move W to f			
Syntax:	[<i>label</i>] MOVWF f			
Operands:	$0 \leq f \leq 127$			
Operation:	$(W) \rightarrow (f)$			
Status Affected:	None			
Description:	Move data from W register to register 'f'.			
Words:	1			
Cycles:	1			
Example:	MOVWF OPTION_REG			
	Before Instruction OPTION_REG = 0xFF W = 0x4F			
	OPTION REG = 0x4F			
	W = 0x4F			

30.6 Thermal Considerations

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	60.0	°C/W	28-pin SPDIP package		
			69.7	°C/W	28-pin SOIC package		
			71.0	°C/W	28-pin SSOP package		
			27.5	°C/W	28-pin UQFN 4x4mm package		
			31.1	°C/W	28-pin QFN 6x6mm package		
			47.2	°C/W	40-pin PDIP package		
			49.8	°C/W	44-pin TQFP package		
			29.0	°C/W	44-pin QFN 8x8mm package		
TH02	θJC	Thermal Resistance Junction to Case	29.0	°C/W	28-pin SPDIP package		
			18.9	°C/W	28-pin SOIC package		
			24.0	°C/W	28-pin SSOP package		
			24.0	°C/W	28-pin UQFN 4x4mm package		
			5.0	°C/W	28-pin QFN 6x6mm package		
			24.7	°C/W	40-pin PDIP package		
			26.7	°C/W	44-pin TQFP package		
			2.0	°C/W	44-pin QFN 8x8mm package		
TH03	TJMAX	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	PDER	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾		

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature

FIGURE 31-11: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY

FIGURE 31-12: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM-POWER MODE, PIC16LF1938/9 ONLY

FIGURE 31-50: IPD, COMPARATOR, NORMAL-POWER MODE, (CxSP = 1), PIC16F1938/9 ONLY

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	Z	28			
Pitch	е	1.27 BSC			
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25 - 0.75			
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	40			
Pitch	е	0.40 BSC			
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	5.00 BSC			
Exposed Pad Width	E2	3.60 3.70 3.80			
Overall Length	D	5.00 BSC			
Exposed Pad Length	D2	3.60	3.70	3.80	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2