

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

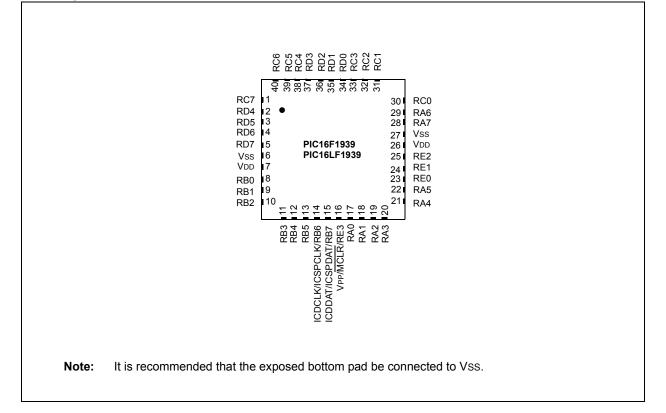
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1939-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 40-Pin PDIP

VPP/MCLR/RE3	1	
RA0	2	
RA1	3	38 RB5
RA2	4	37 RB4
RA3	5	36 RB3
RA4	6	35 RB2
RA5	7	34 RB1
RE0	8	33 RB0
RE1	939 6	32 VDD 31 Vss 30 RD7
RE2	PIC16F1939	31 □ Vss
VDD	11 5	<u>5</u> 30 ∏ RD7
Vss	12 6	• 29 RD6
RA7	13	28 RD5
RA6	14	27 RD4
RC0	15	26 RC7
RC1	16	25 RC6
RC2	17	24 RC5
RC3	18	23 RC4
RD0	19	22 RD3
RD1	20	21 RD2
	L	

Pin Diagram – 40-Pin UQFN 5x5

TABLE 1-2: PIC16(L)F1938/9 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/SDI/SDA/T1G ⁽¹⁾ /SEG11	RC4	ST	CMOS	General purpose I/O.
	SDI	ST	—	SPI data input.
	SDA	l ² C	OD	I ² C™ data input/output.
	T1G	ST	—	Timer1 Gate input.
	SEG11	_	AN	LCD Analog output.
RC5/SDO/SEG10	RC5	ST	CMOS	General purpose I/O.
	SDO		CMOS	SPI data output.
	SEG10		AN	LCD Analog output.
RC6/TX/CK/CCP3/P3A/SEG9	RC6	ST	CMOS	General purpose I/O.
	TX		CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	P3A		CMOS	PWM output.
	SEG9		AN	LCD Analog output.
RC7/RX/DT/P3B/SEG8	RC7	ST	CMOS	General purpose I/O.
	RX	ST	—	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	P3B	_	CMOS	PWM output.
	SEG8		AN	LCD Analog output.
RD0 ⁽⁴⁾ /CPS8/COM3	RD0	ST	CMOS	General purpose I/O.
	CPS8	AN		Capacitive sensing input 8.
	COM3		AN	LCD analog output.
RD1 ⁽⁴⁾ /CPS9/CCP4	RD1	ST	CMOS	General purpose I/O.
	CPS9	AN		Capacitive sensing input 9.
	CCP4	ST	CMOS	Capture/Compare/PWM4.
RD2 ⁽⁴⁾ /CPS10/P2B	RD2	ST	CMOS	General purpose I/O.
	CPS10	AN	_	Capacitive sensing input 10.
	P2B		CMOS	PWM output.
RD3 ⁽⁴⁾ /CPS11/P2C/SEG16	RD3	ST	CMOS	General purpose I/O.
	CPS11	AN	-	Capacitive sensing input 11.
	P2C		CMOS	PWM output.
	SEG16	_	AN	LCD analog output.
RD4 ⁽⁴⁾ /CPS12/P2D/SEG17	RD4	ST	CMOS	General purpose I/O.
	CPS12	AN	—	Capacitive sensing input 12.
	P2D	_	CMOS	PWM output.
	SEG17	_	AN	LCD analog output.
RD5 ⁽⁴⁾ /CPS13/P1B/SEG18	RD5	ST	CMOS	General purpose I/O.
	CPS13	AN	_	Capacitive sensing input 13.
	P1D	_	CMOS	PWM output.
	SEG18	_	AN	LCD analog output.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain with CMOS levels XTAL = Crystal TTL = TTL compatible i

IIL = IIL compatible input SI = Schmitt Trigger input
HV = High Voltage
$$I^2C^{TM}$$
 = Schmitt Trigger input

 I^2C^{TM} = Schmitt Trigger input with I^2C levels

Note 1: Pin function is selectable via the APFCON register.

- 2: PIC16F1938/9 devices only.
- 3: PIC16(L)F1938 devices only.
- 4: PORTD is available on PIC16(L)F1939 devices only.

5: RE<2:0> are available on PIC16(L)F1939 devices only.

TABLE 3-6: PIC16(L)F1938/9 MEMORY MAP, BANKS 24-31

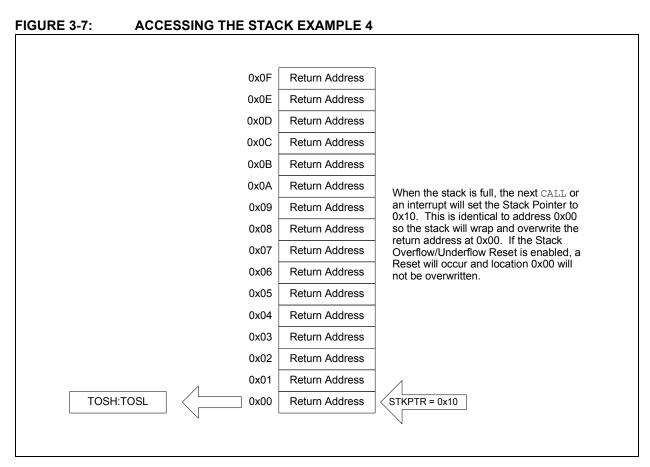
	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	_	C8Ch	—	D0Ch		D8Ch	—	E0Ch		E8Ch	_	F0Ch	_	F8Ch	
C0Dh	_	C8Dh	—	D0Dh		D8Dh	—	E0Dh		E8Dh	_	F0Dh	_	F8Dh	
C0Eh	_	C8Eh	—	D0Eh		D8Eh	—	E0Eh		E8Eh		F0Eh	_	F8Eh	
C0Fh	_	C8Fh	—	D0Fh		D8Fh	—	E0Fh		E8Fh		F0Fh	_	F8Fh	
C10h	_	C90h	—	D10h		D90h	—	E10h		E90h		F10h	_	F90h	
C11h	_	C91h	—	D11h		D91h	—	E11h		E91h	_	F11h	_	F91h	
C12h	—	C92h	—	D12h	_	D92h	—	E12h	—	E92h	—	F12h	—	F92h	
C13h	—	C93h	—	D13h	_	D93h	—	E13h	—	E93h	—	F13h	—	F93h	
C14h	—	C94h	—	D14h	_	D94h	—	E14h	—	E94h	—	F14h	—	F94h	
C15h	—	C95h	—	D15h	_	D95h	—	E15h	_	E95h	_	F15h	—	F95h	
C16h	—	C96h	_	D16h	_	D96h	—	E16h	_	E96h	_	F16h	—	F96h	
C17h	—	C97h	_	D17h	_	D97h	—	E17h	_	E97h	_	F17h	—	F97h	
C18h	—	C98h	_	D18h	_	D98h	—	E18h	_	E98h	—	F18h	—	F98h	See Table 3-9
C19h	—	C99h	_	D19h	_	D99h	_	E19h	_	E99h	—	F19h	—	F99h	
C1Ah	—	C9Ah	_	D1Ah		D9Ah	_	E1Ah		E9Ah		F1Ah	—	F9Ah	
C1Bh	—	C9Bh	_	D1Bh	—	D9Bh	_	E1Bh	_	E9Bh	—	F1Bh	—	F9Bh	
C1Ch	—	C9Ch	_	D1Ch	_	D9Ch	—	E1Ch	_	E9Ch	—	F1Ch	—	F9Ch	
C1Dh	—	C9Dh	—	D1Dh	—	D9Dh	—	E1Dh	_	E9Dh	—	F1Dh	—	F9Dh	
C1Eh	—	C9Eh	—	D1Eh	—	D9Eh	—	E1Eh	_	E9Eh	—	F1Eh	—	F9Eh	
C1Fh	—	C9Fh	—	D1Fh	—	D9Fh	—	E1Fh	_	E9Fh	—	F1Fh	—	F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
C6Fh	Unimplemented Read as '0'	CEFh	Unimplemented Read as '0'	D6Fh	Unimplemented Read as '0'	DEFh	Unimplemented Read as '0'	E6Fh	Unimplemented Read as '0'	EEFh	Unimplemented Read as '0'	F6Fh	Unimplemented Read as '0'	FEFh	
C6Fh C70h		CEFn CF0h		D6Fn D70h		DEFn DF0h		E6Fn E70h		EEFn EF0h		F6FN F70h		FEFN FF0h	
0701	Accesses 70h – 7Fh		Accesses 70h – 7Fh	-	Accesses 70h – 7Fh		Accesses 70h – 7Fh	-	Accesses 70h – 7Fh						
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8											
400h ⁽²⁾	INDF0		Addressing this location uses contents of FSR0H/FSR0L to address data memory not a physical register)								****
401h ⁽²⁾	INDF1		this location cal register)	uses contents	s of FSR1H/F	SR1L to addr	ess data men	nory		****	XXXX XXXX
402h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
403h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
404h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ac	Idress 0 Low	Pointer					0000 0000	uuuu uuuu
405h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ac	ldress 0 High	Pointer					0000 0000	0000 0000
406h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ac	Idress 1 Low	Pointer					0000 0000	uuuu uuuu
407h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ac	ldress 1 High	Pointer					0000 0000	0000 0000
408h ⁽²⁾	BSR	_	_	—			BSR<4:0>			0 0000	0 0000
409h ⁽²⁾	WREG	Working Re	gister							0000 0000	uuuu uuuu
40Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the I	Program Cour	nter			-000 0000	-000 0000
40Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
40Ch	_	Unimpleme	Unimplemented								_
40Dh	—	Unimpleme	Unimplemented								_
40Eh	—	Unimpleme	nted							_	_
40Fh	—	Unimpleme	nted							_	_
410h	—	Unimpleme	nted							_	_
411h	—	Unimpleme	nted							_	_
412h	—	Unimpleme	nted							_	_
413h	—	Unimpleme	nted							_	_
414h	—	Unimpleme	nted							_	_
415h	TMR4	Timer 4 Mo	dule Register							0000 0000	0000 0000
416h	PR4	Timer 4 Per	iod Register							1111 1111	1111 1111
417h	T4CON	—		T4OUT	PS<3:0>		TMR40N	T4CK	PS<1:0>	-000 0000	-000 0000
418h	—	Unimpleme	Unimplemented							_	_
419h	—	Unimpleme	Unimplemented							_	_
41Ah	—	Unimplemented								_	_
41Bh	—	Unimplemented								_	_
41Ch	TMR6	Timer 6 Module Register							0000 0000	0000 0000	
41Dh	PR6	Timer 6 Period Register							1111 1111	1111 1111	
41Eh	T6CON	—	- T6OUTPS<3:0> TMR6ON T6CKPS<1:0>							-000 0000	-000 0000
41Fh	_	Unimpleme	Unimplemented								_

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.


Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: These registers/bits are not implemented on PIC16(L)F1938 devices, read as '0'.

4: Unimplemented, read as '1'.

DS40001574C-page 40

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- · Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

5.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability
 of crystal oscillator sources

The oscillator module can be configured in one of eight clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium-Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. LP 32 kHz Low-Power Crystal mode
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. RC External Resistor-Capacitor (RC)
- 8. INTOSC Internal oscillator (31 kHz to 32 MHz)

Clock Source modes are selected by the FOSC<2:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The EC clock mode relies on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The RC clock mode requires an external resistor and capacitor to set the oscillator frequency.

The INTOSC internal oscillator block produces low, medium, and high frequency clock sources, designated LFINTOSC, MFINTOSC, and HFINTOSC. (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			TUN	<5:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	TUN<5:0>: F	requency Tunir	ng bits				
	100000 = M	inimum frequer	псу				
	•						
	•						
	111111 =						
		scillator module	e is running at	the factory-calil	prated frequen	cy.	
	000001 =						
	•						
	•						
	011110 =						
	011111 = M	aximum freque	ncy				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
SPLLEN		IRCF	<3:0>			SCS	73		
T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	74	
_			TUN<5:0>						
OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE ⁽¹⁾	92	
OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF ⁽¹⁾	95	
TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	197	
	SPLLEN T1OSCR OSFIE OSFIE OSFIF TMR1C	SPLLENT1OSCRPLLROSFIEC2IEOSFIFC2IFTMR1CS<1:0>	SPLLEN IRCF T10SCR PLLR OSTS — — — OSFIE C2IE C1IE OSFIF C2IF C1IF TMR1CS<1:0> T1CKP	SPLLEN IRCF-3:0> T10SCR PLLR OSTS HFI0FR OSFIE C2IE C1IE EEIE OSFIF C2IF C1IF EEIF TMR1CS-1:0> T1CKFS-1:0> T1CKFS-1:0	SPLLEN IRCF-3:0> T10SCR PLLR OSTS HFIOFR HFIOFL — — — TUN TUN OSFIE C2IE C1IE EEIE BCLIE OSFIF C2IF C1IF EEIF BCLIF TMR1CS<1:0> T1CKPS<1:0> T1OSCEN	SPLLEN IRCF<3:0> — T10SCR PLLR OSTS HFIOFR HFIOFL MFIOFR — — — TUN<	SPLLEN IRCF<3:0> — SCS T1OSCR PLLR OSTS HFIOFR HFIOFL MFIOFR LFIOFR — — — SCS SCS	SPLLENIRCF<3:0>IRCSCST10SCRPLLROSTSHFI0FRHFI0FLMFI0FRLFI0FRHFI0FSImage: Image: Imag	

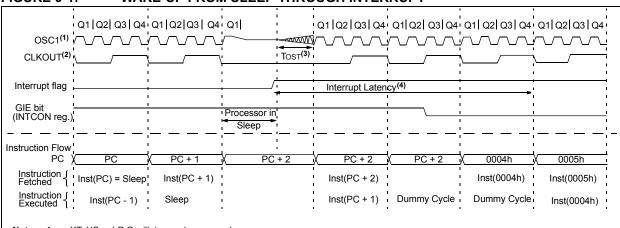
Note 1: PIC16F1934 only.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_		FCMEN	IESO	CLKOUTEN	BOREI	N<1:0>	CPD	54
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	=<1:0>		FOSC<2:0>		54
	13:8	_	_	LVP	DEBUG	_	BORV	STVREN	PLLEN	50
CONFIG2	7:0			VCAPEN<1:0> ⁽¹⁾		_	— WRT		<1:0>	56

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F193X only.


9.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

FIGURE 9-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP Oscillator mode assumed.

2: CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference.

3: Tost = 1024 Tosc (drawing not to scale). This delay applies only to XT, HS or LP Oscillator modes.

4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	145
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	145
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	145
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	92
PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	93
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	94
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	95
PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	96
STATUS	_			TO	PD	Z	DC	С	24
WDTCON	_	_		l.		SWDTEN	105		

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG ADDR HI: PROG ADDR LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   BANKSELEEADRL; Select Bank for EEPROM registersMOVLWPROG_ADDR_LO;MOVWFEEADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWLEEADRH; Store MSB of address
            EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
            EECON1,CFGS
    BSF
              INTCON,GIE ; Disable interrupts
    BCF
                                ; Initiate read
    BSF
              EECON1,RD
    NOP
                                  ; Executed (Figure 11-1)
   NOP
                                  ; Ignored (Figure 11-1)
    BSF
            INTCON, GIE
                                ; Restore interrupts
             EEDATL,W
    MOVF
                                ; Get LSB of word
    MOVWF
           PROG_DATA_LO ; Store in user location
            EEDATH,W ; Get MSB of word
PROG_DATA_HI ; Store in user location
    MOVE
    MOVWF
```

12.9 PORTD Registers (PIC16(L)F1939 only)

PORTD is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 12-14). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTD register (Register 12-14) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATD).

Note:	PORTD is available on PIC16(L)F1939
	only.

The TRISD register (Register 12-15) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.9.1 ANSELD REGISTER

The ANSELD register (Register 12-17) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELD bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELD bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELD bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

12.9.2 PORTD FUNCTIONS AND OUTPUT PRIORITIES

Each PORTD pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-10.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in priority list.

Pin Name	Function Priority ⁽¹⁾
RD0	COM3 (LCD) RD0
RD1	CCP4 (CCP) RD1
RD2	P2B (CCP) RD2
RD3	SEG16 (LCD) P2C (CCP) RD3
RD4	SEG17 (LCD) P2D (CCP) RD4
RD5	SEG18 (LCD) P1B (CCP) RD5
RD6	SEG19 (LCD) P1C (CCP) RD6
RD7	SEG20 (LCD) P1D (CCP) RD7

TABLE 12-10: PORTD OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD				
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾				
Half-Bridge	10	Yes	Yes	No	No				
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes				
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes				

TABLE 23-9: **EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES**

Note 1: PWM Steering enables outputs in Single mode.

FIGURE 23-6: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

PxM<1:0>	Signal	0 Pulse Width	PRX+1
		-	Period
00 (Single Output)	PxA Modulated		
	PxA Modulated	Delay ◀-►	Delay ➡►
10 (Half-Bridge)	PxB Modulated		
	PxA Active		
(Full-Bridge,	PxB Inactive		
⁰¹ Forward)	PxC Inactive	- i 	
	PxD Modulated		
	PxA Inactive	- !	
(Full-Bridge,	PxB Modulated	<u> </u>	
Reverse)	PxC Active	- :	
	PxD Inactive	_ ! 	

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
CCPxASE	CCPxAS2	CCPxAS1	CCPxAS0	PSSxA	.C<1:0>	PSSxB	D<1:0>	
bit 7							bit 0	
Legend:								
R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as 'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Va$								
u = Bit is ur	•	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is s	et	'0' = Bit is cle	ared					
bit 7	CCPxASE: (CPx Auto-Shu	tdown Event S	tatus bit				
		wn event has o tputs are opera		outputs are in	shutdown state	e		
bit 6	1 = Auto-shu	CPx Auto-Shu utdown 2 sourc utdown 2 sourc	e is enabled, V					
bit 5	1 = Auto-shu	CPx Auto-Shu utdown 1 sourc utdown 1 sourc	e is enabled, a),(2) output low			
bit 4	1 = Auto-shu	CPx Auto-Shu utdown 0 sourc utdown 0 sourc	e is enabled, a		⁾ output low			
bit 3-2	00 = Drive pi 01 = Drive pi	D>: Pins PxA and ns PxA and Px ns PxA and Px A and PxC tri-s	C to '0' C to '1'	wn State Contr	ol bits			
bit 1-0	00 = Drive pi 01 = Drive pi	D>: Pins PxB and PxD tri-s	D to '0' D to '1'	wn State Contr	ol bits			
2 : a	f CxSYNC is ena async_CxOUT = a async_CxOUT = a	async_C2OUT	(for CCP1 and		I.			

REGISTER 23-4: CCPxAS: CCPX AUTO-SHUTDOWN CONTROL REGISTER

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1		
—	—	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA		
bit 7					•	I	bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is u	inchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets		
'1' = Bit is	set	'0' = Bit is cle	ared						
bit 7-5	Unimplemer	nted: Read as	'0'						
bit 4	STRxSYNC:	Steering Sync	bit						
		U 1	occurs on next						
	0 = Output st	0 = Output steering update occurs at the beginning of the instruction cycle boundary							
bit 3		ering Enable bi							
			vaveform with p	olarity control	from CCPxM<1	1:0>			
	0 = PxD pin i	s assigned to	port pin						
bit 2		ering Enable bi							
	•		vaveform with p	olarity control	from CCPxM<1	1:0>			
	0 = PxC pin i	s assigned to	port pin						
bit 1		ering Enable bi							
	•		vaveform with p	olarity control	from CCPxM<1	:0>			
	0 = PxB pin i	s assigned to p	oort pin						
bit 0	STRxA: Stee	ering Enable bi	t A						
	•		vaveform with p	olarity control	from CCPxM<1	:0>			
	0 = PxA pin i	s assigned to p	port pin						
Note 1:	The PWM Steerin $PxM<1:0> = 00.$	g mode is ava	lable only wher	n the CCPxCO	N register bits (CCPxM<3:2> =	= 11 and		

REGISTER 23-6: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

 $\ensuremath{\textcircled{}^\circ}$ 2011-2013 Microchip Technology Inc.

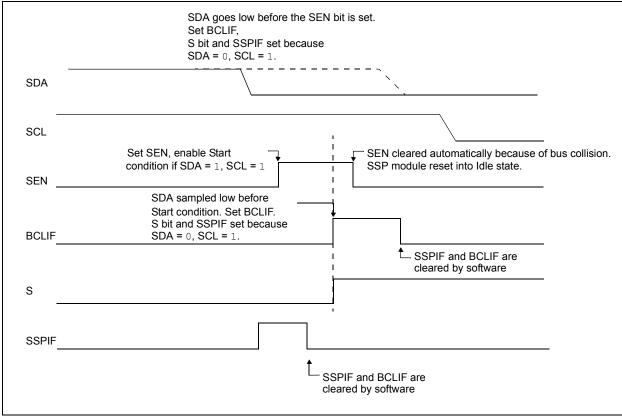
NOTES:

24.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 24-33).
- b) SCL is sampled low before SDA is asserted low (Figure 24-34).

During a Start condition, both the SDA and the SCL pins are monitored.


If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLIF flag is set and
- the MSSP module is reset to its Idle state (Figure 24-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 24-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 24-33: BUS COLLISION DURING START CONDITION (SDA ONLY)

REGISTER 27-2: LCDPS: LCD PHASE REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1			
WFT	BIASMD	LCDA	WA		LP<	:3:0>				
bit 7	•						bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'				
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is cleared		C = Only clea	rable bit					
bit 7	WFT: Wavefo	orm Type bit								
		phase changes								
		phase changes		common type						
bit 6		as Mode Select	bit							
	When LMUX			(-1)						
		as mode (do no <1:0> = 01:	t set this bit t	0 .1.)						
	<u>When LMUX<1:0> = 01:</u> 1 = 1/2 Bias mode									
	0 = 1/3 Bias mode									
	<u>When LMUX<1:0> = 10:</u>									
	1 = 1/2 Bias mode									
	0 = 1/3 Bias mode When LMUX<1:0> = 11:									
		mode (do not s	et this bit to '	1 ')						
bit 5		Active Status b		- /						
	_	1 = LCD Driver module is active								
	0 = LCD Driv	er module is in	active							
bit 4	WA: LCD Write Allow Status bit									
		the LCDDATA the LCDDATA								
bit 3-0	LP<3:0>: LC	D Prescaler Se	election bits							
	1111 = 1:16									
	1110 = 1:15									
	1101 = 1:14 1100 = 1:13									
	1100 = 1:13 1011 = 1:12									
	1010 = 1:11									
	1001 = 1:10									
	1000 = 1:9 0111 = 1:8									
	0110 = 1 : 7									
	0101 = 1:6									
	0100 = 1:5 0011 = 1:4									
	0011 = 1.4 0010 = 1:3									
	0001 = 1:2									
	0000 = 1:1									

REGISTER 27-4: LCDCST: LCD CONTRAST CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	_	—	—	I	_CDCST<2:0>	
bit 7							bit 0
Lagandi							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	

C = Only clearable bit

bit 7-3 Unimplemented: Read as '0'

'1' = Bit is set

bit 2-0 LCDCST<2:0>: LCD Contrast Control bits Selects the resistance of the LCD contrast control resistor ladder

'0' = Bit is cleared

Bit Value = Resistor ladder

000 = Minimum Resistance (maximum contrast). Resistor ladder is shorted.

001 = Resistor ladder is at 1/7th of maximum resistance

010 = Resistor ladder is at 2/7th of maximum resistance

011 = Resistor ladder is at 3/7th of maximum resistance

100 = Resistor ladder is at 4/7th of maximum resistance

101 = Resistor ladder is at 5/7th of maximum resistance

110 = Resistor ladder is at 6/7th of maximum resistance

111 = Resistor ladder is at maximum resistance (minimum contrast).

NOTES:

30.1 DC Characteristics: PIC16(L)F1938/39-I/E (Industrial, Extended)

PIC16LF	1938/39		$\label{eq:standard operating Conditions (unless otherwise stated)} Operating temperature \begin{array}{c} -40^\circ\text{C} \leq \text{TA} \leq +85^\circ\text{C} \text{ for industrial} \\ -40^\circ\text{C} \leq \text{TA} \leq +125^\circ\text{C} \text{ for extended} \end{array}$					
PIC16F1	938/39							
Param. No.	Sym.	Characteristic Min. Typ† Max. Units					Conditions	
D001	Vdd	Supply Voltage						
		PIC16LF1938/39	1.8 2.5	_	3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D001		PIC16F1938/39	1.8 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (Note 2)	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾					·	
		PIC16LF1938/39	1.5	_	_	V	Device in Sleep mode	
D002*		PIC16F1938/39	1.7		—	V	Device in Sleep mode	
	VPOR*	Power-on Reset Release Voltage						
D002A		PIC16LF1938/39	_	1.6		V		
D002A		PIC16F1938/39	—	1.6	_	V		
	VPORR*	Power-on Reset Rearm Voltage						
D002B		PIC16LF1938/39	_	0.8		V	Device in Sleep mode	
D002B		PIC16F1938/39	_	1.5		V	Device in Sleep mode	
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-8	_	6	%	1.024V, VDD ≥ 2.5V 2.048V, VDD ≥ 2.5V 4.096V, VDD ≥ 4.75V	
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC	-11	—	7	%	$\begin{array}{l} 1.024V, VDD \geq 2.5V\\ 2.048V, VDD \geq 2.5V\\ 4.096V, VDD \geq 4.75V \end{array}$	
D003B	VLCDFVR	Fixed Voltage Reference Voltage for LCD Bias, Initial Accuracy	-11	—	10	%	$3.072V, VDD \geq 3.6V$	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 6.1 "Power-on Reset (POR)" for details.	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

*

DEVICE FAMILY

NOTES: