

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	36
Program Memory Size	72KB (72K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/sst89e516rd2-40-c-nje

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet

Product Description

The SST89E516RDx and SST89V516RDx are members of the FlashFlex family of 8-bit microcontroller products designed and manufactured with SST's patented and proprietary SuperFlash CMOS semiconductor process technology. The split-gate cell design and thick-oxide tunneling injector offer significant cost and reliability benefits for SST's customers. The devices use the 8051 instruction set and are pin-for-pin compatible with standard 8051 microcontroller devices.

The devices come with 72 KByte of on-chip flash EEPROM program memory which is partitioned into 2 independent program memory blocks. The primary Block 0 occupies 64 KByte of internal program memory space and the secondary Block 1 occupies 8 KByte of internal program memory space.

The 8-KByte secondary block can be mapped to the lowest location of the 64 KByte address space; it can also be hidden from the program counter and used as an independent EEPROM-like data memory.

In addition to the 72 KByte of EEPROM program memory on-chip and 1024 x8 bits of on-chip RAM, the devices can address up to 64 KByte of external program memory and up to 64 KByte of external RAM.

The flash memory blocks can be programmed via a standard 87C5x OTP EPROM programmer fitted with a special adapter and the firmware for SST's devices. During power-on reset, the devices can be configured as either a slave to an external host for source code storage or a master to an external host for an in-application programming (IAP) operation. The devices are designed to be programmed in-system and in-application on the printed circuit board for maximum flexibility. The devices are pre-programmed with an example of the bootstrap loader in the memory, demonstrating the initial user program code loading or subsequent user code updating via the IAP operation. The sample bootstrap loader is available for the user's reference and convenience only; SST does not guarantee its functionality or usefulness. Chip-Erase or Block-Erase operations will erase the pre-programmed sample code.

Data Sheet

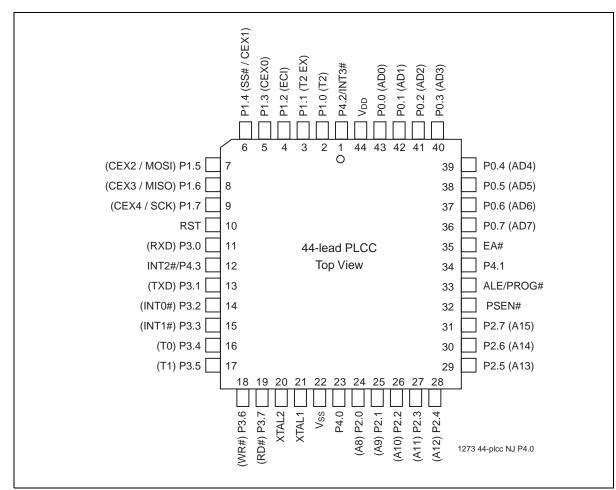


Figure 5: Pin Assignments for 44-lead PLCC

Data Sheet

		Direct		Bit Address, Symbol, or Alternative Port Function							Reset
Symbol	Description	Address	MSB							LSB	Value
SFCF	SuperFlash	B1H	-	IAPE	-	-	-	-	SW	BSE	x0xxxx00
	Configuration			Ν					R	L	b
SFCM	SuperFlash Command	B2H	FIE	FIE FCM[6:0]						00H	
SFAL	SuperFlash Address Low	B3H	Super	SuperFlash Low Order Byte Address Register - A_7 to A_0 (SFAL)						SFAL)	00H
SFAH	SuperFlash Address High	B4H	Su	perFlasł	n High (Order	Byte Add (SFAH)	ress Register -	A ₁₅ to	A ₈	00H
SFDT	SuperFlash Data	B5H		SuperFlash Data Register						00H	
SFST	SuperFlash Status	B6H	SB1 _i	SB2_ i	SB3 _i	-	EDC_i	FLASH_BU SY	-	-	000x00xx b

Table 7: Flash Memory Programming SFRs

T0-0.0 25093

Table 8: Watchdog Timer SFRs

		Direct	Bit Ade	Bit Address, Symbol, or Alternative Port Function							Reset
Symbol	Description	Address	MSB							LSB	Value
WDTC 1	Watchdog Timer Control	С0Н	-	-	-	WDOUT	WDRE	WDTS	WDT	SWDT	xxx00x00 b
WDTD	Watchdog Timer Data/Reload	85H			١	Vatchdog T	imer Data	a/Reload			00H

1. Bit Addressable SFRs

T0-0.0 25093

Data Sheet

		Direct	Bit Add	dress, Sy	ymbol, o	r Alterna	ative Port	Functio	n		Reset
Symbol	Description	Address	MSB							LSB	Value
TMOD	Timer/Counter	89H		Tim	er 1			Tii	mer 0		00H
	Mode Control		GAT E	C/T#	M1	M0	GATE	C/ T#	M1	MO	
TCON ¹	Timer/Counter Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
TH0	Timer 0 MSB	8CH		TH0[7:0]							00H
TL0	Timer 0 LSB	8AH		TL0[7:0]							00H
TH1	Timer 1 MSB	8DH		TH1[7:0]						00H	
TL1	Timer 1 LSB	8BH		TL1[7:0]						00H	
T2CON 1	Timer / Coun- ter 2 Control	C8H	TF2	EXF 2	RCL K	TCL K	EXEN 2	TR2	C/ T2#	CP/ RL2#	00H
T2MOD	Timer2 Mode Control	C9H	-	-	-	-	-	-	T2O E	DCEN	xxxxxx00 b
TH2	Timer 2 MSB	CDH				Tł	H2[7:0]				00H
TL2	Timer 2 LSB	ССН				TI	_2[7:0]				00H
RCAP2 H	Timer 2 Capture MSB	CBH		RCAP2H[7:0]						00H	
RCAP2 L	Timer 2 Capture LSB	CAH				RCA	AP2L[7:0]				00H

Table 9: Timer/Counters SFRs

1. Bit Addressable SFRs

T0-0.0 25093

Data Sheet

Interrupt Priority (IP)

·) (··)									
Location	7	6	5	4	3	2	1	0	Reset Value
B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000b

Symbol Function

- PT2 Timer 2 interrupt priority bit
- PS Serial Port interrupt priority bit
- PT1 Timer 1 interrupt priority bit
- PX1 External interrupt 1 priority bit
- PT0 Timer 0 interrupt priority bit
- PX0 External interrupt 0 priority bit

Interrupt Priority High (IPH)

Location	7	6	5	4	3	2	1	0	Reset Value
B7H	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000b

Symbol Function

PPCH	PCA interrupt priority bit high
PT2H	Timer 2 interrupt priority bit high
PSH	Serial Port interrupt priority bit high
PT1H	Timer 1 interrupt priority bit high
PX1H	External interrupt 1 priority bit high
PT0H	Timer 0 interrupt priority bit high
PX0H	External interrupt 0 priority bit high

Interrupt Priority 1 (IP1)

Location	7	6	5	4	3	2	1	0	Reset Value
F8H	1	-	-	1	PBO	PX3	PX2	1	1xx10001b

Symbol Function

PBO Brown-out interrupt priority bit

PX2 External Interrupt 2 priority bit

PX3 External Interrupt 3 priority bit

Interrupt Priority 1 High (IP1H)

Location	7	6	5	4	3	2	1	0	Reset Value
F7H	1	-	-	1	PBOH	РХЗН	PX2H	1	1xx10001b

Symbol Function

- PBOH Brown-out Interrupt priority bit high
- PX2H External Interrupt 2 priority bit high
- PX3H External Interrupt 3 priority bit high

Data Sheet

Timers/Counters

Timers

The device has three 16-bit registers that can be used as either timers or event counters. The three timers/counters are denoted Timer 0 (T0), Timer 1 (T1), and Timer 2 (T2). Each is designated a pair of 8-bit registers in the SFRs. The pair consists of a most significant (high) byte and least significant (low) byte. The respective registers are TL0, TH0, TL1, TH1, TL2, and TH2.

Timer Set-up

Refer to Table 9 for TMOD, TCON, and T2CON registers regarding timers T0, T1, and T2. The following tables provide TMOD values to be used to set up Timers T0, T1, and T2.

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. Therefore, bit TR2 must be set separately to turn the timer on.

			TN	IOD
	Mode	Function	Internal Control ¹	External Control ²
	0	13-bit Timer	00H	08H
Used as Timer	1	16-bit Timer	01H	09H
	2	8-bit Auto-Reload	02H	0AH
	3	Two 8-bit Timers	03H	0BH
	0	13-bit Timer	04H	0CH
Used as	1	16-bit Timer	05H	0DH
Counter	2	8-bit Auto-Reload	06H	0EH
	3	Two 8-bit Timers	07H	0FH
			•	T0-0.0 25093

Table 15: Timer/Counter 0

1. The Timer is turned ON/OFF by setting/clearing bit TR0 in the software.

2. The Timer is turned ON/OFF by the 1 to 0 transition on INT0# (P3.2) when TR0 = 1 (hardware control).

Table 16: Timer/Counter 1

			TN	IOD
	Mode	Function	Internal Control ¹	External Control ²
	0	13-bit Timer	00H	80H
Used as Timer	1	16-bit Timer	10H	90H
	2	8-bit Auto-Reload	20H	A0H
	3	Does not run	30H	B0H
	0	13-bit Timer	40H	СОН
Used as	1	16-bit Timer	50H	D0H
Counter	2	8-bit Auto-Reload	60H	E0H
	3	Not available	-	-

1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software.

2. The Timer is turned ON/OFF by the 1 to 0 transition on INT1# (P3.3) when TR1 = 1 (hardware control).

T0-0.0 25093

Data Sheet

		T2CON	
	Mode	Internal Control ¹	External Control ²
	16-bit Auto-Reload	00H	08H
	16-bit Capture	01H	09H
Used as Timer	Baud rate generator receive and transmit same baud rate	34H	36H
	Receive only	24H	26H
	Transmit only	14H	16H
Used as Counter	16-bit Auto-Reload	02H	0AH
Useu as Counter	16-bit Capture	03H	0BH

Table 17: Timer/Counter 2

1. Capture/Reload occurs only on timer/counter overflow.

T0-0.0 25093

2. Capture/Reload occurs on timer/counter overflow and a 1 to 0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generating mode.

Programmable Clock-Out

A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

- 1. to input the external clock for Timer/Counter 2, or
- 2. to output a 50% duty cycle clock ranging from 122 Hz to 8 MHz at a 16 MHz operating frequency (61 Hz to 4 MHz in 12 clock mode).

To configure Timer/Counter 2 as a clock generator, bit

C/#T2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

n =2 (in 6 clock mode) 4 (in 12 clock mode)

Where (RCAP2H, RCAP2L) = the contents of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode, Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will not be the same.

Data Sheet

Serial I/O

Full-Duplex, Enhanced UART

The device serial I/O port is a full-duplex port that allows data to be transmitted and received simultaneously in hardware by the transmit and receive registers, respectively, while the software is performing other tasks. The transmit and receive registers are both located in the Serial Data Buffer (SBUF) special function register. Writing to the SBUF register loads the transmit register, and reading from the SBUF register obtains the contents of the receive register.

The UART has four modes of operation which are selected by the Serial Port Mode Specifier (SM0 and SM1) bits of the Serial Port Control (SCON) special function register. In all four modes, transmission is initiated by any instruction that uses the SBUF register as a destination register. Reception is initiated in mode 0 when the Receive Interrupt (RI) flag bit of the Serial Port Control (SCON) SFR is cleared and the Reception Enable/ Disable (REN) bit of the SCON register is set. Reception is initiated in the other modes by the incoming start bit if the REN bit of the SCON register is set.

Framing Error Detection

Framing Error Detection is a feature, which allows the receiving controller to check for valid stop bits in modes 1, 2, or 3. Missing stops bits can be caused by noise in serial lines or from simultaneous transmission by two CPUs.

Framing Error Detection is selected by going to the PCON register and changing SMOD0 = 1 (see Figure 17). If a stop bit is missing, the Framing Error bit (FE) will be set. Software may examine the FE bit after each reception to check for data errors. After the FE bit has been set, it can only be cleared by software. Valid stop bits do not clear FE. When FE is enabled, RI rises on the stop bit, instead of the last data bit (see Figure 18 and Figure 19).

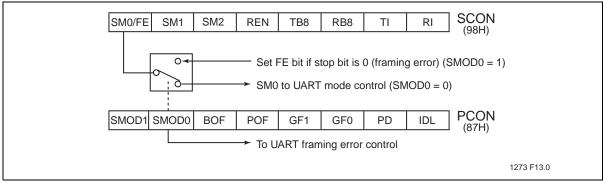


Figure 17: Framing Error Block Diagram

Data Sheet

If the user added a third slave such as the example below:

 Slave 3

 SADDR
 =
 1111
 1001

 SADEN
 =
 1111
 0101

 GIVEN
 =
 1111
 X0X1

Select Slave 3 Only					
Slave 2	Given Address	Possible Addresses			
	1111 X0X1	1111 1011 1111 1001			

The user could use the possible addresses above to select slave 3 only. Another combination could be to select slave 2 and 3 only as shown below.

Select Slaves 2 & 3 Only			
Slaves 2 & 3	Possible Addresses		
	1111 0011		

More than one slave may have the same SADDR address as well, and a given address could be used to modify the address so that it is unique.

Using the Broadcast Address to Select Slaves

Using the broadcast address, the master can communicate with all the slaves at once. It is formed by performing a logical OR of SADDR and SADEN with '0's in the result treated as "don't cares".

Slave 1

1111 0001 = SADDR +1111 1010 = SADEN 1111 1X11 = Broadcast

"Don't cares" allow for a wider range in defining the broadcast address, but in most cases, the broadcast address will be FFH.

On reset, SADDR and SADEN are "0". This produces an given address of all "don't cares" as well as a broadcast address of all "don't cares." This effectively disables Automatic Addressing mode and allows the microcontroller to function as a standard 8051, which does not make use of this feature.

Data Sheet

SPI Transfer Formats

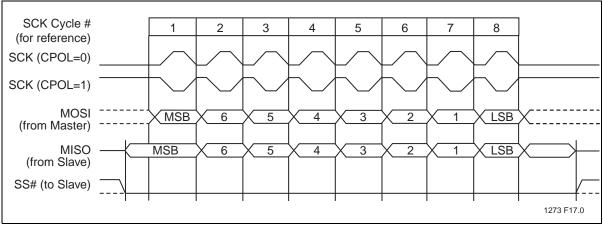


Figure 21:SPI Transfer Format with CPHA = 0

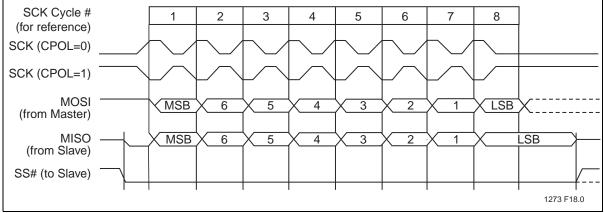


Figure 22:SPI Transfer Format with CPHA = 1

Data Sheet

Table 22: PCA Module Modes

W	ithout Inte	rrupt ena	bled					
_1	ECOMy ²	CAPPy ²	CAPNy ²	MATy ²	TOGy ²	PWMy ²	ECCFy ²	Module Code
-	0	0	0	0	0	0	0	No Operation
-	0	1	0	0	0	0	0	16-bit capture on positive-edge trigger at CEX[4:0]
-	0	0	1	0	0	0	0	16-bit capture on negative-edge trigger at CEX[4:0]
-	0	1	1	0	0	0	0	16-bit capture on positive/negative-edge trigger at CEX[4:0]
-	1	0	0	1	0	0	0	Compare: software timer
-	1	0	0	1	1	0	0	Compare: high-speed output
-	1	0	0	0	0	1	0	Compare: 8-bit PWM
-	1	0	0	1	0 or 1 ³	0	0	Compare: PCA WDT (CCAPM4 only) ⁴

T0-0.0 25093

1. User should not write '1's to reserved bits. The value read from a reserved bit is indeterminate.

2. y = 0, 1, 2, 3, 4

3. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.

4. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

Wi	th Interrup	t enabled						
_1	ECOMy ²	CAPPy ²	CAPNy ²	MATy ²	TOGy ²	PWMy ²	ECCFy ²	Module Code
-	0	1	0	0	0	0	1	16-bit capture on positive-edge trig- ger at CEX[4:0]
-	0	0	1	0	0	0	1	16-bit capture on negative-edge trig- ger at CEX[4:0]
-	0	1	1	0	0	0	1	16-bit capture on positive/negative- edge trigger at CEX[4:0]
-	1	0	0	1	0	0	1	Compare: software timer
-	1	0	0	1	1	0	1	Compare: high-speed output
-	1	0	0	0	0	1	X ³	Compare: 8-bit PWM
-	1	0	0	1	0 or 1 ⁴	0	X ⁵	Compare: PCA WDT (CCAPM4 only) ⁶

Table 23: PCA Module Modes

T0-0.0 25093

1. User should not write '1's to reserved bits. The value read from a reserved bit is indeterminate.

2. y = 0, 1, 2, 3, 4

3. No PCA interrupt is needed to generate the PWM.

4. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.

5. Enabling an interrupt for the Watchdog Timer would defeat the purpose of the Watchdog Timer.

6. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

Data Sheet

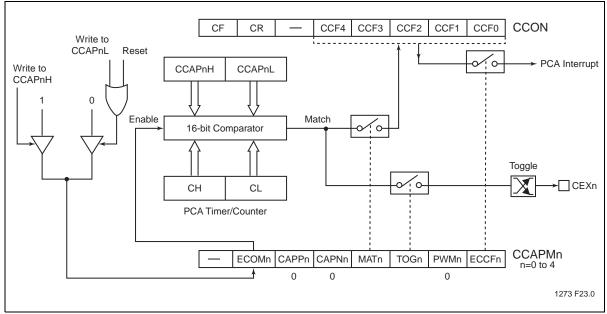
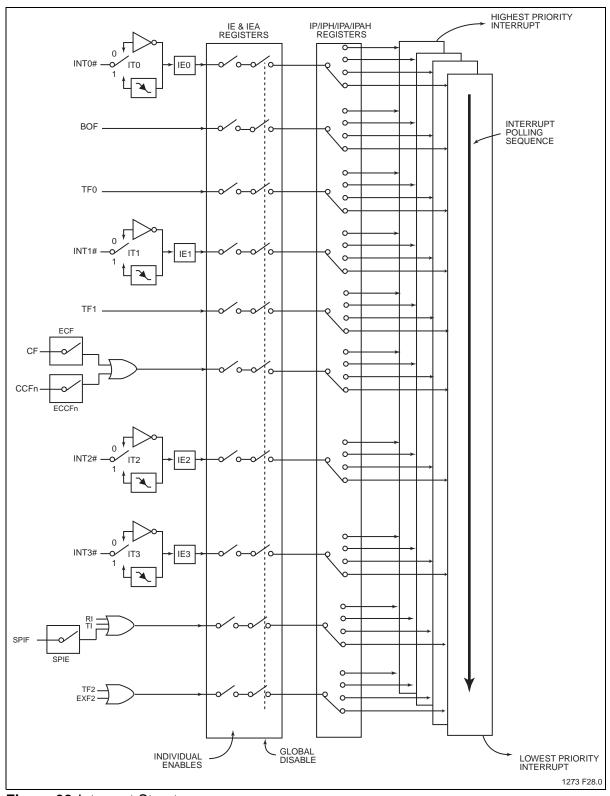


Figure 27: PCA High Speed Output Mode

Pulse Width Modulator

The Pulse Width Modulator (PWM) mode is used to generate 8-bit PWMs by comparing the low byte of the PCA timer (CL) with the low byte of the compare register (CCAPnL). When CL < CCAPnL the output is low. When $CL \ge CCAPnL$ the output is high. To activate this mode, the user must set the PWM and ECOM bits in the module's CCAPMn SFR. (See Figure 28 and Table 24)

In PWM mode, the frequency of the output depends on the source for the PCA timer. Since there is only one set of CH and CL registers, all modules share the PCA timer and frequency. Duty cycle of the output is controlled by the value loaded into the high byte (CCAPnH). Since writes to the CCAPnH register are asynchronous, a new value written to the high byte will not be shifted into CCAPnL for comparison until the next period of the output (when CL rolls over from 255 to 00).


To calculate values for CCAPnH for any duty cycle, use the following equation:

CCAPnH = 256(1 - Duty Cycle)

where CCAPnH is an 8-bit integer and Duty Cycle is a fraction.

Data Sheet

Figure 32: Interrupt Structure

Data Sheet

System Clock and Clock Options

Clock Input Options and Recommended Capacitor Values for Oscillator

Shown in Figure 33 are the input and output of an internal inverting amplifier (XTAL1, XTAL2), which can be configured for use as an on-chip oscillator.

When driving the device from an external clock source, XTAL2 should be left disconnected and XTAL1 should be driven.

At start-up, the external oscillator may encounter a higher capacitive load at XTAL1 due to interaction between the amplifier and its feedback capacitance. However, the capacitance will not exceed 15 pF once the external signal meets the V_{IL} and V_{IH} specifications.

Crystal manufacturer, supply voltage, and other factors may cause circuit performance to differ from one application to another. C1 and C2 should be adjusted appropriately for each design. Table 29, shows the typical values for C1 and C2 vs. crystal type for various frequencies

Table 29: Recommended Values for C1 and C2 by Crystal Type

Crystal	C1 = C2
Quartz	20-30pF
Ceramic	40-50pF

T0-0.0 25093

More specific information about on-chip oscillator design can be found in the *FlashFlex Oscillator Circuit Design Considerations* application note.

Clock Doubling Option

By default, the device runs at 12 clocks per machine cycle (x1 mode). The device has a clock doubling option to speed up to 6 clocks per machine cycle. Please refer to Table 30 for detail.

Clock double mode can be enabled either via the external host mode or the IAP mode. Please refer to Table 14 for the IAP mode enabling commands (When set, the EDC# bit in SFST register will indicate 6 clock mode.).

The clock double mode is only for doubling the internal system clock and the internal flash memory, i.e. EA#=1. To access the external memory and the peripheral devices, careful consideration must be taken. Also note that the crystal output (XTAL2) will not be doubled.

Data Sheet

DC Electrical Characteristics

Symbol	Parameter	Test Conditions	Min	Max	Units
VIL	Input Low Voltage	4.5 < V _{DD} < 5.5	-0.5	0.2V _{DD} - 0.1	V
V _{IH}	Input High Voltage	4.5 < V _{DD} < 5.5	0.2V _{DD} + 0.9	V _{DD} + 0.5	V
V _{IH1}	Input High Voltage (XTAL1, RST)	$4.5 < V_{DD} < 5.5$	$0.7V_{DD}$	V _{DD} + 0.5	V
V _{OL}	Output Low Voltage (Ports 1.5, 1.6, 1.7)	$V_{DD} = 4.5V$			
		$I_{OL} = 16 \text{mA}$		1.0	V
V _{OL}	Output Low Voltage (Ports 1, 2, 3) ¹	$V_{DD} = 4.5V$			
		$I_{OL} = 100 \mu A^2$		0.3	V
		$I_{OL} = 1.6 m A^2$		0.45	V
		$I_{OL} = 3.5 \text{mA}^2$		1.0	V
V _{OL1}	Output Low Voltage (Port 0, ALE,	$V_{DD} = 4.5V$			
	PSEN#) ^{1,3}	$I_{OL} = 200 \mu A^2$		0.3	V
		$I_{OL} = 3.2 \text{mA}^2$		0.45	V
V _{OH}	Output High Voltage (Ports 1, 2, 3, ALE,	$V_{DD} = 4.5V$			
	PSEN#) ⁴	I _{OH} = -10μA	V _{DD} - 0.3		V
		I _{OH} = -30μA	V _{DD} - 0.7		V
		I _{OH} = -60μA	V _{DD} - 1.5		V
V _{OH1}	Output High Voltage (Port 0 in External	$V_{DD} = 4.5V$			
	Bus Mode) ⁴	I _{OH} = -200μA	V _{DD} - 0.3		V
		I _{OH} = -3.2mA	V _{DD} - 0.7		V
V _{BOD}	Brown-out Detection Voltage		3.85	4.15	V
IIL	Logical 0 Input Current (Ports 1, 2, 3)	$V_{IN} = 0.4V$		-75	μA
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3) ⁵	$V_{IN} = 2V$		-650	μA
ILI	Input Leakage Current (Port 0)	$0.45 < V_{IN} < V_{DD}$ -0.3		±10	μA
R _{RST}	RST Pull-down Resistor		40	225	KΩ
C _{IO}	Pin Capacitance ⁶	@ 1 MHz, 25°C		15	pF
I _{DD}	Power Supply Current				
	IAP Mode				
	@ 40 MHz			88	mA
	Active Mode				
	@ 40 MHz			50	mA
	Idle Mode				
	@ 40 MHz			42	mA
	Power-down Mode (min. $V_{DD} = 2V$)	$T_A = 0^{\circ}C$ to +70°C		80	μA
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		90	μA

Table 36: DC Electrical Characteristics for SST89E516RDx $T_{A} = -40^{\circ}$ C to $+85^{\circ}$ C: $V_{DD} = 4.5 \cdot 5.5$ V: $V_{SS} = 0$ V

T0-0.1 25093

Data Sheet

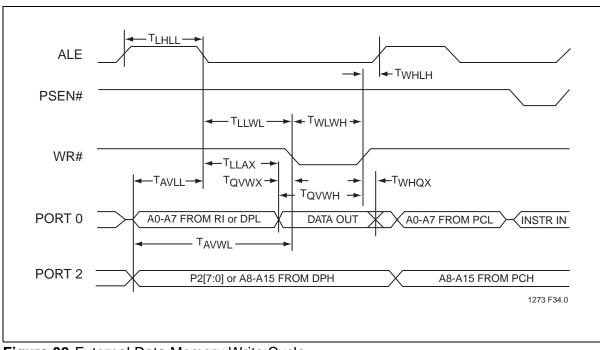
Table 37: DC Electrical Characteristics for SST89V516RDx $T_A = -40^{\circ}$ C to +85°C; $V_{DD} = 2.7-3.6$ V; $V_{SS} = 0$ V

Symbo	Denometer	Test Canditians	Min	Max	Unit
I	Parameter	Test Conditions	Min	Max	S
VIL	Input Low Voltage	2.7 < V _{DD} < 3.6	-0.5	0.7	V
Vih	Input High Voltage	$2.7 < V_{DD} < 3.6$	0.2V _{DD} + 0.9	V _{DD} + 0.5	V
V _{IH1}	Input High Voltage (XTAL1, RST)	$2.7 < V_{DD} < 3.6$	$0.7V_{DD}$	V _{DD} + 0.5	V
V _{OL}	Output Low Voltage (Ports 1.5, 1.6, 1.7)	V _{DD} = 2.7V			
		I _{OL} = 16mA		1.0	V
V _{OL}	Output Low Voltage (Ports 1, 2, 3) ¹	V _{DD} = 2.7V			
		$I_{OL} = 100 \mu A^2$		0.3	V
		$I_{OL} = 1.6 \text{mA}^2$		0.45	V
		$I_{OL} = 3.5 \text{mA}^2$		1.0	V
V _{OL1}	Output Low Voltage (Port 0, ALE, PSEN#) ^{1,3}	V _{DD} = 2.7V			
		$I_{OL} = 200 \mu A^2$		0.3	V
		$I_{OL} = 3.2 \text{mA}^2$		0.45	V
Voн	Output High Voltage (Ports 1, 2, 3, ALE,	$V_{DD} = 2.7V$			
	PSEN#) ⁴	I _{OH} = -10μA	V _{DD} - 0.3		V
		I _{OH} = -30µА	V _{DD} - 0.7		V
		I _{OH} = -60μA	V _{DD} - 1.5		V
V _{OH1}	Output High Voltage (Port 0 in External Bus	V _{DD} = 2.7V			
	Mode) ⁴	I _{OH} = -200μA	V _{DD} - 0.3		V
		I _{OH} = -3.2mA	V _{DD} - 0.7		V
V _{BOD}	Brown-out Detection Voltage		2.35	2.55	V
IIL	Logical 0 Input Current (Ports 1, 2, 3)	$V_{IN} = 0.4V$		-75	μA
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3) ⁵	$V_{IN} = 2V$		-650	μA
ILI	Input Leakage Current (Port 0)	$0.45 < V_{IN} < V_{DD}$ -0.3		±10	μA
R _{RST}	RST Pull-down Resistor			225	KΩ
C _{IO}	Pin Capacitance ⁶	@ 1 MHz, 25°C		15	pF
I _{DD}	Power Supply Current				
	IAP Mode				
	@ 33 MHz			47	mA
	Active Mode				
	@ 33 MHz			30	mA
	Idle Mode				
	@ 33 MHz			21	mA
	Power-down Mode (min. V _{DD} = 2V)	$T_A = 0^{\circ}C$ to +70°C		45	μA
		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		55	μA

T0-0.1 25093

Data Sheet

		Oscillator							
		M 16 M	IHz (x1 ode) IHz (x2 ode) ¹	Мс 20 М	Hz (x1 ode) Hz (x2 ode) ¹	Var	iable		
Symbol	Parameter	Min	Max	Min	Мах	Min	Max	Units	
					75		5T _{CLCL} - 50 (5V)	ns	
T _{RHDX}	Data Hold After RD#	0		0		0		ns	
T _{RHDZ}	Data Float After RD#		36				2T _{CLCL} - 25 (3V)	ns	
					38		2T _{CLCL} - 12 (5V)	ns	
T _{LLDV}	ALE Low to Valid Data In		152				8T _{CLCL} - 90 (3V)	ns	
					150		8T _{CLCL} - 50 (5V)	ns	
T _{AVDV}	Address to Valid Data In		183				9T _{CLCL} - 90 (3V)	ns	
					150		9T _{CLCL} - 75 (5V)	ns	
T _{LLWL}	ALE Low to RD# or WR# Low	66	116	60	90	3T _{CLCL} - 25 (3V) 3T _{CLCL} - 15 (5V)	3T _{CLCL} + 25 (3V) 3T _{CLCL} + 15 (5V)	ns	
T _{AVWL}	Address to RD# or WR# Low	46				4T _{CLCL} - 75 (3V)		ns	
				70		4T _{CLCL} - 30 (5V)		ns	
T _{WHQX}	Data Hold After WR#	3				T _{CLCL} - 27 (3V)		ns	
				5		T _{CLCL} - 20 (5V)		ns	
T _{QVWH}	Data Valid to WR# High	142				7T _{CLCL} - 70 (3V)		ns	
				125		7T _{CLCL} - 50 (5V)		ns	
T _{QVWX}	Data Valid to WR# High to Low Transition	10		5		T _{CLCL} - 20		ns	
T _{RLAZ}	RD# Low to Address Float		0		0		0	ns	
T _{WHLH}	RD# to WR# High to ALE High	5	55			T _{CLCL} - 25 (3V)	T _{CLCL} + 25 (3V)	ns	
				10	40	T _{CLCL} - 15 (5V)	T _{CLCL} + 15 (5V)	ns	


Table 38: AC Electrical Characteristics (Continued) (2 of 2) $T_4 = -40^{\circ}$ C to $+85^{\circ}$ C. $V_{DD} = 2.7-3.6V/@33MHz = 4.5-5.5V/@40MHz = 0V$

1. Calculated values are for x1 Mode only

T0-0.0 25093

Data Sheet

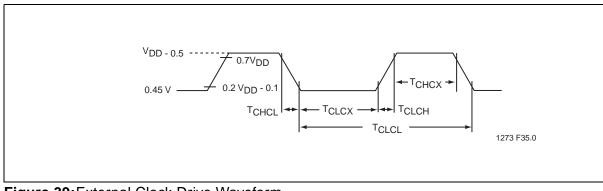


Figure 38: External Data Memory Write Cycle

Table 39: External Clock Drive

			Oscillator					
		12MHz		40MHz		Variable		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Units
1/T _{CLCL}	Oscillator Frequency					0	40	MHz
T _{CLCL}		83		25				ns
T _{CHCX}	High Time			8.75		0.35T _{CLCL}	0.65T _{CLCL}	ns
T _{CLCX}	Low Time			8.75		0.35T _{CLCL}	0.65T _{CLCL}	ns
T _{CLCH}	Rise Time		20		10			ns
T _{CHCL}	Fall Time		20		10			ns

T0-0.0 25093

Figure 39: External Clock Drive Waveform

Data Sheet

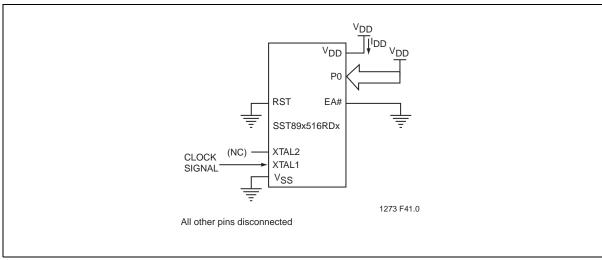


Figure 45:I_{DD} Test Condition, Idle Mode

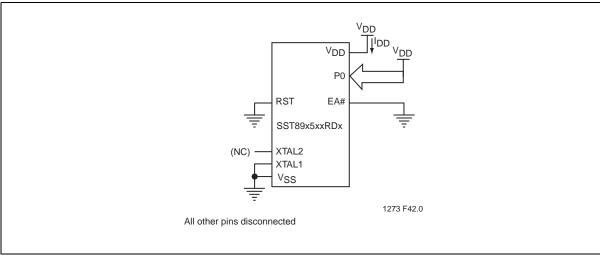


Figure 46:I_{DD} Test Condition, Power-down Mode

Table 41: Flash Memory Prog	ramming/Verification Parameters ¹
-----------------------------	--

Parameter ²	Max	Units
Chip-Erase Time	150	ms
Block-Erase Time	100	ms
Sector-Erase Time	30	ms
Byte-Program Time ³	50	μs
Select-Block Program Time	500	ns
Re-map or Security bit Program Time	80	μs
		T0-0.1 250

1. For IAP operations, the program execution overhead must be added to the above timing parameters.

2. Program and Erase times will scale inversely proportional to programming clock frequency.

3. Each byte must be erased before programming.

Data Sheet

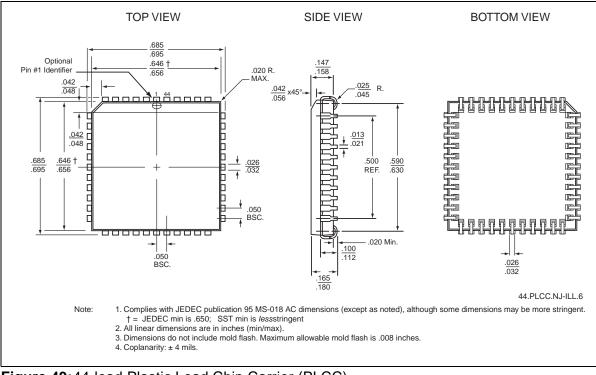


Figure 49:44-lead Plastic Lead Chip Carrier (PLCC) SST Package Code: NJ