

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	36
Program Memory Size	72KB (72K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	
Oscillator Type	External
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/sst89e516rd2-40-c-tqje

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet

Functional Blocks



Figure 1: Functional Block Diagram

Data Sheet

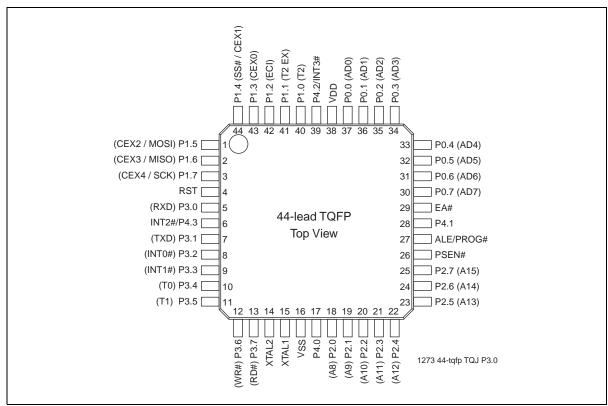


Figure 4: Pin Assignments for 44-lead TQFP

Data Sheet

Table 1:	Pin Descriptions	(Continued)	(2 of 3)
----------	------------------	-------------	----------

Symbol	Type ¹	Name and Functions
P3[7:0]	I/O with inter- nal pull-up	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins are pulled high by the internal pull-ups when "1"s are written to them and can be used as inputs in this state. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also receives some control signals and a partial of high-order address bits during the external host mode programming and verification.
P3[0]	I	RXD: Universal Asynchronous Receiver/Transmitter (UART) - Receive input
P3[1]	0	TXD: UART - Transmit output
P3[2]	I	INT0#: External Interrupt 0 Input
P3[3]	I	INT1#: External Interrupt 1 Input
P3[4]	I	T0: External count input to Timer/Counter 0
P3[5]	I	T1: External count input to Timer/Counter 1
P3[6]	0	WR#: External Data Memory Write strobe
P3[7]	0	RD#: External Data Memory Read strobe
PSEN#	I/O	Program Store Enable: PSEN# is the Read strobe to External Program Store. When the device is executing from Internal Program Memory, PSEN# is inactive (V_{OH}) . When the device is executing code from External Program Memory, PSEN# is activated twice each machine cycle, except when access to External Data Memory while one PSEN# activation is skipped in each machine cycle. A forced high-to-low input transition on the PSEN# pin while the RST input is continually held high for more than ten machine cycles will cause the device to enter External Host mode for programming.
RST	1	Reset: While the oscillator is running, a high logic state on this pin for two machine cycles will reset the device. After a reset, if the PSEN# pin is driven by a high-to-low input transition while the RST input pin is held high, the device will enter the External Host mode, otherwise the device will enter the Normal operation mode.
EA#	I	External Access Enable: EA# must be driven to V_{IL} in order to enable the device to fetch code from the External Program Memory. EA# must be driven to V_{IH} for internal program execution. However, Security lock level 4 will disable EA#, and program execution is only possible from internal program memory. The EA# pin can tolerate a high voltage ² of 12V.
ALE/ PROG#	I/O	Address Latch Enable: ALE is the output signal for latching the low byte of the address during an access to external memory. This pin is also the programming pulse input (PROG#) for flash programming. Normally the ALE ³ is emitted at a constant rate of 1/6 the crystal frequency ⁴ and can be used for external timing and clocking. One ALE pulse is skipped during each access to external data memory However, if AO is set to 1, ALE is disabled.
P4[3:0] ⁵	I/O with inter- nal pull-ups	Port 4: Port 4 is an 4-bit bi-directional I/O port with internal pull-ups. The port 4 output buffers can drive LS TTL inputs. Port 4 pins are pulled high by the interna pull-ups when '1's are written to them and can be used as inputs in this state. As inputs, port 4 pins that are externally pulled low will source current because of the internal pull-ups.
P4[0]	I/O	Bit 0 of port 4
P4[1]	I/O	Bit 1 of port 4
P4[2] / INT3#	I/O	Bit 2 of port 4 / INT3# External interrupt 3 input

Data Sheet

Program Memory Block Switching

The program memory block switching feature of the device allows either Block 1 or the lowest 8 KByte of Block 0 to be used for the lowest 8 KByte of the program address space. SFCF[1:0] controls program memory block switching.

Table 2: SFCF Values for Program Memory Block Switching

SFCF[1:0]	Program Memory Block Switching
01, 10, 11	Block 1 is not visible to the program counter (PC). Block 1 is reachable only via in-application programming from 0000H - 1FFFH.
00	Block 1 is overlaid onto the low 8K of the program address space; occupying address locations 0000H - 1FFFH. When the PC falls within 0000H - 1FFFH, the instruction will be fetched from Block 1 instead of Block 0. Outside of 0000H - 1FFFH, Block 0 is used. Locations 0000H - 1FFFH of Block 0 are reachable through in-application programming.

T0-0.0 25093

Reset Configuration of Program Memory Block Switching

Program memory block switching is initialized after reset according to the state of the Start-up Configuration bit SC0. The SC0 bit is programmed via an external host mode command or an IAP Mode command. See Table 14.

Once out of reset, the SFCF[0] bit can be changed dynamically by the program for desired effects. Changing SFCF[0] will not change the SC0 bit.

Caution must be taken when dynamically changing the SFCF[0] bit. Since this will cause different physical memory to be mapped to the logical program address space. The user must avoid executing block switching instructions within the address range 0000H to 1FFFH.

	State of SFCF[1:0] after:							
SC0 ¹	Power-on or External Reset	WDT Reset or Brown-out Reset	Software Reset					
U (1)	00 (default)	x0	10					
P (0)	01	x1	11					
·			T0-0.0 250					

Table 3: SFCF Values Under Different Reset Conditions

1. P = Programmed (Bit logic state = 0),

U = Unprogrammed (Bit logic state = 1)

Data RAM Memory

The data RAM has 1024 bytes of internal memory. The RAM can be addressed up to 64KB for external data memory.

Data Sheet

Symbol	Description	Direct Address	MSB	Bit Addre	ss, Syrr	nbol, or	Alternat	ive Port	Function	LSB	Reset Value
ACC ¹	Accumulator	E0H		ACC[7:0]							00H
B ¹	B Register	F0H				B[7:0]				00H
PSW ¹	Program Sta- tus Word	D0H	CY	AC	F0	RS 1	RS0	OV	F1	Р	00H
SP	Stack Pointer	81H				SP	[7:0]			•	07H
DPL	Data Pointer Low	82H				DPI	L[7:0]				00H
DPH	Data Pointer High	83H				DPI	H[7:0]				00H
IE ¹	Interrupt Enable	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
IEA ¹	Interrupt Enable A	E8H	-	-	-	-	EBO	-	-	-	xxxx0xxx b
IP ¹	Interrupt Prior- ity Reg	B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000 b
IPH	Interrupt Prior- ity Reg High	B7H	-	PPCH	PT2 H	PS H	PT1H	PX1 H	PT0H	PX0 H	x0000000 b
IP1 ¹	Interrupt Prior- ity Reg A	F8H	-	-	-	-	РВО	PX3	PX2	-	xxxx0xxx b
IP1H	Interrupt Prior- ity Reg A High	F7H	-	-	-	-	PBO H	PX3 H	PX2H	-	xxxx0xxx b
PCON	Power Control	87H	SMOD 1	SMOD 0	BOF	PO F	GF1	GF0	PD	IDL	00010000 b
AUXR	Auxiliary Reg	8EH	-	-	-	-	-	-	EXTRA M	AO	xxxxxxx0 0b
AUXR1	Auxiliary Reg 1	A2H	-	-	-	-	GF2	0	-	DPS	xxxx00x0 b
XICON	External Interrupt Con- trol	AEH	-	EX3	IE3	IT3	0	EX2	IE2	IT2	00H

1. Bit Addressable SFRs

T0-0.0 25093

Data Sheet

Table 11: PCA SFRs

		Direct		Bit Address, Symbol, or Alternative Port Function						RESET	
Symbol	Description	Address	MSB							LSB	Value
CH CL	PCA Timer/Coun- ter	F9H E9H		CH[7:0] CL[7:0]							00H 00H
CCON ¹	PCA Timer/Coun- ter Control Register	D8H	CF	CR	-	CCF4	CCF 3	CCF 2	CCF 1	CCF0	00x0000 0b
CMOD	PCA Timer/Coun- ter Mode Register	D9H	CID L	WDTE	-	-	-	CPS 1	CPS 0	ECF	00xxx000 b
CCAP0 H	PCA Module 0 Compare/Cap-	FAH				CCAP0	H[7:0]				00H
CCAP0 L	ture Registers	EAH				CCAPO	0L[7:0]				00H
CCAP1 H	PCA Module 1 Compare/Cap-	FBH				CCAP1	H[7:0]				00H
CCAP1 L	ture Registers	EBH		CCAP1L[7:0]						00H	
CCAP2 H	PCA Module 2 Compare/Cap-	FCH		CCAP2H[7:0]						00H	
CCAP2 L	ture Registers	ECH				CCAP2	2L[7:0]				00H
CCAP3 H	PCA Module 3 Compare/Cap-	FDH				CCAP3	H[7:0]				00H
CCAP3 L	ture Registers	EDH				CCAP3	BL[7:0]				00H
CCAP4 H	PCA Module 4 Compare/Cap-	FEH				CCAP4	H[7:0]				00H
CCAP4 L	ture Registers	EEH				CCAP4	L[7:0]				00H
CCAPM 0	PCA Compare/Cap-	DAH	-	ECOM 0	CAPP 0	CAPN 0	MAT 0	TOG 0	PWM 0	ECCF 0	x000000 0b
CCAPM 1	ture Module Mode	DBH	-	ECOM 1	CAPP 1	CAPN 1	MAT 1	TOG 1	PWM 1	ECCF 1	x000000 0b
CCAPM 2	Registers	DCH	-	ECOM 2	CAPP 2	CAPN 2	MAT 2	TOG 2	PWM 2	ECCF 2	x000000 0b
CCAPM 3		DDH	-	ECOM 3	CAPP 3	CAPN 3	MAT 3	TOG 3	PWM 3	ECCF 3	x000000 0b
CCAPM 4		DEH	-	ECOM 4	CAPP 4	CAPN 4	MAT 4	TOG 4	PWM 4	ECCF 4	x000000 0b

1. Bit Addressable SFRs

T0-0.0 25093

Data Sheet

SPI Control Register (S	PCR)								
Location	7	6	5	4	3	2	1	0	Reset Value
D5H	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	00H
Symbol	Function								
SPIE	If both SP	IE and ES	are set to	one, SPI	interrupts	are enable	ed.		
SPE	0: Disables	PI enable bit. Disables SPI. Enables SPI and connects SS#, MOSI, MISO, and SCK to pins P1.4, P1.5, P1.6, P1.7.							
DORD	Data Transmission Order. 0: MSB first in data transmission. 1: LSB first in data transmission.								
MSTR	Master/Slave select. 0: Selects Slave mode. 1: Selects Master mode.								
CPOL	Clock Pola 0: SCK is 1: SCK is	low when	•	0,					
CPHA	Clock Pha relationshi 0: Shift trig 1: Shift trig	p betweer ggered on	n master a the leadin	nd slave. S g edge of	See Figure the clock.	es 21 and		ock and c	lata
SPR1. S	PR0SPI Clo	ock Rate S	Select bits.	These tw	o bits cont	trol the SC	K rate of	the device	e configured

SPR1, SPR0SPI Clock Rate Select bits. These two bits control the SCK rate of the device configured as master. SPR1 and SPR0 have no effect on the slave. The relationship between SCK and the oscillator frequency, f_{OSC}, is as follows:

SPR1	SPR0	SCK = f _{OSC} divided by
0	0	4
0	1	16
1	0	64
1	1	128

SPI Status Register (SPSR)

Location	7	6	5	4	3	2	1	0	Reset Value
AAH	SPIF	WCOL	-	-	-	-	-	-	00xxxxxxb

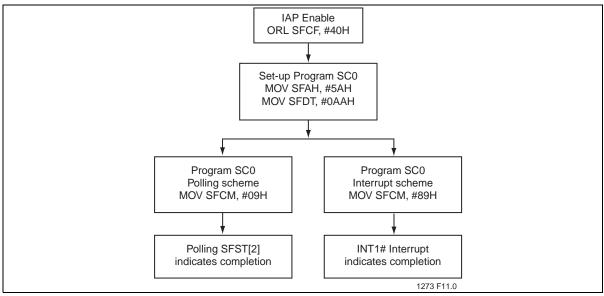
Symbol Function

SPIF	SPI Interrupt Flag. Upon completion of data transfer, this bit is set to 1. If SPIE =1 and ES =1, an interrupt is then generated. This bit is cleared by software.
WCOL	Write Collision Flag. Set if the SPI data register is written to during data transfer. This bit is cleared by software.

Data Sheet

External Interrupt Contr)							
Location	7	6	5	4	3	2	1	0	Reset Value
AEH	-	EX3	IE3	IT3	0	EX2	IE2	IT2	00H
Symbol	Function								
EX2	External Ir Enable bit	•							
IE2	Interrupt E If IT2=1, II		leared aut	omatically	by hardw	are when i	interrupt is	s detected	l/serviced.
IT2	External Ir	nterrupt 2 i	is falling-e	dge/low-le	vel trigger	ed when t	his bit is c	leared by	software.
EX3	External Ir Enable bit	•							
IE3	Interrupt E If IT3=1, II		leared aut	omatically	by hardw	are when i	interrupt is	detectec	l/serviced.
IT3	External Ir	nterrupt3 is	s falling-eo	ge/low-le	el trigger	ed when th	nis bit is cl	eared by	software.

©2013 Silicon Storage Technology, Inc.



Data Sheet

Prog-SC0

Prog-SC0 command is used to program the SC0 bit. This command only changes the SC0 bit and has no effect on BSEL bit until after a reset cycle.

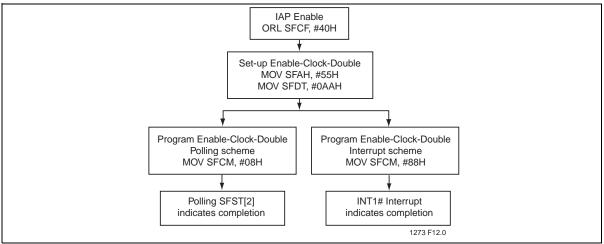

SC0 bit previously in un-programmed state can be programmed by this command. The Prog-SC0 command should reside only in Block 1 or external code memory.

Figure 15: Prog-SC0

Enable-Clock-Double

Enable-Clock-Double command is used to make the MCU run at 6 clocks per machine cycle. The standard (default) is 12 clocks per machine cycle (i.e. clock double command disabled).

Figure 16: Enable-Clock-Double

There are no IAP counterparts for the external host commands Select-Block0 and Select-Block1.

Data Sheet

Table 22: PCA Module Modes

W	Without Interrupt enabled							
_1	ECOMy ²	CAPPy ²	CAPNy ²	MATy ²	TOGy ²	PWMy ²	ECCFy ²	Module Code
-	0	0	0	0	0	0	0	No Operation
-	0	1	0	0	0	0	0	16-bit capture on positive-edge trigger at CEX[4:0]
-	0	0	1	0	0	0	0	16-bit capture on negative-edge trigger at CEX[4:0]
-	0	1	1	0	0	0	0	16-bit capture on positive/negative-edge trigger at CEX[4:0]
-	1	0	0	1	0	0	0	Compare: software timer
-	1	0	0	1	1	0	0	Compare: high-speed output
-	1	0	0	0	0	1	0	Compare: 8-bit PWM
-	1	0	0	1	0 or 1 ³	0	0	Compare: PCA WDT (CCAPM4 only) ⁴

T0-0.0 25093

1. User should not write '1's to reserved bits. The value read from a reserved bit is indeterminate.

2. y = 0, 1, 2, 3, 4

3. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.

4. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

Wi	th Interrup	t enabled						
_1	ECOMy ²	CAPPy ²	CAPNy ²	MATy ²	TOGy ²	PWMy ²	ECCFy ²	Module Code
-	0	1	0	0	0	0	1	16-bit capture on positive-edge trig- ger at CEX[4:0]
-	0	0	1	0	0	0	1	16-bit capture on negative-edge trig- ger at CEX[4:0]
-	0	1	1	0	0	0	1	16-bit capture on positive/negative- edge trigger at CEX[4:0]
-	1	0	0	1	0	0	1	Compare: software timer
-	1	0	0	1	1	0	1	Compare: high-speed output
-	1	0	0	0	0	1	X ³	Compare: 8-bit PWM
-	1	0	0	1	0 or 1 ⁴	0	X ⁵	Compare: PCA WDT (CCAPM4 only) ⁶

Table 23: PCA Module Modes

T0-0.0 25093

1. User should not write '1's to reserved bits. The value read from a reserved bit is indeterminate.

2. y = 0, 1, 2, 3, 4

3. No PCA interrupt is needed to generate the PWM.

4. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.

5. Enabling an interrupt for the Watchdog Timer would defeat the purpose of the Watchdog Timer.

6. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

Data Sheet

Capture Mode

Capture mode is used to capture the PCA timer/counter value into a module's capture registers (CCAPnH and CCAPnL). The capture will occur on a positive edge, negative edge, or both on the corresponding module's pin. To use one of the PCA modules in the capture mode, either one or both the CCAPM bits CAPN and CAPP for that module must be set. When a valid transition occurs on the CEX pin corresponding to the module used, the PCA hardware loads the 16-bit value of the PCA counter register (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set, then an interrupt will be generated. In the interrupt service routine, the 16-bit capture value must be saved in RAM before the next event capture occurs. If a subsequent capture occurred, the original capture values would be lost. After flag event flag has been set by hardware, the user must clear the flag in software. (See Figure 25)

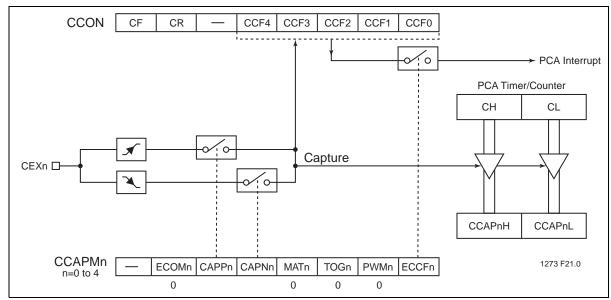


Figure 25: PCA Capture Mode

Data Sheet

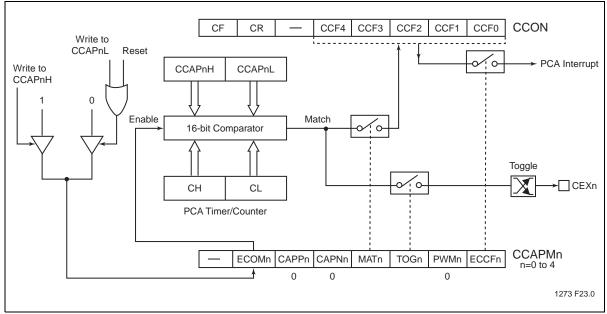


Figure 27: PCA High Speed Output Mode

Pulse Width Modulator

The Pulse Width Modulator (PWM) mode is used to generate 8-bit PWMs by comparing the low byte of the PCA timer (CL) with the low byte of the compare register (CCAPnL). When CL < CCAPnL the output is low. When $CL \ge CCAPnL$ the output is high. To activate this mode, the user must set the PWM and ECOM bits in the module's CCAPMn SFR. (See Figure 28 and Table 24)

In PWM mode, the frequency of the output depends on the source for the PCA timer. Since there is only one set of CH and CL registers, all modules share the PCA timer and frequency. Duty cycle of the output is controlled by the value loaded into the high byte (CCAPnH). Since writes to the CCAPnH register are asynchronous, a new value written to the high byte will not be shifted into CCAPnL for comparison until the next period of the output (when CL rolls over from 255 to 00).

To calculate values for CCAPnH for any duty cycle, use the following equation:

CCAPnH = 256(1 - Duty Cycle)

where CCAPnH is an 8-bit integer and Duty Cycle is a fraction.

Data Sheet

Watchdog Timer

The Watchdog Timer mode is used to improve reliability in the system without increasing chip count (See Figure 29). Watchdog Timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. It can also be used to prevent a software deadlock. If during the execution of the user's code, there is a deadlock, the Watchdog Timer will time out and an internal reset will occur. Only module 4 can be programmed as a Watchdog Timer (but still can be programmed to other modes if the Watchdog Timer is not used).

To use the Watchdog Timer, the user pre-loads a 16-bit value in the compare register. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

- 1. periodically change the compare value so it will never match the PCA timer,
- 2. periodically change the PCA timer value so it will never match the compare values, or
- 3. disable the watchdog timer by clearing the WDTE bit before a match occurs and then reenable it.

The first two options are more reliable because the Watchdog Timer is never disabled as in option #3. If the program counter ever goes astray, a match will eventually occur and cause an internal reset. The second option is also not recommended if other PCA modules are being used. Remember, the PCA timer is the time base for all modules; changing the time base for other modules would not be a good idea. Thus, in most application the first solution is the best option.

Use the code below to initialize the Watchdog Timer. Module 4 can be configured in either compare mode, and the WDTE bit in CMOD must also be set. The user's software then must periodically change (CCAP4H, CCAP4L) to keep a match from occurring with the PCA timer (CH, CL). This code is given in the Watchdog routine below.

Init_Watchdog:

MOVCCAPM4, #4CH; Module 4 in compare mode

MOVCCAP4L, #0FFH; Write to low byte first

MOVCCAP4H, #0FFH; Before PCA timer counts up ; to FFFF Hex, these compare ; values must be changed.

ORLCMOD, #40H; Set the WDTE bit to enable the

- ; watchdog timer without
- ; changing the other bits in

; CMOD

;Main program goes here, but call WATCHDOG periodically.

WATCHDOG:

Data Sheet

CLR EA; Hold off interrupts

MOVCCAP4L, #00; Next compare value is within

MOVCCAP4H, CH; 65,535 counts of the ; current PCA

SETBEA; timer value

RET

This routine should not be part of an interrupt service routine. If the program counter goes astray and gets stuck in an infinite loop, interrupts will still be serviced and the watchdog will keep getting reset. Thus, the purpose of the watchdog would be defeated. Instead, call this subroutine from the main program of the PCA timer.

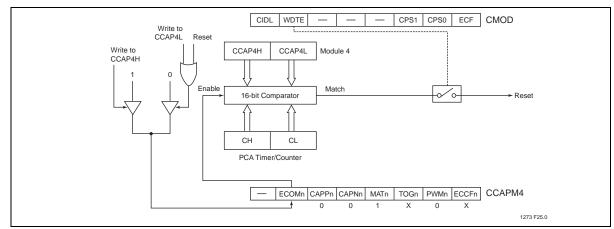


Figure 29: PCA Watchdog Timer (Module 4 only)

Data Sheet

T0-0.0 25093

Table 26: Security Lock Access Table

		Source	Target	Byte-Verify Allo	MOVC Allowed	
Level	SFST[7:5]	Address ¹	Address ²	External Host ³	IAP	516RDx
		Block 0	Y	Ν	Y	
		Block 0	Block 1	Y	Y	Y
			External	N/A	N/A	Ν
1	000b	Block 1	Block 0	Y	Y	Y
1	(unlock)		Block 1	Y	Ν	Y
			External	N/A	N/A	Ν
		Estern el	Block 0/1	Y	Y	Ν
		External	External	N/A	N/A	Y

1. Location of MOVC or IAP instruction

2. Target address is the location of the byte being read

3. External host Byte-Verify access does not depend on a source address.

Data Sheet

Electrical Specification

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Ambient Temperature Under Bias	
Storage Temperature	
Voltage on EA# Pin to V _{SS}	
D.C. Voltage on Any Pin to Ground Potential	0.5V to V _{DD} +0.5V
Transient Voltage (<20ns) on Any Other Pin to V _{SS}	1.0V to V _{DD} +1.0V
Maximum I _{OL} per I/O Pins P1.5, P1.6, P1.7	
Maximum I _{OL} per I/O for All Other Pins	15mA
Package Power Dissipation Capability (T _A = 25°C)	1.5W
Through Hole Lead Soldering Temperature (10 Seconds)	
Surface Mount Solder Reflow Temperature ¹	260°C for 10 seconds
Output Short Circuit Current ²	50 mA

- 1. Excluding certain with-Pb 32-PLCC units, all packages are 260°C capable in both non-Pb and with-Pb solder versions. Certain with-Pb 32-PLCC package types are capable of 240°C for 10 seconds; please consult the factory for the latest information.
- $\ensuremath{\text{2.}}$ Outputs shorted for no more than one second. No more than one output shorted at a time.
- (Based on package heat transfer limitations, not device power consumption.
- **Note:** This specification contains preliminary information on new products in production. The specifications are subject to change without notice.

Symbol	Description	Min.	Max	Unit
T _A	Ambient Temperature Under Bias			
	Standard	0	+70	°C
	Industrial	-40	+85	°C
V _{DD}	Supply Voltage			
	SST89E516RDx	4.5	5.5	V
	SST89V516RDx	2.7	3.6	V
fosc	Oscillator Frequency			
	SST89E516RDx	0	40	MHz
	SST89V516RDx	0	33	MHz
	Oscillator Frequency for IAP			
	SST89E516RDx	.25	40	MHz
	SST89V516RDx	.25	33	MHz

Table 31: Operating Range

T0-0.0 25093

Data Sheet

1. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 15mA Maximum I_{OL} per 8-bit port: 26mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification.

Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL}s of ALE and Ports 1 & 3. The noise due to external bus capacitance discharging into the Port 0 & 2 pins when the pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
- 3. Load capacitance for Port 0, ALE & PSEN#= 100pF, load capacitance for all other outputs = 80pF.
- 4. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and PSEN# to momentarily fall below the V_{DD} 0.7 specification when the address bits are stabilizing.
- 5. Pins of Ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2V.
- 6. Pin capacitance is characterized but not tested. EA# is 25pF (max).

Data Sheet

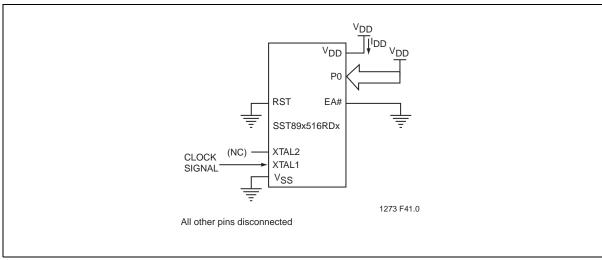


Figure 45:I_{DD} Test Condition, Idle Mode

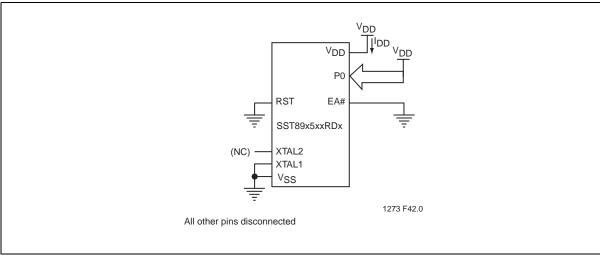


Figure 46:I_{DD} Test Condition, Power-down Mode

Table 41: Flash Memory Prog	ramming/Verification Parameters ¹
-----------------------------	--

Parameter ²	Max	Units
Chip-Erase Time	150	ms
Block-Erase Time	100	ms
Sector-Erase Time	30	ms
Byte-Program Time ³	50	μs
Select-Block Program Time	500	ns
Re-map or Security bit Program Time	80	μs
		T0-0.1 250

1. For IAP operations, the program execution overhead must be added to the above timing parameters.

2. Program and Erase times will scale inversely proportional to programming clock frequency.

3. Each byte must be erased before programming.

Data Sheet

Packaging Diagrams

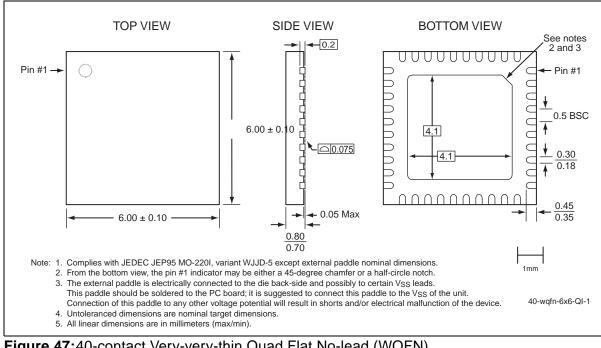


Figure 47:40-contact Very-very-thin Quad Flat No-lead (WQFN) SST Package Code: QI

Data Sheet

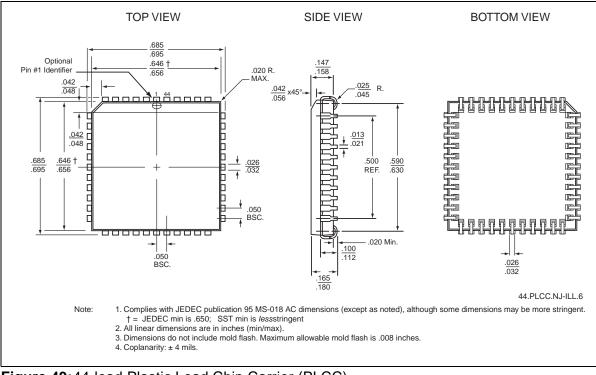


Figure 49:44-lead Plastic Lead Chip Carrier (PLCC) SST Package Code: NJ