

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	36
Program Memory Size	72KB (72K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	·
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/sst89v516rd2-33-i-nje-t-nxx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet

Pin Assignments

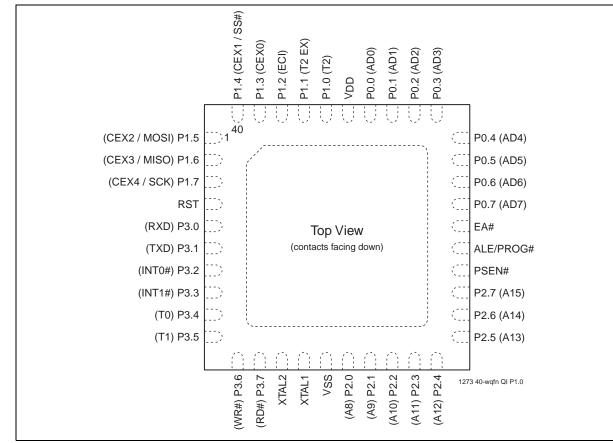


Figure 2: Pin Assignments for 40-Contact WQFN

Data Sheet

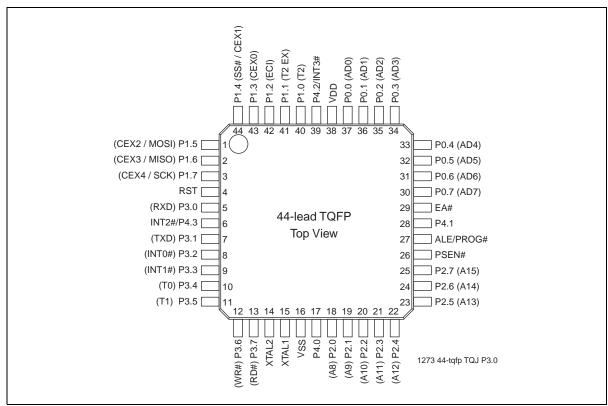


Figure 4: Pin Assignments for 44-lead TQFP

Data Sheet

Symbol	Type ¹	Name and Functions
P4[3] / INT2#	I/O	Bit 3 of port 4 / INT2# External interrupt 2 input
XTAL1	Ι	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	0	Crystal 2: Output from the inverting oscillator amplifier
V _{DD}	I	Power Supply
V _{SS}	I	Ground
		T0-0.0 25093

Table 1: Pin Descriptions (Continued) (3 of 3)

1. I = Input; O = Output

2. It is not necessary to receive a 12V programming supply voltage during flash programming.

3.ALE loading issue: When ALE pin experiences higher loading (>30pf) during the reset, the MCU may accidentally enter into modes other than normal working mode. The solution is to add a pull-up resistor of 3-50 KΩ to V_{DD}, e.g. for ALE pin.

4. For 6 clock mode, ALE is emitted at 1/3 of crystal frequency.

5. Port 4 is not present on the PDIP and WQFN packages.

Data Sheet

Expanded Data RAM Addressing

The SST89E/V516RDx have the capability of 1 KByte RAM. See Figure 7.

The device has four sections of internal data memory:

- 1. The lower 128 Bytes of RAM (00H to 7FH) are directly and indirectly addressable.
- 2. The higher 128 Bytes of RAM (80H to FFH) are indirectly addressable.
- 3. The special function registers (80H to FFH) are directly addressable only.
- The expanded RAM of 768 Bytes (00H to 2FFH) is indirectly addressable by the move external instruction (MOVX) and clearing the EXTRAM bit. (See "Auxiliary Register (AUXR)" in Section, "Special Function Registers")

Since the upper 128 Bytes occupy the same addresses as the SFRs, the RAM must be accessed indirectly. The RAM and SFRs space are physically separate even though they have the same addresses.

When instructions access addresses in the upper 128 Bytes (above 7FH), the MCU determines whether to access the SFRs or RAM by the type of instruction given. If it is indirect, then RAM is accessed. If it is direct, then an SFR is accessed. See the examples below.

Indirect Access:

MOV@R0, #data; R0 contains 90H

Register R0 points to 90H which is located in the upper address range. Data in "#data" is written to RAM location 90H rather than port 1.

Direct Access:

MOV90H, #data; write data to P1

Data in "#data" is written to port 1. Instructions that write directly to the address write to the SFRs.

To access the expanded RAM, the EXTRAM bit must be cleared and MOVX instructions must be used. The extra 768 bytes of memory is physically located on the chip and logically occupies the first 768 bytes of external memory (addresses 000H to 2FFH).

When EXTRAM = 0, the expanded RAM is indirectly addressed using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. Accessing the expanded RAM does not affect ports P0, P3.6 (WR#), P3.7 (RD#), or P2. With EXTRAM = 0, the expanded RAM can be accessed as in the following example.

Expanded RAM Access (Indirect Addressing only):

MOVX@DPTR, A; DPTR contains 0A0H

DPTR points to 0A0H and data in "A" is written to address 0A0H of the expanded RAM rather than external memory. Access to external memory higher than 2FFH using the MOVX instruction will access external memory (0300H to FFFH) and will perform in the same way as the standard 8051, with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals.

When EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 8051. Using MOVX @Ri provides an 8-bit address with multiplexed data on Port 0. Other output port pins can be used to output higher order address bits. This provides external paging capabilities. Using MOVX @DPTR generates a 16-bit address. This allows external addressing up the 64K. Port 2 provides the

Data Sheet

Serial Port Control Register (SCON)

Location	7	6	5	4	3	2	1	0	Reset Value
98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	0000000b

Symbol Function

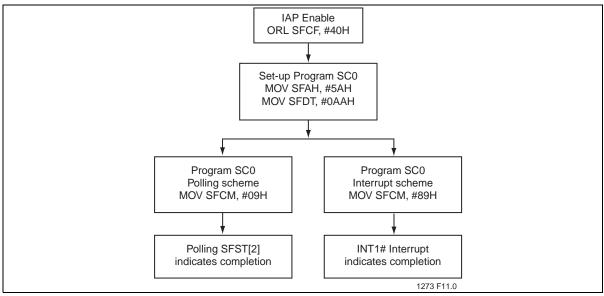
 FE Set SMOD0 = 1 to access FE bit. 0: No framing error 1: Framing Error. Set by receiver when an invalid stop bit is detected. This bit needs to be

- SM0 SMOD0 = 0 to access SM0 bit. Serial Port Mode Bit 0
- SM1 Serial Port Mode Bit 1

SM0	SM1	Mode	Description	Baud Rate ¹
0	0	0	Shift Register	f _{OSC} /6 (6 clock mode) or f _{OSC} /12 (12 clock mode)
0	1	1	8-bit UART	Variable
1	0	2	9-bit UART	$f_{OSC}/32$ or $f_{OSC}/16$ (6 clock mode) or $f_{OSC}/64$ or $f_{OSC}/32$ (12 clock mode)
1	1 illator fraguenov	3	9-bit UART	Variable

1. f_{OSC} = oscillator frequency

- SM2 Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then RI will not be set unless the received 9th data bit (RB8) is 1, indicating an address, and the received byte is a given or broadcast address. In Mode 1, if SM2 = 1 then RI will not be activated unless a valid stop bit was received. In Mode 0, SM2 should be 0.
- REN Enables serial reception. 0: to disable reception. 1: to enable reception.
- TB8 The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as
- desired.
- RB8 In Modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the stop bit that was received. In Mode 0, RB8 is not used.
- TI Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission, Must be cleared by software.
- RI Receive interrupt flag. Set by hardware at the end of the8th bit time in Mode 0, or halfway through the stop bit time in the other modes, in any serial reception (except see SM2). Must be cleared by software.



Data Sheet

Prog-SC0

Prog-SC0 command is used to program the SC0 bit. This command only changes the SC0 bit and has no effect on BSEL bit until after a reset cycle.

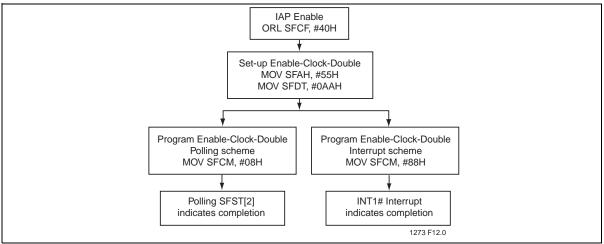

SC0 bit previously in un-programmed state can be programmed by this command. The Prog-SC0 command should reside only in Block 1 or external code memory.

Figure 15: Prog-SC0

Enable-Clock-Double

Enable-Clock-Double command is used to make the MCU run at 6 clocks per machine cycle. The standard (default) is 12 clocks per machine cycle (i.e. clock double command disabled).

Figure 16: Enable-Clock-Double

There are no IAP counterparts for the external host commands Select-Block0 and Select-Block1.

Data Sheet

Polling

A command that uses the polling method to detect flash operation completion should poll on the FLASH_BUSY bit (SFST[2]). When FLASH_BUSY de-asserts (logic 0), the device is ready for the next operation.

MOVC instruction may also be used for verification of the Programming and Erase operation of the flash memory. MOVC instruction will fail if it is directed at a flash block that is still busy.

Interrupt Termination

If interrupt termination is selected, (SFCM[7] is set), then an interrupt (INT1) will be generated to indicate flash operation completion. Under this condition, the INT1 becomes an internal interrupt source. The INT1# pin can now be used as a general purpose port pin and it cannot be the source of External Interrupt 1 during in-application programming.

In order to use an interrupt to signal flash operation termination. EX1 and EA bits of IE register must be set. The IT1 bit of TCON register must also be set for edge trigger detection.

		SFAL [7:0]
55H	X4	Х
55H	AH	Х
Х	AH ⁶	AL ⁷
DI ⁸	AH	AL
DO ⁸	AH	AL
AAH	Х	Х
AAH	Х	Х
AAH	Х	Х
AAH	5AH	Х
AAH	55H	Х

Table 14: IAP Commands¹

1. SFCF[6]=1 enables IAP commands; SFCF[6]=0 disables IAP commands.

2. Interrupt/Polling enable for flash operation completion

SFCM[7] =1: Interrupt enable for flash operation completion 0: polling enable for flash operation completion

3. Chip-Erase only functions in IAP mode when EA#=0 (external memory execution) and device is not in level 4 locking.

4. X can be V_{IL} or V_{IH} , but no other value.

5. Refer to Table 13 for address resolution

6. AH = Address high order byte

7. AL = Address low order byte

8. DI = Data Input, DO = Data Output, all other values are in hex.

9. Instruction must be located in Block 1 or external code memory.

Note: DISIAPL pin in PLCC or TQFP will also disable IAP commands if it is externally pulled low when reset.

Data Sheet

		T2CON	
	Mode	Internal Control ¹	External Control ²
16-bit Auto-Reload		00H	08H
	16-bit Capture	01H	09H
Used as Timer	Baud rate generator receive and transmit same baud rate	34H	36H
	Receive only	24H	26H
	Transmit only	14H	16H
Used as Counter	16-bit Auto-Reload	02H	0AH
Useu as Counter	16-bit Capture	03H	0BH

Table 17: Timer/Counter 2

1. Capture/Reload occurs only on timer/counter overflow.

T0-0.0 25093

2. Capture/Reload occurs on timer/counter overflow and a 1 to 0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generating mode.

Programmable Clock-Out

A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

- 1. to input the external clock for Timer/Counter 2, or
- 2. to output a 50% duty cycle clock ranging from 122 Hz to 8 MHz at a 16 MHz operating frequency (61 Hz to 4 MHz in 12 clock mode).

To configure Timer/Counter 2 as a clock generator, bit

C/#T2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

n =2 (in 6 clock mode) 4 (in 12 clock mode)

Where (RCAP2H, RCAP2L) = the contents of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode, Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will not be the same.

Data Sheet

Watchdog Timer

The device offers a programmable Watchdog Timer (WDT) for fail safe protection against software deadlock and automatic recovery.

To protect the system against software deadlock, the user software must refresh the WDT within a user-defined time period. If the software fails to do this periodical refresh, an internal hardware reset will be initiated if enabled (WDRE= 1). The software can be designed such that the WDT times out if the program does not work properly.

The WDT in the device uses the system clock (XTAL1) as its time base. So strictly speaking, it is a watchdog counter rather than a watchdog timer. The WDT register will increment every 344,064 crystal clocks. The upper 8-bits of the time base register (WDTD) are used as the reload register of the WDT.

The WDTS flag bit is set by WDT overflow and is not changed by WDT reset. User software can clear WDTS by writing "1" to it.

Figure 23 provides a block diagram of the WDT. Two SFRs (WDTC and WDTD) control watchdog timer operation. During idle mode, WDT operation is temporarily suspended, and resumes upon an interrupt exit from idle.

The time-out period of the WDT is calculated as follows:

Period = (255 - WDTD) * 344064 * 1/f_{CLK (XTAL1)}

where WDTD is the value loaded into the WDTD register and f_{OSC} is the oscillator frequency.

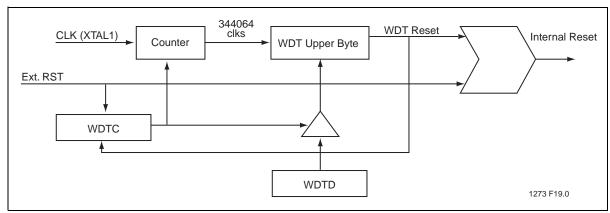


Figure 23: Block Diagram of Programmable Watchdog Timer

Data Sheet

Programmable Counter Array

The Programmable Counter Array (PCA) present on the SST89E/V516RDx is a special 16-bit timer that has five 16-bit capture/compare modules. Each of the modules can be programmed to operate in one of four modes: rising and/or falling edge capture, software timer, high-speed output, or pulse width modulator. The 5th module can be programmed as a Watchdog Timer in addition to the other four modes. Each module has a pin associated with it in port 1. Module 0 is connected to P1.3 (CEX0), module 1 to P1[4] (CEX1), module 2 to P1[5] (CEX2), module 3 to P1[6] (CEX3), and module 4 to P1[7] (CEX4). PCA configuration is shown in Figure 24.

PCA Overview

PCA provides more timing capabilities with less CPU intervention than the standard timer/counter. Its advantages include reduced software overhead and improved accuracy.

The PCA consists of a dedicated timer/counter which serves as the time base for an array of five compare/capture modules. Figure 24 shows a block diagram of the PCA. External events associated with modules are shared with corresponding Port 1 pins. Modules not using the port pins can still be used for standard I/O.

Each of the five modules can be programmed in any of the following modes:

- Rising and/or falling edge capture
- Software timer
- High speed output
- Watchdog Timer (Module 4 only)
- Pulse Width Modulator (PWM)

PCA Timer/Counter

The PCA timer is a free-running 16-bit timer consisting of registers CH and CL (the high and low bytes of the count values). The PCA timer is common time base for all five modules and can be programmed to run at: 1/6 the oscillator frequency, 1/2 the oscillator frequency, Timer 0 overflow, or the input on the ECI pin (P1.2). The timer/counter source is determined from the CPS1 and CPS0 bits in the CMOD SFR as follows (see "PCA Timer/Counter Mode Register (CMOD)" on page 28):

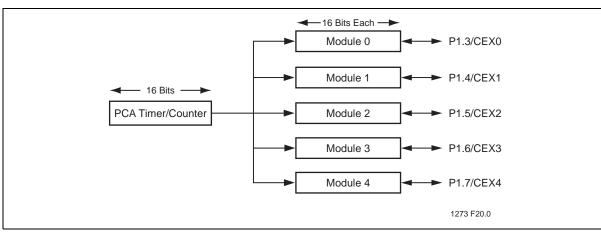

CPS1	CPS0	12 Clock Mode	6 Clock Mode
0	0	f _{OSC} /12	f _{OSC} /6
0	1	f _{OSC} /4	f _{OSC} /2
1	0	Timer 0 overflow	Timer 0 overflow
1	1	External clock at ECI pin (maximum rate = f _{OSC} /8)	External clock at ECI pin (maximum rate = f _{OSC} /4)

Table 18: PCA Timer/Counter Source

T0-0.0 25093

Data Sheet

The table below summarizes various clock inputs at two common frequencies.

Table 19: PCA Timer/Counter Inputs	

	Clock Increments		
PCA Timer/Counter Mode	12 MHz	16 MHz	
Mode 0: f _{OSC} /12	1 µsec	0.75 µsec	
Mode 1:	330 nsec	250 nsec	
Mode 2: Timer 0 Overflows ¹			
Timer 0 programmed in:			
8-bit mode	256 µsec	192 µsec	
16-bit mode	65 msec	49 µsec	
8-bit auto-reload	1 to 255 µsec	0.75 to 191 µsec	
Mode 3: External Input MAX	0.66 µsec	0.50 µsec	

1. In Mode 2, the overflow interrupt for Timer 0 does not need to be enabled.

T0-0.0 25093

The four possible CMOD timer modes with and without the overflow interrupt enabled are shown below. This list assumes that PCA will be left running during idle mode.

Table 20: CMOD Values

	CMOD Value			
PCA Count Pulse Selected	Without Interrupt Enabled	With Interrupt Enabled		
Internal clock, f _{OSC} /12	00H	01H		
Internal clock, f _{OSC} /4	02H	03H		
Timer 0 overflow	04H	05H		
External clock at P1.2	06H	07H		

T0-0.0 25093

The CCON register is associated with all PCA timer functions. It contains run control bits and flags for the PCA timer (CF) and all modules. To run the PCA the CR bit (CCON.6) must be set by software. Clearing the bit, will turn off PCA. When the PCA counter overflows, the CF (CCON.7) will be set, and

Data Sheet

Table 22: PCA Module Modes

W	Without Interrupt enabled									
_1	ECOMy ²	CAPPy ²	CAPNy ²	MATy ²	TOGy ²	PWMy ²	ECCFy ²	Module Code		
-	0	0	0	0	0	0	0	No Operation		
-	0	1	0	0	0	0	0	16-bit capture on positive-edge trigger at CEX[4:0]		
-	0	0	1	0	0	0	0	16-bit capture on negative-edge trigger at CEX[4:0]		
-	0	1	1	0	0	0	0	16-bit capture on positive/negative-edge trigger at CEX[4:0]		
-	1	0	0	1	0	0	0	Compare: software timer		
-	1	0	0	1	1	0	0	Compare: high-speed output		
-	1	0	0	0	0	1	0	Compare: 8-bit PWM		
-	1	0	0	1	0 or 1 ³	0	0	Compare: PCA WDT (CCAPM4 only) ⁴		

T0-0.0 25093

1. User should not write '1's to reserved bits. The value read from a reserved bit is indeterminate.

2. y = 0, 1, 2, 3, 4

3. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.

4. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

Wi	With Interrupt enabled									
_1	ECOMy ²	CAPPy ²	CAPNy ²	MATy ²	TOGy ²	PWMy ²	ECCFy ²	Module Code		
-	0	1	0	0	0	0	1	16-bit capture on positive-edge trig- ger at CEX[4:0]		
-	0	0	1	0	0	0	1	16-bit capture on negative-edge trig- ger at CEX[4:0]		
-	0	1	1	0	0	0	1	16-bit capture on positive/negative- edge trigger at CEX[4:0]		
-	1	0	0	1	0	0	1	Compare: software timer		
-	1	0	0	1	1	0	1	Compare: high-speed output		
-	1	0	0	0	0	1	X ³	Compare: 8-bit PWM		
-	1	0	0	1	0 or 1 ⁴	0	X ⁵	Compare: PCA WDT (CCAPM4 only) ⁶		

Table 23: PCA Module Modes

T0-0.0 25093

1. User should not write '1's to reserved bits. The value read from a reserved bit is indeterminate.

2. y = 0, 1, 2, 3, 4

3. No PCA interrupt is needed to generate the PWM.

4. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.

5. Enabling an interrupt for the Watchdog Timer would defeat the purpose of the Watchdog Timer.

6. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

Data Sheet

Security Lock

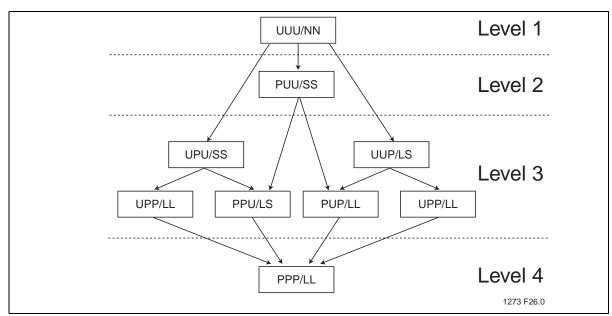
The security lock protects against software piracy and prevents the contents of the flash from being read by unauthorized parties. It also protects against code corruption resulting from accidental erasing and programming to the internal flash memory. There are two different types of security locks in the device security lock system: hard lock and SoftLock.

Hard Lock

When hard lock is activated, MOVC or IAP instructions executed from an unlocked or soft locked program address space, are disabled from reading code bytes in hard locked memory blocks (See Table 26). Hard lock can either lock both flash memory blocks or just lock the 8 KByte flash memory block (Block 1). All external host and IAP commands except for Chip-Erase are ignored for memory blocks that are hard locked.

SoftLock

SoftLock allows flash contents to be altered under a secure environment. This lock option allows the user to update program code in the soft locked memory block through in-application programming mode under a predetermined secure environment. For example, if Block 1 (8K) memory block is locked (hard locked or soft locked), and Block 0 memory block is soft locked, code residing in Block 1 can program Block 0. The following IAP mode commands issued through the command mailbox register, SFCM, executed from a Locked (hard locked or soft locked) block, can be operated on a soft locked block: Block-Erase, Sector-Erase, Byte-Program and Byte-Verify.


In external host mode, SoftLock behaves the same as a hard lock.

Security Lock Status

The three bits that indicate the device security lock status are located in SFST[7:5]. As shown in Figure 30 and Table 25, the three security lock bits control the lock status of the primary and secondary blocks of memory. There are four distinct levels of security lock status. In the first level, none of the security lock bits are programmed and both blocks are unlocked. In the second level, although both blocks are now locked and cannot be programmed, they are available for read operation via Byte-Verify. In the third level, three different options are available: Block 1 hard lock / Block 0 SoftLock, SoftLock on both blocks, and hard lock on both blocks. Locking both blocks is the same as Level 2, Block 1 except read operation isn't available. The fourth level of security is the most secure level. It doesn't allow read/program of internal memory or boot from external memory. For details on how to program the security lock bits refer to the external host mode and in-application programming sections.

Data Sheet

Figure 30: Security Lock Levels

Note: P = Programmed (Bit logic state = 0), U = Unprogrammed (Bit logic state = 1), N = Not Locked, L = Hard locked, S = Soft locked

	Security Lock Bits ^{1,2}				Security Status of:		
Level	SFST[7:5]	SB1	SB2 ¹	SB3 ¹	Block 1	Block 0	Security Type
1	000	U	U	U	Unlock	Unlock	No Security Features are Enabled.
2	100	Ρ	U	U	SoftLock	SoftLock	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA# is sampled and latched on Reset, and further programming of the flash is disabled.
3	011 101	U P	P U	P P	Hard Lock	Hard Lock	Level 2 plus Verify disabled, both blocks locked.
	010	U	P	U	SoftLock	SoftLock	Level 2 plus Verify disabled. Code in Block 1 may program Block 0 and vice versa.
	110 001	P U	P U	U P	Hard Lock	SoftLock	Level 2 plus Verify disabled. Code in Block 1 may program Block 0.
4	111	Ρ	Р	Ρ	Hard Lock	Hard Lock	Same as Level 3 hard lock/hard lock, but MCU will start code exe- cution from the internal memory regardless of EA#.

Table 25: Security Lock Options

1. P = Programmed (Bit logic state = 0), U = Unprogrammed (Bit logic state = 1).

2. SFST[7:5] = Security Lock Status Bits (SB1_i, SB2_i, SB3_i)

©2013 Silicon Storage Technology, Inc.

T0-0.0 25093

Data Sheet

Read Operation Under Lock Condition

The status of security bits SB1, SB2, and SB3 can be read when the read command is disabled by security lock. There are three ways to read the status.

- 1. External host mode: Read-back = 00H (locked)
- 2. IAP command: Read-back = previous SFDT data
- 3. MOVC: Read-back = FFH (blank)

Table 26: Security Lock Access Table

			Target	Byte-Verify Allo	MOVC Allowed	
Level	SFST[7:5]	Source Address ¹	Address ²	External Host ³	IAP	516RDx
		Block 0/1	Block 0/1	N	Ν	Y
	111b		External	N/A	N/A	Ν
4	(hard lock on both blocks)		Block 0/1	N	Ν	N
		External	External	N/A	N/A	Ν
		Block 0/1	Block 0/1	N	Ν	Y
	011b/101b		External	N/A	N/A	N
	(hard lock on both blocks)	External	Block 0/1	N	Ν	N
		External	External	N/A	N/A	Y
			Block 0	N	Ν	Y
		Block 0	Block 1	N	Ν	N
			External	N/A	N/A	N
	001b/110b (Block 0 = SoftLock, Block 1 = hard lock)	Block 1	Block 0	N	Υ	Y
			Block 1	N	Ν	Y
3			External	N/A	N/A	N
3		External	Block 0/1	N	Ν	N
			External	N/A	N/A	Y
		Block 0	Block 0	N	Ν	Y
			Block 1	N	Υ	Y
			External	N/A	N/A	N
	010b (SoftLock on both blocks)	Block 1	Block 0	N	Υ	Y
			Block 1	N	Ν	Y
			External	N/A	N/A	N
		External	Block 0/1	N	Ν	N
			External	N/A	N/A	Y
			Block 0	Y	Ν	Y
		Block 0	Block 1	Y	Y	Y
			External	N/A	N/A	N
2	100b	Block 1	Block 0	Y	Y	Y
2	(SoftLock on both blocks)		Block 1	Y	Ν	Y
			External	N/A	N/A	Ν
		External	Block 0/1	Y	Ν	Ν
		External	External	N/A	N/A	Y

Data Sheet

Mode	Initiated by	State of MCU	Exited by
Idle Mode	Software (Set IDL bit in PCON) MOV PCON, #01H;	CLK is running. Interrupts, serial port and timers/counters are active. Program Counter is stopped. ALE and PSEN# signals at a HIGH level during Idle. All registers remain unchanged.	Enabled interrupt or hardware reset. Start of interrupt clears IDL bit and exits idle mode, after the ISR RETI instruction, program resumes execution beginning at the instruction following the one that invoked idle mode. A user could consider placing two or three NOP instructions after the instruc- tion that invokes idle mode to elim- inate any problems. A hardware reset restarts the device similar to a power-on reset.
Power-down Mode	Software (Set PD bit in PCON) MOV PCON, #02H;	CLK is stopped. On-chip SRAM and SFR data is maintained. ALE and PSEN# signals at a LOW level during power -down. External Interrupts are only active for level sensi- tive interrupts, if enabled.	Enabled external level sensitive interrupt or hardware reset. Start of interrupt clears PD bit and exits power-down mode, after the ISR RETI instruction program resumes execution beginning at the instruc- tion following the one that invoked power-down mode. A user could consider placing two or three NOP instructions after the instruction that invokes power-down mode to eliminate any problems. A hard- ware reset restarts the device sim- ilar to a power-on reset.

Table 28: Power Saving Modes

T0-0.0 25093

Data Sheet

1. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum I_{OL} per port pin: 15mA Maximum I_{OL} per 8-bit port: 26mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification.

Pins are not guaranteed to sink current greater than the listed test conditions.

- 2. Capacitive loading on Ports 0 and 2 may cause spurious noise to be superimposed on the V_{OL}s of ALE and Ports 1 & 3. The noise due to external bus capacitance discharging into the Port 0 & 2 pins when the pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
- 3. Load capacitance for Port 0, ALE & PSEN#= 100pF, load capacitance for all other outputs = 80pF.
- 4. Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and PSEN# to momentarily fall below the V_{DD} 0.7 specification when the address bits are stabilizing.
- 5. Pins of Ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when V_{IN} is approximately 2V.
- 6. Pin capacitance is characterized but not tested. EA# is 25pF (max).

Data Sheet

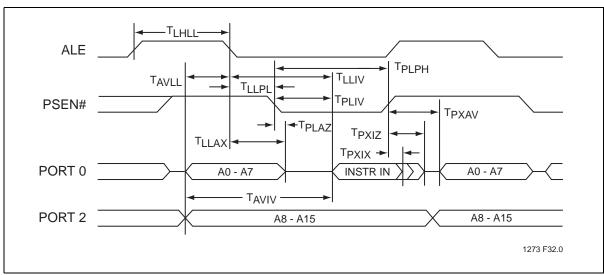


Figure 36: External Program Memory Read Cycle

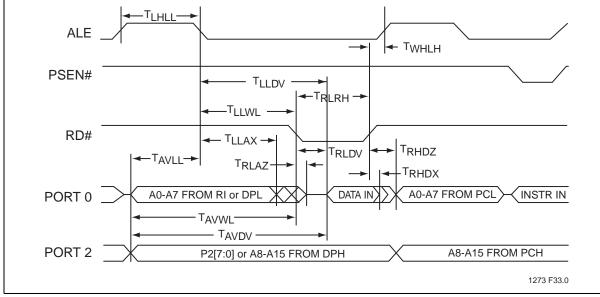


Figure 37: External Data Memory Read Cycle

Data Sheet

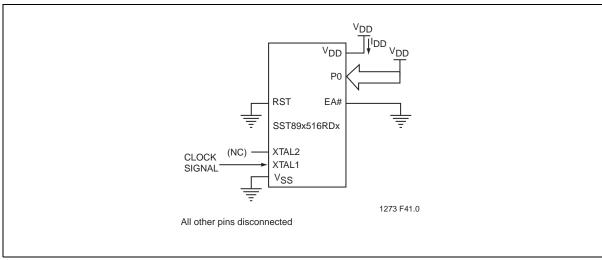


Figure 45:I_{DD} Test Condition, Idle Mode

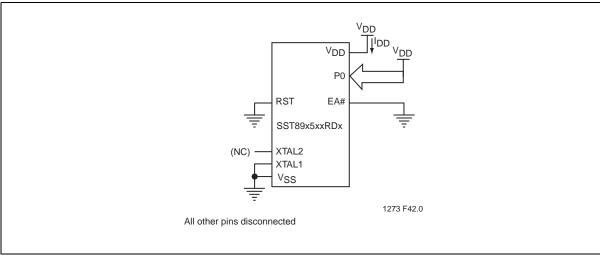


Figure 46:I_{DD} Test Condition, Power-down Mode

Table 41: Flash Memory Prog	ramming/Verification Parameters ¹
-----------------------------	--

Parameter ²	Max	Units
Chip-Erase Time	150	ms
Block-Erase Time	100	ms
Sector-Erase Time	30	ms
Byte-Program Time ³	50	μs
Select-Block Program Time	500	ns
Re-map or Security bit Program Time	80	μs
		T0-0.1 250

1. For IAP operations, the program execution overhead must be added to the above timing parameters.

2. Program and Erase times will scale inversely proportional to programming clock frequency.

3. Each byte must be erased before programming.

Data Sheet

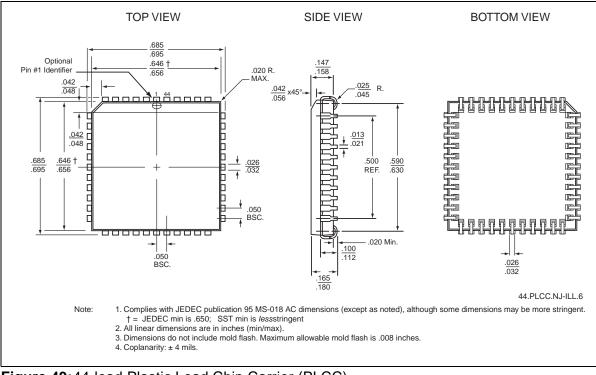


Figure 49:44-lead Plastic Lead Chip Carrier (PLCC) SST Package Code: NJ