

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ia186ebplc84ir2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Copyright © 2011 by Innovasic Semiconductor, Inc.

Published by Innovasic Semiconductor, Inc. 3737 Princeton Drive NE, Suite 130, Albuquerque, NM 87107

MILES[™] is a trademark Innovasic Semiconductor, Inc. Intel[®] is a registered trademark of Intel Corporation

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 2 of 85 http://www.Innovasic.com Customer Support: 1-888-824-4184

LIST OF FIGURES

Figure 1. IA186EB 84-Pin PLCC Package Diagram	10
Figure 2. IA188EB 84-Pin PLCC Package Diagram	
Figure 3. 84-Pin PLCC Physical Package Dimensions	14
Figure 4. IA186EB 80-Pin PQFP Package Diagram	
Figure 5. IA188EB 80-Pin PQFP Package Diagram	
Figure 6. 80-Pin PQFP Physical Package Dimensions	
Figure 7. IA186EB 80-Pin LQFP Package Diagram	20
Figure 8. IA188EB 80-Pin LQFP Package Diagram	
Figure 9. 80-Pin LQFP Physical Package Dimensions	
Figure 10. IA186EB/IA188EB Functional Block Diagram	45
Figure 11. Clock Circuit Connection Options	46
Figure 12. AC Input Characteristics	51
Figure 13. AC Output Characteristics	
Figure 14. Relative Timing Characteristics	54
Figure 15. AC Test Load	55
Figure 16. Clock Input and Clock Output Timing Characteristics	
Figure 17. Serial Port Mode 0 Timing Characteristics	
Figure 18. Cold Reset Timing	60
Figure 19. Warm Reset Timing	61
Figure 20. Read, Fetch, and Refresh Cycle Timing	
Figure 21. Write Cycle Timing	
Figure 22. Halt Cycle Timing	64
Figure 23. Interrupt Acknowledge (inta1_n, inta0_n) Cycle Timin	ng65
Figure 24. hold/hlda Timing	66
Figure 25. Refresh During Hold Acknowledge Timing	67
Figure 26. Ready Timing	

1. Introduction

The Innovasic Semiconductor IA186EB and IA188EB microcontrollers are form, fit, and function replacements for the original Intel[®] 80C186EB, 80C188EB, 80L186EB, and 80L188EB 16-bit high-integration embedded processors.

These devices are produced using Innovasic's Managed IC Lifetime Extension System (MILESTM). This cloning technology, which produces replacement ICs beyond simple emulations, ensures complete compatibility with the original device, including any "undocumented features." Additionally, the MILES process captures the clone design in such a way that production of the clone can continue even as silicon technology advances.

The IA186EB and IA188EB microcontrollers replace the obsolete Intel 80C186EB and 80C188EB devices, allowing users to retain existing board designs, software compilers/assemblers, and emulation tools, thereby avoiding expensive redesign efforts.

1.1 General Description

The Innovasic Semiconductor IA186EB and IA188EB microcontrollers are an upgrade for the 80C186EB/80C188EB microcontroller designs with integrated peripherals to provide increased functionality and reduce system costs. The IA186EB and IA188EB devices are designed to satisfy requirements of embedded products designed for telecommunications, office automation and storage, and industrial controls.

The IA186EB and IA188EB microcontrollers have a set of base peripherals beneficial to many embedded applications and include a standard numeric interface, an interrupt control unit, a chip-select unit, a DRAM refresh control unit, a power management unit, and three 16-bit timer/counters.

The IA186EB and IA188EB microcontrollers are capable of operating at 5.0 or 3.3 volts. This datasheet discusses both modes of operation. Where applicable, characteristics specific to either 3.3 or 5.0 volt operation are identified separately throughout this datasheet.

Additionally, the IA186EB and IA188EB include two integrated serial ports that support both synchronous and asynchronous communications, simplifying inter-processor and display communications. The IA186EB and IA188EB also have an enhanced chip-select unit and two multiplexed I/O ports. The enhanced chip-select unit offers 10 general chip selects, each with the ability to address up to 1 Mbyte. This enhanced unit enables memory-bank switching to expand the IA186EB/IA188EB 1 Mbyte address space. The I/O ports allow for basic functions such as scanning keypads for input. The ports can also be used to control system power consumption, disabling unneeded components.

The serial ports, I/O capabilities, and enhanced chip selects make the IA186EB/IA188EB an excellent processor for portable data acquisition or communication applications.

1.2 Features

The primary features of the IA186EB and IA188EB microcontrollers are as follows:

- Low-Power Operating Modes
 - Idle (freezes CPU clocks; peripherals are kept active)
 - Power-Down (freezes all internal clocks)
- Low-Power CPU Core (static)
- Direct Addressing Capability
 - Memory: 1 Mbyte
 - I/O: 64 Kbyte
- I/O Ports
 - 2 each, 8-Bit
 - Multiplexed
- Clock Generator
- Chip Selects
 - 10 each, Programmable
 - Integral Wait-State Generator
- Memory Refresh Control Unit
- Interrupt Controller, Programmable
- Counter/Timers
 - 3 each, 16-Bit
 - Programmable
- Serial Channels
 - 2 each, UARTs
 - Integral Baud Rate Generator
- Operating Frequency (system clock input)
 - 50 MHz @ 5V
 - 32 MHz @ 3.3V

Chapter 4, Functional Description, provides details of the IA186EB and IA188EB microcontrollers, including the features listed above.

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 8 of 85

2. Packaging, Pin Descriptions, and Physical Dimensions

Information on the packages and pin descriptions for the IA186EB and the IA188EB is provided separately. Refer to sections, figures, and tables for information on the device of interest.

2.1 Packages and Pinouts

The Innovasic Semiconductor IA186EB and IA188EB microcontroller is available in the following packages:

- 84-Pin Plastic Leaded Chip Carrier (PLCC), equivalent to original PLCC package
- 80-Pin Plastic Quad Flat Pack (PQFP), equivalent to original PQFP package
- 80-Pin Low-Profile Quad Flat Pack (LQFP), equivalent to original SQFP package

2.1.5 IA188EB 80 PQFP Package

The pinout for the IA188EB 80 PQFP Package is as shown in Figure 5. The corresponding pinout is provided in Table 4.

Figure 5. IA188EB 80-Pin PQFP Package Diagram

Pin	Name
1	hlda
2	hold
3	test_n
4	lock_n
5	nmi
6	ready
7	p1.7/gcs7_n
8	p1.6/gcs6_n
9	p1.5/gcs5_n
10	V _{ss}
11	V _{cc}
12	p1.4/gcs4_n
13	p1.3/gcs3_n
14	p1.2/gcs2_n
15	p1.1/gcs1_n
16	p1.0/gcs0_n
17	lcs_n
18	ucs_n
19	int0
20	int1

Table 6. IA188EB 80-Pin LQFP Pin Listing

Pin

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Name	Pin	Name
int2/inta0_n	41	p2.5/bclk0
int3/inta1_n	42	p2.3/sint1
int4	43	p2.4/cts1_n
pdtmr	44	p2.0/rxd1
resin_n	45	p2.1/txd1
resout	46	p2.2/bclk1
oscout	47	ad0
clkin	48	a8
V _{cc}	49	V _{ss}
V _{ss}	50	V _{cc}
clkout	51	V _{ss}
t0out	52	ad1
t0in	53	a9
t1out	54	ad2
t1in	55	a10
p2.7	56	ad3
p2.6	57	a11
cts0_n	58	ad4
txd0	59	a12
rxd0	60	ad5

Pin	Name
61	a13
62	ad6
63	a14
64	ad7
65	a15
66	a16
67	a17
68	a18
69	a19/once_n
70	V _{ss}
71	V _{cc}
72	V _{ss}
73	rd_n
74	wr_n
75	ale
76	rfsh_n
77	s2_n
78	s1_n
79	s0_n
80	den_n

2.1.9 LQFP Physical Dimensions

The physical dimensions for the 80 LQFP are as shown in Figure 9.

Figure 9. 80-Pin LQFP Physical Package Dimensions

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 24 of 85

2.2 IA186EB Pin/Signal Descriptions

Descriptions of the pin and signal functions for the IA186EB microcontroller are provided in Table 7.

Several of the IA186EB pins have different functions depending on the operating mode of the device. Each of the different signals supported by a pin is listed and defined in Table 7— indexed alphabetically in the first column of the table. Additionally, the name of the pin associated with the signal as well as the pin numbers for the PLCC, LQFP, and PQFP packages are provided in the "Pin" column. Signals not used in a specific package type are designated "NA."

Table 7. IA186EB Pin/Signal Descriptions

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
a16 (output only)	a16	80	66	29	a ddress Bits [16–19]. Input/Output. These pins provide the four most-significant bits of the Address Bus. During the address portion of the
a17 (output only)	a17	81	67	30	presented on the bus and can be latched using the ale signal (see table entry). During the data portion of the IA186EB bus cycle, these lines
a18 (output only)	a18	82	68	31	are driven to a logic 0.
a19	a19/once_n	83	69	32	
ad0	ad0	61	47	10	address/data Bits [0-15]. Input/Output. These
ad1	ad1	66	52	15	pins provide the multiplexed Address Bus and
ad2	ad2	68	54	17	Data Bus. During the address portion of the
ad3	ad3	70	56	19	IA186EB bus cycle, Address Bits [0–15] are
ad4	ad4	72	58	21	presented on the bus and can be latched using
ad5	ad5	74	60	23	the ale signal (see next table entry). During the
ad6	ad6	76	62	25	16 bit data are present on these lines
ad7	ad7	78	64	27	To-bit data are present on these lines.
ad8	ad8	62	48	11	
ad9	ad9	67	53	16	
ad10	ad10	69	55	18	
ad11	ad11	71	57	20	
ad12	ad12	73	59	22	
ad13	ad13	75	61	24	
ad14	ad14	77	63	26]
ad15	ad15	79	65	28	

Table 7.	IA186EB	Pin/Signal	Descriptions	(Continued)
----------	---------	-------------------	--------------	-------------

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
clkin	clkin	41	28	71	 clock input. Input. The clkin pin is the input connection for an external clock. An external oscillator operating at two times the required processor operating frequency can be connected to this pin. If a crystal is used to supply the clock, it is connected between the clkin pin and the oscout pin (see oscout table entry). When a crystal is connected, it drives an internal Pierce oscillator to the IA186EB.
clkout	clkout	44	31	74	clock out put. Output. The clkout pin provides a timing reference for inputs and outputs of the IA186EB. This clock output is one-half the input clock (clkin) frequency. The clkout signal has a 50% duty cycle, transitioning every falling edge of clkin .
cts0_n	cts0_n	51	38	1	c lear t o s end, Serial Port 0 . Input. Active Low. When this input is high (i.e., not asserted), data transmission from Serial Port 0 is inhibited. When the signal is asserted (low), data transmission is permitted.
cts1_n	p2.4/ cts1_n	56	43	6	c lear to s end, Serial Port 1 . Input. Active Low. When this input is high (i.e., not asserted), data transmission from Serial Port 1 is inhibited. When the signal is asserted (low), data transmission is permitted.
den_n	den_n	11	80	43	data enable. Output. Active Low. This signal is used to enable of bidirectional transceivers in a buffered system. The den_n signal is asserted (low) only when data is to be transferred on the bus.
dt/r_n	dt/r_n	16	NA	NA	data transmit/receive. Output. This signal is used to control the direction of data flow for bidirectional buffers in a buffered system. When dt/r_n is high, the direction indicated is transmit; when dt/t_n is low, the direction indicated is receive.
error_n	error_n	3	NA	NA	error . Input. Active Low. When this signal is asserted (low), it indicates that the last numerics coprocessor operation resulted in an exception condition.

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
test_n	test_n	14	3	46	test. Input. Active Low. When the test_n input is high (i.e., not asserted), it causes the IA188EB to suspend operation during the execution of the WAIT instruction. Operation resumes when the pin is sampled low (asserted).
txd0	txd0	52	39	2	Transmit (tx) data, Serial Port 0 . Output. This pin is the serial data output for Serial Port 0. During synchronous serial communications, txd0 becomes the transmit clock (rxd0 functions as an output for data transmission).
txd1	p2.1/txd1	58	45	8	Transmit (tx) data, Serial Port 1 . Output. This pin is the serial data output for Serial Port 1. During synchronous serial communications, txd1 becomes the transmit clock (rxd1 functions as an output for data transmission).
ucs_n	ucs_n	30	18	61	u pper c hip s elect. Output. Active Low. This pin provides a chip select signal that will be asserted (low) whenever the address of a memory bus cycle is within the address space programmed for that output.
V _{cc}	V _{cc}	1, 23, 42, 64	11, 29, 50, 71	13, 34, 54, 72	Power (v_{cc}). This pin provides power for the IA188EB device. It must be connected to a +5V DC power source.
V _{SS}	V _{ss}	2, 22, 43, 63, 65, 84	10, 30, 49, 51, 70, 72	12, 14, 33, 35, 53, 73	Ground (v_{ss}). This pin provides the digital ground (0V) for the IA188EB. It must be connected to a v_{ss} board plane.
wr_n	wr_n	5	74	37	<pre>write. Output. Active Low. When asserted (low), wr_n indicates that data available on the data bus are to be latched into the accessed memory or I/O device.</pre>

Table 8. IA188EB Pin/Signal Descriptions (Continued)

3. Maximum Ratings, Thermal Characteristics, and DC Parameters

For the Innovasic Semiconductor IA186EB and IA188EB microcontrollers, the absolute maximum ratings, thermal characteristics, and DC parameters are provided in Tables 9 through 11, respectively.

Table 9. IA186EB and IA188EB Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−40°C to +125°C
Supply Voltage with Respect to v _{ss}	-0.3V to +6.0V
Voltage on Pins other than Supply with Respect to v _{ss}	-0.3V to +(Vcc + 0.3)V

Table 10. IA186EB and IA188EB Thermal Characteristics

Symbol	Characteristic	Value	Units
T _A	Ambient Temperature	-40°C to 85°C	°C
PD	Power Dissipation	$MHz \times ICC \times V/1000$	W
Θ_{Ja}	84-Pin PLCC Package	30.7	°C/W
	80-Pin PQFP Package	46	
	80-Pin LQFP Package	52	
TJ	Average Junction Temperature	$T_A + (P_D \times \Theta_{Ja})$	°C

4.1.7 I/O Port Unit

The I/O Port Unit (IPU) on the IA186EB/IA188EB supports two 8-bit channels of input, output, or input/output operation. Port 1 is multiplexed with the chip select pins and is output only. Most of Port 2 is multiplexed with the serial channel pins.

4.1.8 Refresh Control Unit

The Refresh Control Unit (RCU) automatically generates a periodic memory read bus cycle to keep dynamic or pseudo-static memory refreshed. A 9-bit counter controls the number of clocks between refresh requests.

A 12-bit address generator is maintained by the RCU and is presented on the a1–a12 address lines during the refresh bus cycle. Address Bits [a13–a19] are programmable to allow the refresh address block to be located on any 8-Kbyte boundary.

4.1.9 Power Management Unit

The IA186EB/IA188EB Power Management Unit (PMU) is provided to control the power consumption of the device. The PMU provides three power modes: Active, Idle, and Powerdown.

Active Mode indicates that all units on the IA186EB/IA188EB are functional and the device consumes maximum power (depending on the level of peripheral operation). Idle Mode freezes the clocks of the execution and bus units at a logic zero state (all peripherals continue to operate normally).

The Powerdown mode freezes all internal clocks at a logic zero level and disables the crystal oscillator. All internal registers hold their values provided V_{CC} is maintained. Current consumption is reduced to just transistor junction leakage.

4.2 Peripheral Architecture

The IA186EB/IA188EB has integrated several common system peripherals with a CPU core to create a compact, yet powerful system. The integrated peripherals are designed to be flexible and provide logical interconnections between supporting units (e.g., the interrupt control unit supports interrupt requests from the timer/counters or serial channels). The list of integrated peripherals includes:

- 7-Input Interrupt Control Unit
- 3-Channel Timer/Counter Unit
- 2-Channel Serial Communications Unit
- 10-Output Chip-Select Unit
- I/O Port Unit
- Refresh Control Unit

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 48 of 85

PCB		PCB] [PCB		PCB	
Offset	Function	Offset	Function		Offset	Function	Offset	Function
20H	Reserved	60H	Serial0 Baud		A0H	LCS Start	E0H	Reserved
22H	Reserved	62H	Serial0 Count		A2H	LCS Stop	E2H	Reserved
PCB Offset	Offset	PCB Offset	Function		PCB Offset	Function	PCB Offset	Function
24H	Reserved	64H	Serial0 Control		A4H	UCS Start	E4H	Reserved
26H	Reserved	66H	Serial0 Status		A6H	UCS Stop	E6H	Reserved
28H	Reserved	68H	Serial0 RBUF		A8H	Relocation	E8H	Reserved
2AH	Reserved	6AH	Serial0 TBUF		AAH	Reserved	EAH	Reserved
2CH	Reserved	6CH	Reserved	1	ACH	Reserved	ECH	Reserved
2EH	Reserved	6EH	Reserved		AEH	Reserved	EEH	Reserved
30H	Timer0 Count	70H	Serial1 Baud		B0H	Refresh Base	F0H	Reserved
32H	Timer0 Compare A	72H	Serial1 Count		B2H	Refresh Time	F2H	Reserved
34H	Timer0 Compare B	74H	Serial1 Control		B4H	Refresh Control	F4H	Reserved
36H	Timer0 Control	76H	Serial1 Status		B6H	Refresh Address	F6H	Reserved
38H	Timer1 Count	78H	Serial1 RBUF		B8H	Power Control	F8H	Reserved
3AH	Timer1 Compare A	7AH	Serial1 TBUF		BAH	Reserved	FAH	Reserved
3CH	Timer1 Compare B	7CH	Reserved		BCH	Step ID ¹	FCH	Reserved
3EH	Timer1 Control	7EH	Reserved		BEH	Reserved	FEH	Reserved

Table 12. Peripheral Control Block Registers (Continued)

Note:

¹The **Step ID** register (offset 0xBC) for Revision 2 of the Innovasic device is read-only, and is uniquely identified in software by having a value of 0x0080. The original Intel device established a value between 0x0000 and 0x0002, depending on the revision of the part.

For specific 5.0- and 3.3-volt characteristics, refer to Tables 13 and 14, respectively.

Table 13.	AC Input	Characteristics	for 5.0-V	olt Operation
-----------	-----------------	------------------------	-----------	---------------

Symbol	Pins	Min	Max	Units
t _{CHIS}	test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n, p2.6, p2.7	10	-	ns
t _{CHIH}	test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n	3	-	ns
t _{CLIS}	ad15–ad0, ad7–ad0 (IA188EB), ready	10	-	ns
t _{CLIS}	hold, pereq, error_n	10	-	ns
t _{CLIH}	ad15–ad0, ad7–ad0 (IA188EB), ready	3	-	ns
t _{CLIH}	hold, pereq, error_n	3	_	ns

Table 14. AC Input Characteristics for 3.3-Volt Operation

Symbol	Pins	Min	Max	Units
t _{CHIS}	test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n, p2.6, p2.7	10	-	ns
t _{CHIH}	test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n	3	-	ns
t _{CLIS}	ad15–ad0, ad7–ad0 (IA188EB), ready	10	-	ns
t _{CLIS}	hold, pereq, error_n	10	-	ns
t _{CLIH}	ad15–ad0, ad7–ad0 (IA188EB), ready	3	-	ns
t _{CLIH}	hold, pereq, error_n	3	_	ns

Figure 13. AC Output Characteristics

For specific 5.0- and 3.3-volt characteristics, refer to Tables 15 and 16, respectively.

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 52 of 85

Figure 14. Relative Timing Characteristics

For specific relative timing characteristics, refer to Table 17.

Figure 20. Read, Fetch, and Refresh Cycle Timing

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 62 of 85 http://www.Innovasic.com Customer Support: 1-888-824-4184

Table 21. Instruction Set Timing (Continued)

	Clock Cycles			
Instruction	IA186EB	IA188EB	Comments	
SHL Register/Memory by CL	1/20	1/24	register/memory	
SHL Register/Memory by	1/11	1/24		
Count				
SHR Register/Memory by 1	1/5	1/24		
SHR Register/Memory by CL	1/20	1/28		
SHR Register/Memory by	1/11	1/24		
Count				
SS	1	1	_	
STC	1	1	_	
SUB Immediate from	1	1	-	
accumulator				
SUB Immediate from	1/11	1/28	register/memory	
register/memory				
SUB Register/memory and	1/15	1/40		
register to either	4			
SID	1	1	_	
	1	1		
	6	8	_	
STOS (repeated n times)	6+4n	8+8n	_	
TEST Immediate data and	1	1	-	
accumulator	4/40	4/40		
TEST Immediate data and	1/16	1/16	register/memory	
TEST Pagister/momony and	1/10	1/20	register/memory	
register	1/12	1/20	register/memory	
WAIT	1	1	test n = 0	
XCHG Register with	2	2		
accumulator	_	_		
XCHG Register/memory with	3/16	3/20	register/memory	
register			Ç ,	
XLAT	16	8	-	
XOR Immediate to accumulator	1	1	_	
XOR Immediate to	1/11	1/32	register/memory	
register/memory			5 ,	
XOR Register/memory and	1/16	1/32	register/memory	
register to either				

Errata No. 2

Problem: When the extension byte (mod field) is set to "11," some instructions will cause the CPU to hang.

Description: Although there are faster versions of each instruction (these are not commonly used by compilers), the following instructions will cause the CPU to hang when the extension byte (mod field) is set to "11":

- 8D (LEA)
- 8F (POP memory)
- C6 (MOV immediate8 to memory/register)
- C7 (MOV immediate16 to memory/register)
- FE (PUSH memory)
- FF (PUSH memory)

Workaround: Substitute instructions in the following table.

Instruction	Workaround
8D (LEA)	Use MOV register (89 or 8B)
8F (POP memory)	Use POP register (0101_0xxx)
C6 (MOV immediate8 to memory/register)	Use MOV immediate8 to register (1011_0xxx)
C7 (MOV immediate16 to memory/register)	Use MOV immediate16 to register (1011_1xxx)
FE (PUSH memory)	Use PUSH register (0101_0xxx)
FF (PUSH memory)	Use PUSH register (0101_0xxx)

Errata No. 3

Problem: When the chip is put in SFNM mode for INT0 or INT1, the LVL bit is automatically set for those interrupts.

Workaround: None.

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 79 of 85

Errata No. 8

Problem: Pin LOCK_n does not have an internal pullup.

Description: Because Pin LOCK_n does not have an internal pullup, it will float during reset and bus hold.

Workaround: An external pullup may be necessary if there is high external load on the signal.

Errata No. 9

Problem:

The Relocation Register (RELREG, PCB offset 0xA8) can only be modified by an 8-bit write.

Description: The Relocation Register (RELREG, PCB offset 0xA8) can only be modified by an 8-bit write. A 16-bit write will have no effect. The 186 EB is unaffected.

Workaround: Use an 8-bit access to affect the RELREG register.

Errata No. 10

Problem:

When the timer compare register for any of the timers is set to x0000, the max count is xFFFF instead of x10000 as in the OEM part.

Description: The timer output will change one count earlier than it should when the max count is set to x0000.

Workaround: The workaround is application dependent. Please contact Innovasic Technical Support if this erratum is an issue.

Errata No. 11

Problem: NMI cannot bring chip out of powerdown mode.

Description: Only a reset brings the part out of powerdown after a HLT instruction is executed with the PWRDN bit set in the PWRCON register.

Workaround: Use IDLE instead of PWRDN.

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 81 of 85