

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ia186ebplq80ir2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LIST OF TABLES

Table 1. IA186EB 84-Pin PLCC Pin Listing	11
Table 2. IA188EB 84-Pin PLCC Pin Listing	13
Table 3. IA186EB 80-Pin PQFP Pin Listing	16
Table 4. IA188EB 80-Pin PQFP Pin Listing	18
Table 5. IA186EB 80-Pin LQFP Pin Listing	21
Table 6. IA188EB 80-Pin LQFP Pin Listing	23
Table 7. IA186EB Pin/Signal Descriptions	25
Table 8. IA188EB Pin/Signal Descriptions	34
Table 9. IA186EB and IA188EB Absolute Maximum Ratings	42
Table 10. IA186EB and IA188EB Thermal Characteristics	42
Table 11. IA186EB and IA188EB DC Parameters	43
Table 12. Peripheral Control Block Registers	49
Table 13. AC Input Characteristics for 5.0-Volt Operation	52
Table 14. AC Input Characteristics for 3.3-Volt Operation	52
Table 15. AC Output Characteristics for 5.0-Volt Operation	53
Table 16. AC Output Characteristics for 3.3-Volt Operation	53
Table 17. Relative Timing Characteristics	55
Table 18. Clock Input and Clock Output Timing Characteristics for 5.0-Volt Operation	56
Table 19. Clock Input and Output Characteristics for 3.3-Volt Operation	57
Table 20. Serial Port Mode 0 Timing Characteristics	58
Table 21. Instruction Set Timing	69
Table 22. Innovasic Part Number Cross-Reference for the PLCC	74
Table 23. Innovasic Part Number Cross-Reference for the PQFP	75
Table 24. Innovasic Part Number Cross-Reference for the LQFP	76
Table 25. Summary of Errata	77
Table 26. Revision History	83

2. Packaging, Pin Descriptions, and Physical Dimensions

Information on the packages and pin descriptions for the IA186EB and the IA188EB is provided separately. Refer to sections, figures, and tables for information on the device of interest.

2.1 Packages and Pinouts

The Innovasic Semiconductor IA186EB and IA188EB microcontroller is available in the following packages:

- 84-Pin Plastic Leaded Chip Carrier (PLCC), equivalent to original PLCC package
- 80-Pin Plastic Quad Flat Pack (PQFP), equivalent to original PQFP package
- 80-Pin Low-Profile Quad Flat Pack (LQFP), equivalent to original SQFP package

Pin	Name
1	V _{cc}
2	V _{ss}
3	error_n
4	rd_n
5	wr_n
6	ale
7	bhe_n
8	s2_n
9	s1_n
10	s0_n
11	den_n
12	hlda
13	hold
14	test_n/busy
15	lock_n
16	dt/r_n
17	nmi
18	ready
19	p1.7/gcs7_n
20	p1.6/gcs6_n
21	p1.5/gcs5_n

Table 1. IA186EB 84-Pin PLCC Pin Listing

Pin

22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Name	Pin	Name
V _{ss}	43	V _{ss}
V _{cc}	44	clkout
p1.4/gcs4_n	45	t0out
p1.3/gcs3_n	46	t0in
p1.2/gcs2_n	47	t1out
p1.1/gcs1_n	48	t1in
p1.0/gcs0_n	49	p2.7
lcs_n	50	p2.6
ucs_n	51	cts0_n
int0	52	txd0
int1	53	rxd0
int2/inta0_n	54	p2.5/bclk0
int3/inta1_n	55	p2.3/sint1
int4	56	p2.4/cts1_n
pdtmr	57	p2.0/rxd1
resin_n	58	p2.1/txd1
resout	59	p2.2/bclk1
pereq	60	ncs_n
oscout	61	ad0
clkin	62	ad8
V _{cc}	63	V _{ss}

Э	Pin	Name
	64	V _{cc}
	65	V _{ss}
	66	ad1
	67	ad9
	68	ad2
	69	ad10
	70	ad3
	71	ad11
	72	ad4
	73	ad12
	74	ad5
k0	75	ad13
t1	76	ad6
1_n	77	ad14
1	78	ad7
1	79	ad15
k1	80	a16
	81	a17
	82	a18
	83	a19/once_n
	84	V _{ss}

2.1.3 PLCC Physical Dimensions

The physical dimensions for the 84 PLCC are as shown in Figure 3.

Symbol	Min	Nom	Max
Α	0.165″	_	0.180″
A1	0.090″	_	0.120″
D	_	1.190″	_
D1	_	1.154″	_
E	_	1.190″	_
E1	_	1.154″	_
F	_	1.110″	_
F1	_	1.110″	-
1			

<u>Note</u>: The bottom package is bigger than the top package by 0.004 inches (0.002 inches per side). Bottom package dimensions follow those stated in this drawing.

Figure 3. 84-Pin PLCC Physical Package Dimensions

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 14 of 85

http://www.Innovasic.com Customer Support: 1-888-824-4184

2.1.4 IA186EB 80 PQFP Package

The pinout for the IA186EB 80 PQFP Package is as shown in Figure 4. The corresponding pinout is provided in Table 3.

Figure 4. IA186EB 80-Pin PQFP Package Diagram

Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	hlda	21	int2/inta0_n	41	p2.5/bclk0	61	ad13
2	hold	22	int3/inta1_n	42	p2.3/sint1	62	ad6
3	test_n	23	int4	43	p2.4/cts1_n	63	ad14
4	lock_n	24	pdtmr	44	p2.0/rxd1	64	ad7
5	nmi	25	resin_n	45	p2.1/txd1	65	ad15
6	ready	26	resout	46	p2.2/bclk1	66	a16
7	p1.7/gcs7_n	27	oscout	47	ad0	67	a17
8	p1.6/gcs6_n	28	clkin	48	ad8	68	a18
9	p1.5/gcs5_n	29	V _{cc}	49	V _{ss}	69	a19/once_n
10	V _{ss}	30	V _{ss}	50	V _{cc}	70	V _{ss}
11	V _{cc}	31	clkout	51	V _{ss}	71	V _{cc}
12	p1.4/gcs4_n	32	t0out	52	ad1	72	V _{ss}
13	p1.3/gcs3_n	33	t0in	53	ad9	73	rd_n
14	p1.2/gcs2_n	34	t1out	54	ad2	74	wr_n
15	p1.1/gcs1_n	35	t1in	55	ad10	75	ale
16	p1.0/gcs0_n	36	p2.7	56	ad3	76	bhe_n
17	lcs_n	37	p2.6	57	ad11	77	s2_n
18	ucs_n	38	cts0_n	58	ad4	78	s1_n
19	int0	39	txd0	59	ad12	79	s0_n
20	int1	40	rxd0	60	ad5	80	den n

Table 5. IA186EB 80-Pin LQFP Pin Listing

2.1.8 IA188EB 80 LQFP Package

The pinout for the IA188EB 80 LQFP Package is as shown in Figure 8. The corresponding pinout is provided in Table 6.

Figure 8. IA188EB 80-Pin LQFP Package Diagram

Table 7.	IA186EB	Pin/Signal	Descriptions	(Continued)
----------	---------	-------------------	--------------	-------------

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
clkin	clkin	41	28	71	 clock input. Input. The clkin pin is the input connection for an external clock. An external oscillator operating at two times the required processor operating frequency can be connected to this pin. If a crystal is used to supply the clock, it is connected between the clkin pin and the oscout pin (see oscout table entry). When a crystal is connected, it drives an internal Pierce oscillator to the IA186EB.
clkout	clkout	44	31	74	clock out put. Output. The clkout pin provides a timing reference for inputs and outputs of the IA186EB. This clock output is one-half the input clock (clkin) frequency. The clkout signal has a 50% duty cycle, transitioning every falling edge of clkin .
cts0_n	cts0_n	51	38	1	c lear t o s end, Serial Port 0 . Input. Active Low. When this input is high (i.e., not asserted), data transmission from Serial Port 0 is inhibited. When the signal is asserted (low), data transmission is permitted.
cts1_n	p2.4/ cts1_n	56	43	6	c lear to s end, Serial Port 1 . Input. Active Low. When this input is high (i.e., not asserted), data transmission from Serial Port 1 is inhibited. When the signal is asserted (low), data transmission is permitted.
den_n	den_n	11	80	43	data enable. Output. Active Low. This signal is used to enable of bidirectional transceivers in a buffered system. The den_n signal is asserted (low) only when data is to be transferred on the bus.
dt/r_n	dt/r_n	16	NA	NA	data transmit/receive. Output. This signal is used to control the direction of data flow for bidirectional buffers in a buffered system. When dt/r_n is high, the direction indicated is transmit; when dt/t_n is low, the direction indicated is receive.
error_n	error_n	3	NA	NA	error . Input. Active Low. When this signal is asserted (low), it indicates that the last numerics coprocessor operation resulted in an exception condition.

Table 7.	IA186EB	Pin/Signal	Descriptions	(Continued	1)
	INICOLD	i ili/olgilai	Descriptions	Continuou	/

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
t1out	t1out	47	34	77	timer 1 out put. Output. Depending on the Timer Mode programmed for Timer 1, this output can provide a single clock or a continuous waveform.
test_n	test_n/busy	14	3	46	test. Input. Active Low. When the test_n input is high (i.e., not asserted), it causes the IA186EB to suspend operation during the execution of the WAIT instruction. Operation resumes when the pin is sampled low (asserted).
txd0	txd0	52	39	2	Transmit (tx) data, Serial Port 0 . Output. This pin is the serial data output for Serial Port 0. During synchronous serial communications, txd0 becomes the transmit clock (rxd0 functions as an output for data transmission).
txd1	p2.1/ txd1	58	45	8	Transmit (tx) d ata, Serial Port 1 . Output. This pin is the serial data output for Serial Port 1. During synchronous serial communications, txd1 becomes the transmit clock (rxd1 functions as an output for data transmission).
ucs_n	ucs_n	30	18	61	u pper c hip s elect. Output. Active Low. This pin provides a chip select signal that will be asserted (low) whenever the address of a memory bus cycle is within the address space programmed for that output.
V _{cc}	V _{cc}	1, 23, 42, 64	11, 29, 50, 71	13, 34, 54, 72	Power (v_{cc}). This pin provides power for the IA186EB device. It must be connected to a +5V DC power source.
V _{SS}	V _{ss}	2, 22, 43, 63, 65, 84	10, 30, 49, 51, 70, 72	12, 14, 33, 35, 53, 73	Ground (v_{ss}). This pin provides the digital ground (0V) for the IA186EB. It must be connected to a v_{ss} board plane.
wr_n	wr_n	5	74	37	<pre>write. Output. Active Low. When asserted (low), wr_n indicates that data available on the data bus are to be latched into the accessed memory or I/O device.</pre>

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
test_n	test_n	14	3	46	test. Input. Active Low. When the test_n input is high (i.e., not asserted), it causes the IA188EB to suspend operation during the execution of the WAIT instruction. Operation resumes when the pin is sampled low (asserted).
txd0	txd0	52	39	2	Transmit (tx) data, Serial Port 0 . Output. This pin is the serial data output for Serial Port 0. During synchronous serial communications, txd0 becomes the transmit clock (rxd0 functions as an output for data transmission).
txd1	p2.1/txd1	58	45	8	Transmit (tx) data, Serial Port 1 . Output. This pin is the serial data output for Serial Port 1. During synchronous serial communications, txd1 becomes the transmit clock (rxd1 functions as an output for data transmission).
ucs_n	ucs_n	30	18	61	u pper c hip s elect. Output. Active Low. This pin provides a chip select signal that will be asserted (low) whenever the address of a memory bus cycle is within the address space programmed for that output.
V _{cc}	V _{cc}	1, 23, 42, 64	11, 29, 50, 71	13, 34, 54, 72	Power (v_{cc}). This pin provides power for the IA188EB device. It must be connected to a +5V DC power source.
V _{SS}	V _{ss}	2, 22, 43, 63, 65, 84	10, 30, 49, 51, 70, 72	12, 14, 33, 35, 53, 73	Ground (v_{ss}). This pin provides the digital ground (0V) for the IA188EB. It must be connected to a v_{ss} board plane.
wr_n	wr_n	5	74	37	<pre>write. Output. Active Low. When asserted (low), wr_n indicates that data available on the data bus are to be latched into the accessed memory or I/O device.</pre>

Table 8. IA188EB Pin/Signal Descriptions (Continued)

4. Functional Description

4.1 Device Architecture

Architecturally, the IA186EB and IA188EB microcontrollers include the following functional modules:

- Bus Interface Unit
- Clock Generator
- Interrupt Control Unit
- Timer/Counter Unit
- Serial Communications Unit
- Chip-Select Unit
- I/O Port Unit
- Refresh Control Unit
- Power Management Unit

A functional block diagram of the IA186EB/IA188EB is shown in Figure 10. Descriptions of the functional modules are provided in the following subsections.

4.1.1 Bus Interface Unit

The IA186EB/IA188EB bus controller that generates local bus control signals and uses a hold/hlda protocol to share the local bus with other bus masters. The bus controller generates 20 address bits, read and write control signals, and bus-cycle status information. A ready input is used to extend a bus cycle beyond the minimum four clock cycles.

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 44 of 85

4.1.2 Clock Generator

The IA186EB/IA188EB uses an on-chip clock generator to supply internal and external clocks. The clock generator makes use of a crystal oscillator and includes a divide-by-two counter.

Figure 11 shows the various operating modes of the clock circuit. The clock circuit can use either a parallel resonant fundamental mode crystal network (A) or a third-overtone mode crystal network (B), or it can be driven by an external clock source (C).

The following parameters are recommended when choosing a crystal:

- Temperature Range
 - Application Specific
 - ESR (Equivalent Series Resistance): 40Ω max
 - C0 (Shunt Capacitance of Crystal): 7.0 pF max
 - CL (Load Capacitance): $20 \text{ pF} \pm 2 \text{ pF}$
 - Drive Level: 1 mW max

(C) External Clock Connection

Figure 11. Clock Circuit Connection Options

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 46 of 85 http://www.Innovasic.com Customer Support: 1-888-824-4184

PCB		PCB] [PCB		PCB	
Offset	Function	Offset	Function		Offset	Function	Offset	Function
20H	Reserved	60H	Serial0 Baud		A0H	LCS Start	E0H	Reserved
22H	Reserved	62H	Serial0 Count		A2H	LCS Stop	E2H	Reserved
PCB Offset	Offset	PCB Offset	Function		PCB Offset	Function	PCB Offset	Function
24H	Reserved	64H	Serial0 Control		A4H	UCS Start	E4H	Reserved
26H	Reserved	66H	Serial0 Status		A6H	UCS Stop	E6H	Reserved
28H	Reserved	68H	Serial0 RBUF		A8H	Relocation	E8H	Reserved
2AH	Reserved	6AH	Serial0 TBUF		AAH	Reserved	EAH	Reserved
2CH	Reserved	6CH	Reserved	1	ACH	Reserved	ECH	Reserved
2EH	Reserved	6EH	Reserved		AEH	Reserved	EEH	Reserved
30H	Timer0 Count	70H	Serial1 Baud		B0H	Refresh Base	F0H	Reserved
32H	Timer0 Compare A	72H	Serial1 Count		B2H	Refresh Time	F2H	Reserved
34H	Timer0 Compare B	74H	Serial1 Control		B4H	Refresh Control	F4H	Reserved
36H	Timer0 Control	76H	Serial1 Status		B6H	Refresh Address	F6H	Reserved
38H	Timer1 Count	78H	Serial1 RBUF		B8H	Power Control	F8H	Reserved
3AH	Timer1 Compare A	7AH	Serial1 TBUF		BAH	Reserved	FAH	Reserved
3CH	Timer1 Compare B	7CH	Reserved		BCH	Step ID ¹	FCH	Reserved
3EH	Timer1 Control	7EH	Reserved		BEH	Reserved	FEH	Reserved

Table 12. Peripheral Control Block Registers (Continued)

Note:

¹The **Step ID** register (offset 0xBC) for Revision 2 of the Innovasic device is read-only, and is uniquely identified in software by having a value of 0x0080. The original Intel device established a value between 0x0000 and 0x0002, depending on the revision of the part.

For specific 5.0- and 3.3-volt characteristics, refer to Tables 13 and 14, respectively.

Table 13.	AC Input	Characteristics	for 5.0-V	olt Operation
-----------	-----------------	------------------------	-----------	---------------

Symbol	Pins	Min	Max	Units
t _{CHIS}	test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n, p2.6, p2.7	10	-	ns
t _{CHIH}	test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n	3	-	ns
t _{CLIS}	ad15–ad0, ad7–ad0 (IA188EB), ready	10	-	ns
t _{CLIS}	hold, pereq, error_n	10	-	ns
t _{CLIH}	ad15–ad0, ad7–ad0 (IA188EB), ready	3	-	ns
t _{CLIH}	hold, pereq, error_n	3	-	ns

Table 14. AC Input Characteristics for 3.3-Volt Operation

Symbol	Pins	Min	Max	Units
t _{CHIS}	test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n, p2.6, p2.7	10	-	ns
t _{CHIH}	test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n	3	-	ns
t _{CLIS}	ad15–ad0, ad7–ad0 (IA188EB), ready	10	-	ns
t _{CLIS}	hold, pereq, error_n	10	-	ns
t _{CLIH}	ad15–ad0, ad7–ad0 (IA188EB), ready	3	-	ns
t _{CLIH}	hold, pereq, error_n	3	_	ns

Figure 13. AC Output Characteristics

For specific 5.0- and 3.3-volt characteristics, refer to Tables 15 and 16, respectively.

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 52 of 85

Figure 14. Relative Timing Characteristics

For specific relative timing characteristics, refer to Table 17.

Symbol	Parameter	Min	Max	Units
t _{LHLL}	ale Rising to ale Falling	t – 15	_	ns
t _{AVLL}	Address Valid to ale Falling	½t −10	_	ns
t _{PLLL}	Chip Selects Valid to ale Falling	½t −10	_	ns
t _{LLAX}	Address Hold from ale Falling	½t −10	_	ns
t _{LLWL}	ale Falling to wr_n Falling	½t –15	_	ns
t _{LLRL}	ale Falling to rd_n Falling	½t –15	_	ns
t _{WHLH}	wr_n Rising to ale Rising	½t −10	_	ns
t _{AFRL}	Address Float to rd_n Falling	0	_	ns
t _{RLRH}	rd_n Falling to rd_n Rising	(2t) – 5	_	ns
t _{WLWH}	wr_n Falling to wr_n Rising	(2t) – 5	_	ns
t _{RHAV}	rd_n Rising to Address Active	t – 15	_	ns
t _{WHDX}	Output Data Hold after wr_n Rising	t – 15	_	ns
t _{whPH}	wr_n Rising to Chip Select Rising	½t −10	_	ns
t _{RHPH}	rd_n Rising to Chip Select Rising	½t −10	_	ns
t _{PHPL}	cs_n inactive to cs_n active	½t −10	_	ns
t _{ovrh}	once_n Active to resin_n Rising	t	_	ns
t _{RHOX}	once_n Hold to resin_n Rising	t	_	Ns

Table 17. Relative Timing Characteristics

5.1 AC Test Conditions

The AC specifications are tested with the 50-pF load shown in Figure 15. Specifications are measured at the $V_{CC}/2$ crossing point unless otherwise specified.

Figure 15. AC Test Load

5.3 Serial Port Mode 0 Timing Characteristics

Serial Port Mode 0 timing characteristics are illustrated in Figure 17 and collected in Table 20.

Table 20.	Serial Port	Mode 0 Ti	iming (Characteristics
-----------	-------------	-----------	---------	------------------------

Symbol	Parameter	Minimum	Maximum	Units
t _{XLXL}	txd Clock Period	t (n +1)	-	ns
t _{XLXH}	txd Clock Low to Clock High $(n > 1)$	2t – 35	2t + 35	ns
t _{XLXH}	txd Clock Low to Clock High $(n = 1)$	t – 35	t + 35	ns
t _{XHXL}	txd Clock High to Clock Low $(n > 1)$	(n – 1) t – 35	(n – 1) t + 35	ns
t _{XHXL}	txd Clock High to Clock Low $(n = 1)$	t – 35	t + 35	ns
t _{QVXH}	rxd Output Data Setup to txd Clock High (n > 1)	(n – 1) t – 35		ns
t _{QVXH}	rxd Output Data Setup to txd Clock High (n = 1)	t – 35		ns
t _{XHQX}	rxd Output Data Hold after txd Clock High (n > 1)	2t – 35		ns
t _{XHQX}	rxd Output Data Hold after txd Clock High (n = 1)	t – 35		ns
t _{xHQZ}	rxd Output Data Float after Last txd Clock High	-	t + 20	ns
t _{DVXH}	rxd Input Data Setup to txd Clock High	t + 20		ns
t _{XHDX}	rxd Input Data Hold after txd Clock High	0	_	ns

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 58 of 85 IA186EB/IA188EB 8-Bit/16-Bit Microcontrollers

Figure 23. Interrupt Acknowledge (inta1_n, inta0_n) Cycle Timing

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 65 of 85

IA186EB/IA188EB 8-Bit/16-Bit Microcontrollers

Figure 24. hold/hlda Timing

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 66 of 85 http://www.Innovasic.com Customer Support: 1-888-824-4184

8. Instruction Execution Times

Table 21 provides IA186EB and IA188EB execution times, mnemonic instruction, and additional information on execution, if required. The execution times apply to all versions of the parts.

Table 21. Instruction Set Timing

	Clock	Cycles	
Instruction	IA186EB	IA188EB	Comments
AAA	3	3	-
AAD	6	6	-
AAM	40	40	-
AAS	3	3	-
ADC Immediate to accumulator	1	1	_
ADC Immediate to	3	13	_
register/memory			
ADC Register/memory with	1/16	1/24	register/memory
register to either			
ADD Immediate to accumulator	1	1	_
ADD Immediate to	1/19	1/32	register/memory
register/memory	4/00	4/00	_
ADD Register/memory with	1/20	1/28	
AND Immediate to accumulator	1	1	
AND Immediate to accumulator	1/04	1	
AND Immediate to	1/24	1/33	register/memory
AND Register/memory and	1/12	1/15	-
register to either	.,	.,	
BOUND	20/40	24/64	Interrupt not taken/Interrupt taken
CBW	1	4	_
CLC	1	1	-
CLD	1	1	-
CLI	1	1	-
CMC	2	2	-
CMPS	9	20	-
CS	1	1	-
CWD	1	1	-
DAA	4	4	-
DAS	2	2	_
DEC Register	1	1	-
DEC Register/memory	1/24	1/32	register/memory

