



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                              |
|----------------------------|---------------------------------------------------------------------|
| Core Processor             | -                                                                   |
| Core Size                  | 8/16-Bit                                                            |
| Speed                      | 50MHz                                                               |
| Connectivity               | UART/USART                                                          |
| Peripherals                | -                                                                   |
| Number of I/O              | 16                                                                  |
| Program Memory Size        | -                                                                   |
| Program Memory Type        | ROMIess                                                             |
| EEPROM Size                | -                                                                   |
| RAM Size                   | -                                                                   |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                           |
| Data Converters            | -                                                                   |
| Oscillator Type            | Internal                                                            |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                   |
| Mounting Type              | Surface Mount                                                       |
| Package / Case             | 80-BQFP                                                             |
| Supplier Device Package    | 80-PQFP (20x14)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/analog-devices/ia186ebpqf80ir2 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# TABLE OF CONTENTS

| 1. | Intro | duction  |                                                     | 7  |
|----|-------|----------|-----------------------------------------------------|----|
|    | 1.1   | Genera   | al Description                                      | 7  |
|    | 1.2   | Featur   | es                                                  | 8  |
| 2. | Pack  | aging, F | Pin Descriptions, and Physical Dimensions           | 9  |
|    | 2.1   | Packag   | ges and Pinouts                                     | 9  |
|    |       | 2.1.1    | IA186EB 84 PLCC Package                             | 10 |
|    |       | 2.1.2    | IA188EB 84 PLCC Package                             | 12 |
|    |       | 2.1.3    | PLCC Physical Dimensions                            | 14 |
|    |       | 2.1.4    | IA186EB 80 PQFP Package                             | 15 |
|    |       | 2.1.5    | IA188EB 80 PQFP Package                             | 17 |
|    |       | 2.1.6    | PQFP Physical Dimensions                            | 19 |
|    |       | 2.1.7    | IA186EB 80 LQFP Package                             | 20 |
|    |       | 2.1.8    | IA188EB 80 LQFP Package                             | 22 |
|    |       | 2.1.9    | LQFP Physical Dimensions                            | 24 |
|    | 2.2   | IA186    | EB Pin/Signal Descriptions                          | 25 |
|    | 2.3   | IA188    | EB Pin/Signal Descriptions                          | 34 |
| 3. | Max   | imum R   | Ratings, Thermal Characteristics, and DC Parameters | 42 |
| 4. | Func  | tional D | Description                                         | 44 |
|    | 4.1   | Device   | e Architecture                                      | 44 |
|    |       | 4.1.1    | Bus Interface Unit                                  | 44 |
|    |       | 4.1.2    | Clock Generator                                     | 46 |
|    |       | 4.1.3    | Interrupt Control Unit                              | 47 |
|    |       | 4.1.4    | Timer/Counter Unit                                  | 47 |
|    |       | 4.1.5    | Serial Communications Unit                          | 47 |
|    |       | 4.1.6    | Chip-Select Unit                                    | 47 |
|    |       | 4.1.7    | I/O Port Unit                                       | 48 |
|    |       | 4.1.8    | Refresh Control Unit                                | 48 |
|    |       | 4.1.9    | Power Management Unit                               | 48 |
|    | 4.2   | Periph   | eral Architecture                                   | 48 |
|    | 4.3   | Refere   | ence Documents                                      | 51 |
| 5. | AC S  | Specific | ations                                              | 51 |
|    | 5.1   | AC Te    | est Conditions                                      | 55 |
|    | 5.2   | Clock    | Input and Clock Output Timing Characteristics       | 56 |
|    | 5.3   | Serial   | Port Mode 0 Timing Characteristics                  | 58 |
| 6. | Rese  | t Opera  | tion                                                | 59 |
| 7. | Bus   | Timing   |                                                     | 59 |
| 8. | Instr | uction E | Execution Times                                     | 69 |
| 9. | Errat | ta       |                                                     | 77 |
|    | 9.1   | Summ     | ary                                                 | 77 |
|    | 9.2   | Detail   |                                                     | 78 |



IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 3 of 85

http://www.Innovasic.com Customer Support: 1-888-824-4184

### 2.1.3 PLCC Physical Dimensions

The physical dimensions for the 84 PLCC are as shown in Figure 3.



| Symbol | Min    | Nom    | Max    |
|--------|--------|--------|--------|
| Α      | 0.165″ | _      | 0.180″ |
| A1     | 0.090″ | _      | 0.120″ |
| D      | _      | 1.190″ | _      |
| D1     | _      | 1.154″ | _      |
| E      | _      | 1.190″ | _      |
| E1     | _      | 1.154″ | _      |
| F      | _      | 1.110″ | _      |
| F1     | _      | 1.110″ | -      |
| 1      |        |        |        |

<u>Note</u>: The bottom package is bigger than the top package by 0.004 inches (0.002 inches per side). Bottom package dimensions follow those stated in this drawing.

### Figure 3. 84-Pin PLCC Physical Package Dimensions



IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 14 of 85

http://www.Innovasic.com Customer Support: 1-888-824-4184

### 2.1.6 PQFP Physical Dimensions

The physical dimensions for the 80 PQFP are as shown in Figure 6.

0.08mm. Dambar cannot be located on the lower radius of



### Figure 6. 80-Pin PQFP Physical Package Dimensions



the lead foot.

|                    |                                   | Pin  |      |      |                                                                                                                                                                                                                                                                                                                        |  |  |  |
|--------------------|-----------------------------------|------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Signal             | Name                              | PLCC | LQFP | PQFP | Description                                                                                                                                                                                                                                                                                                            |  |  |  |
| ale                | ale                               | 6    | 75   | 38   | <b>a</b> ddress latch <b>e</b> nable. Output. Active High.<br>This signal is used to latch the address<br>information during the address portion of a bus<br>cycle.                                                                                                                                                    |  |  |  |
| bclk0              | p2.5/ <b>bclk0</b>                | 54   | 41   | 4    | <b>b</b> aud <b>clock</b> , Serial Port <b>0</b> . Input. The <b>bclk0</b> pin<br>can be used to provide an alternate clock<br>source for Serial Port 0. The input clock rate<br>cannot be greater than one-half the operating<br>frequency of the IA186EB.                                                            |  |  |  |
| bclk1              | p2.2/ <b>bclk1</b>                | 59   | 46   | 9    | <b>b</b> aud <b>clock</b> , Serial Port <b>1</b> . Input. The <b>bclk1</b> pin<br>can be used to provide an alternate clock<br>source for Serial Port <b>1</b> . The input clock rate<br>cannot be greater than one-half the operating<br>frequency of the IA186EB.                                                    |  |  |  |
| bhe_n              | bhe_n                             | 7    | 76   | 39   | <b>byte high e</b> nable. Output. Active Low. When <b>bhe_n</b> is asserted (low), it indicates that the bus cycle in progress is transferring data over the upper half of the data bus.                                                                                                                               |  |  |  |
| bhe_n is<br>multi- | bhe_n is<br>multi-<br>plexed with |      |      |      | Additionally, <b>bhe_n</b> and <b>ad0</b> encode the following bus information:                                                                                                                                                                                                                                        |  |  |  |
| with               | refresh_n                         |      |      |      | ad0 bhe_n Bus Status                                                                                                                                                                                                                                                                                                   |  |  |  |
|                    |                                   |      |      |      | 00Word Transfer01Even Byte Transfer10Odd Byte Transfer11Refresh Operation                                                                                                                                                                                                                                              |  |  |  |
| buev               | test n/buev                       | 14   | ΝA   | ΝA   | husy Input Active High When the husy                                                                                                                                                                                                                                                                                   |  |  |  |
| busy               | lesi_1/busy                       | 14   |      |      | <b>busy</b> . Input. Active High. When the <b>busy</b><br>input is asserted, it causes the IA186EB to<br>suspend operation during the execution of the<br>Intel 80C187 Numerics Coprocessor<br>instructions. Operation resumes when the pin<br>is sampled low. <i>This applies to the PLCC</i><br><i>package only.</i> |  |  |  |

### Table 7. IA186EB Pin/Signal Descriptions (Continued)



| Table 7. | IA186EB | <b>Pin/Signal</b> | Descriptions | (Continued) |
|----------|---------|-------------------|--------------|-------------|
|----------|---------|-------------------|--------------|-------------|

|         |                     | Pin  |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|---------------------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal  | Name                | PLCC | LQFP | PQFP | Description                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| clkin   | clkin               | 41   | 28   | 71   | <ul> <li>clock input. Input. The clkin pin is the input connection for an external clock. An external oscillator operating at two times the required processor operating frequency can be connected to this pin.</li> <li>If a crystal is used to supply the clock, it is connected between the clkin pin and the oscout pin (see oscout table entry). When a crystal is connected, it drives an internal Pierce oscillator to the IA186EB.</li> </ul> |
| clkout  | clkout              | 44   | 31   | 74   | <b>clock out</b> put. Output. The <b>clkout</b> pin provides<br>a timing reference for inputs and outputs of the<br>IA186EB. This clock output is one-half the<br>input clock ( <b>clkin</b> ) frequency. The <b>clkout</b><br>signal has a 50% duty cycle, transitioning every<br>falling edge of <b>clkin</b> .                                                                                                                                      |
| cts0_n  | cts0_n              | 51   | 38   | 1    | <b>c</b> lear <b>t</b> o <b>s</b> end, Serial Port <b>0</b> . Input. Active Low.<br>When this input is high (i.e., not asserted), data<br>transmission from Serial Port 0 is inhibited.<br>When the signal is asserted (low), data<br>transmission is permitted.                                                                                                                                                                                       |
| cts1_n  | p2.4/ <b>cts1_n</b> | 56   | 43   | 6    | <b>c</b> lear <b>to s</b> end, Serial Port <b>1</b> . Input. Active Low.<br>When this input is high (i.e., not asserted), data<br>transmission from Serial Port 1 is inhibited.<br>When the signal is asserted (low), data<br>transmission is permitted.                                                                                                                                                                                               |
| den_n   | den_n               | 11   | 80   | 43   | data enable. Output. Active Low. This signal<br>is used to enable of bidirectional transceivers in<br>a buffered system. The den_n signal is<br>asserted (low) only when data is to be<br>transferred on the bus.                                                                                                                                                                                                                                      |
| dt/r_n  | dt/r_n              | 16   | NA   | NA   | data transmit/receive. Output. This signal is<br>used to control the direction of data flow for<br>bidirectional buffers in a buffered system.<br>When dt/r_n is high, the direction indicated is<br>transmit; when dt/t_n is low, the direction<br>indicated is receive.                                                                                                                                                                              |
| error_n | error_n             | 3    | NA   | NA   | <b>error</b> . Input. Active Low. When this signal is asserted (low), it indicates that the last numerics coprocessor operation resulted in an exception condition.                                                                                                                                                                                                                                                                                    |



| Table 7. | IA186EB | <b>Pin/Signal</b> | Descriptions | (Continued | 1) |
|----------|---------|-------------------|--------------|------------|----|
|          | INICOLD | i ili/olgilai     | Descriptions | Continuou  | /  |

|                 |                   | Pin                         |                              |                              |                                                                                                                                                                                                                                                                                     |
|-----------------|-------------------|-----------------------------|------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal          | Name              | PLCC                        | LQFP                         | PQFP                         | Description                                                                                                                                                                                                                                                                         |
| t1out           | t1out             | 47                          | 34                           | 77                           | timer <b>1 out</b> put. Output. Depending on the<br>Timer Mode programmed for Timer 1, this<br>output can provide a single clock or a<br>continuous waveform.                                                                                                                       |
| test_n          | test_n/busy       | 14                          | 3                            | 46                           | <b>test.</b> Input. Active Low. When the <b>test_n</b> input is high (i.e., not asserted), it causes the IA186EB to suspend operation during the execution of the WAIT instruction. Operation resumes when the pin is sampled low (asserted).                                       |
| txd0            | txd0              | 52                          | 39                           | 2                            | Transmit ( <b>tx</b> ) data, Serial Port <b>0</b> . Output. This<br>pin is the serial data output for Serial Port 0.<br>During synchronous serial communications,<br><b>txd0</b> becomes the transmit clock ( <b>rxd0</b><br>functions as an output for data transmission).         |
| txd1            | p2.1/ <b>txd1</b> | 58                          | 45                           | 8                            | Transmit ( <b>tx</b> ) <b>d</b> ata, Serial Port <b>1</b> . Output. This<br>pin is the serial data output for Serial Port 1.<br>During synchronous serial communications,<br><b>txd1</b> becomes the transmit clock ( <b>rxd1</b><br>functions as an output for data transmission). |
| ucs_n           | ucs_n             | 30                          | 18                           | 61                           | <b>u</b> pper <b>c</b> hip <b>s</b> elect. Output. Active Low. This<br>pin provides a chip select signal that will be<br>asserted (low) whenever the address of a<br>memory bus cycle is within the address space<br>programmed for that output.                                    |
| V <sub>cc</sub> | V <sub>cc</sub>   | 1, 23,<br>42, 64            | 11, 29,<br>50, 71            | 13, 34,<br>54, 72            | Power ( $v_{cc}$ ). This pin provides power for the IA186EB device. It must be connected to a +5V DC power source.                                                                                                                                                                  |
| V <sub>SS</sub> | V <sub>ss</sub>   | 2, 22,<br>43, 63,<br>65, 84 | 10, 30,<br>49, 51,<br>70, 72 | 12, 14,<br>33, 35,<br>53, 73 | Ground ( $v_{ss}$ ). This pin provides the digital ground (0V) for the IA186EB. It must be connected to a $v_{ss}$ board plane.                                                                                                                                                     |
| wr_n            | wr_n              | 5                           | 74                           | 37                           | <pre>write. Output. Active Low. When asserted (low), wr_n indicates that data available on the data bus are to be latched into the accessed memory or I/O device.</pre>                                                                                                             |



|        | Pin                 |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------|---------------------|------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal | Name                | PLCC | LQFP | PQFP | Description                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| bclk1  | p2.2/ <b>bclk1</b>  | 59   | 46   | 9    | <b>b</b> aud <b>clock</b> , Serial Port <b>1</b> . Input. The <b>bclk1</b> pin<br>can be used to provide an alternate clock<br>source for Serial Port 1. The input clock rate<br>cannot be greater than one-half the operating<br>frequency of the IA188EB.                                                                                                                                                                                              |
| clkin  | clkin               | 41   | 28   | 71   | <ul> <li>clock input. Input. The clkin pin is the input connection for an external clock. An external oscillator, operating at two times the required processor operating frequency, can be connected to this pin.</li> <li>If a crystal is used to supply the clock, it is connected between the clkin pin and the oscout pin (see oscout table entry). When a crystal is connected, it drives an internal Pierce oscillator to the IA188EB.</li> </ul> |
| clkout | clkout              | 44   | 31   | 74   | <b>clock out</b> put. Output. The <b>clkout</b> pin provides<br>a timing reference for inputs and outputs of the<br>IA188EB. This clock output is one-half the input<br>clock ( <b>clkin</b> ) frequency. The <b>clkout</b> signal has<br>a 50% duty cycle, transitioning every falling<br>edge of <b>clkin</b> .                                                                                                                                        |
| cts0_n | cts0_n              | 51   | 38   | 1    | <b>c</b> lear <b>t</b> o <b>s</b> end, Serial Port <b>0</b> . Input. Active Low.<br>When this input is high (i.e., not asserted), data<br>transmission from Serial Port 0 is inhibited.<br>When the signal is asserted (low), data<br>transmission is permitted.                                                                                                                                                                                         |
| cts1_n | p2.4/ <b>cts1_n</b> | 56   | 43   | 6    | <b>c</b> lear <b>t</b> o <b>s</b> end, Serial Port <b>1</b> . Input. Active Low.<br>When this input is high (i.e., not asserted), data<br>transmission from Serial Port 1 is inhibited.<br>When the signal is asserted (low), data<br>transmission is permitted.                                                                                                                                                                                         |
| den_n  | den_n               | 11   | 80   | 43   | data <b>en</b> able. Output. Active Low. This signal<br>is used to enable of bidirectional transceivers in<br>a buffered system. The <b>den_n</b> signal is<br>asserted (low) only when data are to be<br>transferred on the bus.                                                                                                                                                                                                                        |
| dt/r_n | dt/r_n              | 16   | NA   | NA   | data transmit/receive. Output. This signal is<br>used to control the direction of data flow for<br>bidirectional buffers in a buffered system.<br>When dt/r_n is high, the direction indicated is<br>transmit; when dt/t_n is low, the direction<br>indicated is receive.                                                                                                                                                                                |

## Table 8. IA188EB Pin/Signal Descriptions (Continued)



|        |                     | Pin  |      |      |                                                                                                                                               |
|--------|---------------------|------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Signal | Name                | PLCC | LQFP | PQFP | Description                                                                                                                                   |
| p1.0   | <b>p1.0</b> /gcs0_n | 28   | 16   | 59   | <b>p</b> ort <b>1</b> , Bit [N] (N = <b>0</b> – <b>7</b> ). Output. Each pin of                                                               |
| p1.1   | <b>p1.1</b> /gcs1_n | 27   | 15   | 58   | Port 1, <b>p1.0–p1.7</b> , can function individually as a                                                                                     |
| p1.2   | <b>p1.2</b> /gcs2_n | 26   | 14   | 57   | general-purpose output line.                                                                                                                  |
| p1.3   | <b>p1.3</b> /gcs3_n | 25   | 13   | 56   |                                                                                                                                               |
| p1.4   | <b>p1.4</b> /gcs4_n | 24   | 12   | 55   |                                                                                                                                               |
| p1.5   | <b>p1.5</b> /gcs5_n | 21   | 9    | 52   |                                                                                                                                               |
| p1.6   | <b>p1.6</b> /gcs6_n | 20   | 8    | 51   |                                                                                                                                               |
| p1.7   | <b>p1.7</b> /gcs7_n | 19   | 7    | 50   |                                                                                                                                               |
| p2.0   | <b>p2.0</b> /rxd1   | 57   | 44   | 7    | <b>p</b> ort <b>2</b> , Bit [ <b>0</b> ]. Input/Output. This pin functions as a general-purpose I/O line.                                     |
| p2.1   | <b>p2.1</b> /txd1   | 58   | 45   | 8    | <b>p</b> ort <b>2</b> , Bit [ <b>1</b> ]. Output. This pin functions as a general-purpose output line.                                        |
| p2.2   | <b>p2.2</b> /bclk1  | 59   | 46   | 9    | <b>p</b> ort <b>2</b> , Bit [ <b>2</b> ]. Input. This pin functions as a general-purpose input line.                                          |
| p2.3   | <b>p2.3</b> /sint1  | 55   | 42   | 5    | <b>p</b> ort <b>2</b> , Bit [ <b>3</b> ]. Output. This pin functions as a general-purpose output line.                                        |
| p2.4   | <b>p2.4</b> /cts1_n | 56   | 43   | 6    | <b>p</b> ort <b>2</b> , Bit [ <b>4</b> ]. Input. This pin functions as a general-purpose input line.                                          |
| p2.5   | <b>p2.5</b> /bclk0  | 54   | 41   | 4    | <b>p</b> ort <b>2</b> , Bit [ <b>5</b> ]. Input. This pin functions as a general-purpose input line.                                          |
| p2.6   | p2.6                | 50   | 37   | 80   | <b>p</b> ort <b>2</b> , Bit [ <b>6</b> ]. Input/Output (open drain). This pin functions as a general-purpose bidirectional input/output line. |
| p2.7   | p2.7                | 49   | 36   | 79   | <b>p</b> ort <b>2</b> , Bit [ <b>7</b> ]. Input/Output (open drain). This pin functions as a general-purpose bidirectional input/output line. |

### Table 8. IA188EB Pin/Signal Descriptions (Continued)



|                 | Pin             |                             |                              |                              |                                                                                                                                                                                                                                                                             |
|-----------------|-----------------|-----------------------------|------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal          | Name            | PLCC                        | LQFP                         | PQFP                         | Description                                                                                                                                                                                                                                                                 |
| test_n          | test_n          | 14                          | 3                            | 46                           | <b>test.</b> Input. Active Low. When the <b>test_n</b> input is high (i.e., not asserted), it causes the IA188EB to suspend operation during the execution of the WAIT instruction. Operation resumes when the pin is sampled low (asserted).                               |
| txd0            | txd0            | 52                          | 39                           | 2                            | Transmit ( <b>tx</b> ) data, Serial Port <b>0</b> . Output. This<br>pin is the serial data output for Serial Port 0.<br>During synchronous serial communications,<br><b>txd0</b> becomes the transmit clock ( <b>rxd0</b><br>functions as an output for data transmission). |
| txd1            | p2.1/txd1       | 58                          | 45                           | 8                            | Transmit ( <b>tx</b> ) data, Serial Port <b>1</b> . Output. This<br>pin is the serial data output for Serial Port 1.<br>During synchronous serial communications,<br><b>txd1</b> becomes the transmit clock ( <b>rxd1</b><br>functions as an output for data transmission). |
| ucs_n           | ucs_n           | 30                          | 18                           | 61                           | <b>u</b> pper <b>c</b> hip <b>s</b> elect. Output. Active Low. This<br>pin provides a chip select signal that will be<br>asserted (low) whenever the address of a<br>memory bus cycle is within the address space<br>programmed for that output.                            |
| V <sub>cc</sub> | V <sub>cc</sub> | 1, 23,<br>42, 64            | 11, 29,<br>50, 71            | 13, 34,<br>54, 72            | Power ( $v_{cc}$ ). This pin provides power for the IA188EB device. It must be connected to a +5V DC power source.                                                                                                                                                          |
| V <sub>SS</sub> | V <sub>ss</sub> | 2, 22,<br>43, 63,<br>65, 84 | 10, 30,<br>49, 51,<br>70, 72 | 12, 14,<br>33, 35,<br>53, 73 | Ground ( $v_{ss}$ ). This pin provides the digital ground (0V) for the IA188EB. It must be connected to a $v_{ss}$ board plane.                                                                                                                                             |
| wr_n            | wr_n            | 5                           | 74                           | 37                           | <pre>write. Output. Active Low. When asserted (low), wr_n indicates that data available on the data bus are to be latched into the accessed memory or I/O device.</pre>                                                                                                     |

### Table 8. IA188EB Pin/Signal Descriptions (Continued)



### Table 11. IA186EB and IA188EB DC Parameters

| Symbol            | Parameter                                          | Min             | Max               | Units | Notes                      |
|-------------------|----------------------------------------------------|-----------------|-------------------|-------|----------------------------|
| 5.0V              | Supply Voltage                                     | 4.5             | 5.5               | V     | _                          |
| Operation         |                                                    |                 |                   |       |                            |
| V <sub>CC</sub>   |                                                    |                 |                   |       |                            |
| 3.3V              | Supply Voltage                                     | 3.0             | 3.6               | V     | -                          |
| Operation         |                                                    |                 |                   |       |                            |
| V <sub>CC</sub>   |                                                    |                 |                   |       |                            |
| V <sub>IL</sub>   | Input Low Voltage                                  | -0.3            | 0.3               | V     | input                      |
|                   |                                                    |                 | V <sub>cc</sub>   |       | hysteresis on              |
|                   |                                                    |                 |                   |       | resin_n =                  |
|                   |                                                    |                 |                   |       | 0.50V                      |
| V <sub>IH</sub>   | Input High Voltage                                 | 0.7             | V <sub>CC</sub> + | V     | -                          |
|                   |                                                    | V <sub>cc</sub> | 0.3               |       |                            |
| V <sub>OL</sub>   | Output Low Voltage Vcc = 5.5V or 3.6V              | -               | 0.4               | V     | I <sub>OL</sub> = 12mA     |
| V <sub>OH</sub>   | Output High Voltage Vcc = 4.5V/3.0V                | 3.5/2.4         | -                 | V     | I <sub>OH</sub> = −12 mA   |
| I <sub>LEAK</sub> | Input Leakage Current for Pins: ad15-ad0,          | -               | ±1                | μA    | $0V \le V_{IN} \le V_{CC}$ |
|                   | ad7–ad0 (IA188EB), ready, hold, resin_n; clkin,    |                 |                   |       |                            |
|                   | test_n, nmi, int4–int0, t0in, t1in, rdx0, bclk0_n, |                 |                   |       |                            |
|                   | _cts0_n, rxd1, bclk1_n, cts1_n, p2.6, p2.7         |                 |                   |       |                            |
|                   | Input Leakage Current for Pins (@3.3V): pereq      | + .147          | +.625             | mA    | $V_{IN} = V_{CC}$          |
|                   | Input Leakage Current for Pins (@3.3V):            | 147             | 625               | mA    | V <sub>IN</sub> =0V        |
|                   | a19/once_n, a18–a16, lock_n, error_n               |                 |                   |       |                            |
|                   | Input Leakage Current for Pins (@5V): pereq        | + .227          | +.833             | mA    | $V_{IN} = V_{CC}$          |
|                   | Input Leakage Current for Pins (@5V):              | 227             | 833               | mA    | V <sub>IN</sub> =0V        |
|                   | a19/once_n, a18-a16, lock_n, error_n               |                 |                   |       |                            |
| I <sub>LO</sub>   | Output Leakage Current                             | -               | ± 10              | μA    | $0.45 \le V_{OUT} \le$     |
|                   |                                                    |                 |                   | -     | V <sub>cc</sub>            |
| I <sub>ID</sub>   | Supply Current (IDLE) - @ 50 MHz                   | -               | 90                | mA    | _                          |
| CIN               | Input Pin Capacitance                              | 0               | 5                 | pF    | $T_F = 1 MHz$              |
| C <sub>OUT</sub>  | Output Pin Capacitance                             | 0               | 5                 | pF    | $T_F = 1 MHz$              |
|                   |                                                    |                 |                   |       |                            |
| Operating         | temperature is -40°C to +85°C.                     |                 |                   |       |                            |



For specific 5.0- and 3.3-volt characteristics, refer to Tables 13 and 14, respectively.

| Table 13. | <b>AC Input</b> | <b>Characteristics</b> | for 5.0-V | olt Operation |
|-----------|-----------------|------------------------|-----------|---------------|
|-----------|-----------------|------------------------|-----------|---------------|

| Symbol            | Pins                                                                             | Min | Max | Units |
|-------------------|----------------------------------------------------------------------------------|-----|-----|-------|
| t <sub>CHIS</sub> | test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n, p2.6, p2.7 | 10  | -   | ns    |
| t <sub>CHIH</sub> | test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n             | 3   | -   | ns    |
| t <sub>CLIS</sub> | ad15–ad0, ad7–ad0 (IA188EB), ready                                               | 10  | -   | ns    |
| t <sub>CLIS</sub> | hold, pereq, error_n                                                             | 10  | -   | ns    |
| t <sub>CLIH</sub> | ad15–ad0, ad7–ad0 (IA188EB), ready                                               | 3   | -   | ns    |
| t <sub>CLIH</sub> | hold, pereq, error_n                                                             | 3   | -   | ns    |

### Table 14. AC Input Characteristics for 3.3-Volt Operation

| Symbol            | Pins                                                                             | Min | Max | Units |
|-------------------|----------------------------------------------------------------------------------|-----|-----|-------|
| t <sub>CHIS</sub> | test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n, p2.6, p2.7 | 10  | -   | ns    |
| t <sub>CHIH</sub> | test_n, nmi, int4-int0, bclk1-bclk0, t1in-t0in, ready, cts1_n-cts0_n             | 3   | -   | ns    |
| t <sub>CLIS</sub> | ad15–ad0, ad7–ad0 (IA188EB), ready                                               | 10  | -   | ns    |
| t <sub>CLIS</sub> | hold, pereq, error_n                                                             | 10  | -   | ns    |
| t <sub>CLIH</sub> | ad15–ad0, ad7–ad0 (IA188EB), ready                                               | 3   | -   | ns    |
| t <sub>CLIH</sub> | hold, pereq, error_n                                                             | 3   | _   | ns    |



Figure 13. AC Output Characteristics

For specific 5.0- and 3.3-volt characteristics, refer to Tables 15 and 16, respectively.



IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 52 of 85

### Table 15. AC Output Characteristics for 5.0-Volt Operation

| Symbol            | Parameter                                                                   | Min | Max | Units |
|-------------------|-----------------------------------------------------------------------------|-----|-----|-------|
| t <sub>CHOV</sub> | ale, s2–s0_n, den_n, dt/r_n, bhe_n, rfsh_n (IA188EB), lock_n, a19–a16       | З   | 17  | ns    |
|                   | gcs0–gcs7_n, lcs_n, ucs_n, ncs_n, rd_n, wr_n                                | З   | 20  | ns    |
| t <sub>CLOV</sub> | bhe_n, rfsh_n (IA188EB), den_n, lock_n, resout, hlda, t0out, t1out, a19-a16 | 3   | 17  | ns    |
|                   | rd_n , wr_n, gcs7–gcs0_n, lcs_n, ucs_n, ad15–ad0, ad7–ad0 (IA188EB),        | 3   | 20  | ns    |
|                   | a15-a8 (IA188EB), ncs_n, inta1_n-inta0_n, s2_n-s0_n                         |     |     |       |
| t <sub>CHOF</sub> | re_n, wr_n, bhe_n, rfsh_n (IA188EB), dt/r_n, lock_n, s2_n–s0_n, a19–a16     | 0   | 20  | ns    |
| t <sub>CLOF</sub> | den_n, ad15–ad0, ad7–ad0 (IA188EB), a15–a8 (IA188EB)                        | 0   | 20  | ns    |

### Table 16. AC Output Characteristics for 3.3-Volt Operation

| Symbol            | Parameter                                                                   | Min | Max | Units |
|-------------------|-----------------------------------------------------------------------------|-----|-----|-------|
| t <sub>CHOV</sub> | ale, s2–s0_n, den_n, dt/r_n, bhe_n, rfsh_n (IA188EB), lock_n, a19–a16       | 3   | 25  | ns    |
|                   | gcs0–gcs7_n, lcs_n, ucs_n, ncs_n, rd_n, wr_n                                | 3   | 30  | ns    |
| t <sub>CLOV</sub> | bhe_n, rfsh_n (IA188EB), den_n, lock_n, resout, hlda, t0out, t1out, a19-a16 | З   | 25  | ns    |
|                   | rd_n , wr_n, gcs7–gcs0_n, lcs_n, ucs_n, ad15–ad0, ad7–ad0 (IA188EB),        | 3   | 30  | ns    |
|                   | a15–a8 (IA188EB), ncs_n, inta1_n–inta0_n, s2_n–s0_n                         |     |     |       |
| t <sub>CHOF</sub> | re_n, wr_n, bhe_n, rfsh_n (IA188EB), dt/r_n, lock_n, s2_n-s0_n, a19-a16     | 0   | 30  | ns    |
| t <sub>CLOF</sub> | den_n, ad15–ad0, ad7–ad0 (IA188EB), a15–a8 (IA188EB)                        | 0   | 30  | ns    |





Figure 14. Relative Timing Characteristics

For specific relative timing characteristics, refer to Table 17.



| Symbol            | Parameter                          | Min      | Max | Units |
|-------------------|------------------------------------|----------|-----|-------|
| t <sub>LHLL</sub> | ale Rising to ale Falling          | t – 15   | _   | ns    |
| t <sub>AVLL</sub> | Address Valid to ale Falling       | ½t −10   | _   | ns    |
| t <sub>PLLL</sub> | Chip Selects Valid to ale Falling  | ½t −10   | _   | ns    |
| t <sub>LLAX</sub> | Address Hold from ale Falling      | ½t −10   | _   | ns    |
| t <sub>LLWL</sub> | ale Falling to wr_n Falling        | ½t –15   | _   | ns    |
| t <sub>LLRL</sub> | ale Falling to rd_n Falling        | ½t –15   | _   | ns    |
| t <sub>WHLH</sub> | wr_n Rising to ale Rising          | ½t −10   | _   | ns    |
| t <sub>AFRL</sub> | Address Float to rd_n Falling      | 0        | _   | ns    |
| t <sub>RLRH</sub> | rd_n Falling to rd_n Rising        | (2t) – 5 | _   | ns    |
| t <sub>WLWH</sub> | wr_n Falling to wr_n Rising        | (2t) – 5 | _   | ns    |
| t <sub>RHAV</sub> | rd_n Rising to Address Active      | t – 15   | _   | ns    |
| t <sub>WHDX</sub> | Output Data Hold after wr_n Rising | t – 15   | _   | ns    |
| t <sub>whph</sub> | wr_n Rising to Chip Select Rising  | ½t −10   | _   | ns    |
| t <sub>RHPH</sub> | rd_n Rising to Chip Select Rising  | ½t −10   | _   | ns    |
| t <sub>PHPL</sub> | cs_n inactive to cs_n active       | ½t −10   | _   | ns    |
| t <sub>ovrh</sub> | once_n Active to resin_n Rising    | t        | _   | ns    |
| t <sub>RHOX</sub> | once_n Hold to resin_n Rising      | t        | _   | Ns    |

### Table 17. Relative Timing Characteristics

### 5.1 AC Test Conditions

The AC specifications are tested with the 50-pF load shown in Figure 15. Specifications are measured at the  $V_{CC}/2$  crossing point unless otherwise specified.



Figure 15. AC Test Load



IA186EB/IA188EB 8-Bit/16-Bit Microcontrollers



## Figure 21. Write Cycle Timing



IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 63 of 85 http://www.Innovasic.com Customer Support: 1-888-824-4184

## Table 21. Instruction Set Timing (Continued)

|                              | Clock Cycles |         |                  |
|------------------------------|--------------|---------|------------------|
| Instruction                  | IA186EB      | IA188EB | Comments         |
| SHL Register/Memory by CL    | 1/20         | 1/24    | register/memory  |
| SHL Register/Memory by       | 1/11         | 1/24    |                  |
| Count                        |              |         |                  |
| SHR Register/Memory by 1     | 1/5          | 1/24    |                  |
| SHR Register/Memory by CL    | 1/20         | 1/28    |                  |
| SHR Register/Memory by       | 1/11         | 1/24    |                  |
| Count                        |              |         |                  |
| SS                           | 1            | 1       | _                |
| STC                          | 1            | 1       | _                |
| SUB Immediate from           | 1            | 1       | -                |
| accumulator                  |              |         |                  |
| SUB Immediate from           | 1/11         | 1/28    | register/memory  |
| register/memory              | A / A 🗖      | 1/10    |                  |
| SUB Register/memory and      | 1/15         | 1/40    |                  |
| register to eitner           | 1            | 4       |                  |
|                              | 1            | 1       |                  |
|                              | 1            | 1       |                  |
| STOS                         | 6            | 8       | —                |
| STOS (repeated n times)      | 6+4n         | 8+8n    | _                |
| IEST Immediate data and      | 1            | 1       | -                |
| TEST Immediate data and      | 1/10         | 4/40    | register/memory/ |
| register/memory              | 1/10         | 1/10    | register/memory  |
| TEST Register/memory and     | 1/12         | 1/20    | register/memory  |
| register                     | 1/12         | 1/20    | register/memory  |
| WAIT                         | 1            | 1       | test_n = 0       |
| XCHG Register with           | 2            | 2       | _                |
| accumulator                  |              |         |                  |
| XCHG Register/memory with    | 3/16         | 3/20    | register/memory  |
| register                     |              |         |                  |
| XLAT                         | 16           | 8       | _                |
| XOR Immediate to accumulator | 1            | 1       | _                |
| XOR Immediate to             | 1/11         | 1/32    | register/memory  |
| register/memory              |              |         | <u> </u>         |
| XOR Register/memory and      | 1/16         | 1/32    | register/memory  |
| register to either           |              |         |                  |



#### **Innovasic Part Number Cross-Reference**

Tables 22 through 24 cross-reference the Innovasic part number with the corresponding Intel part number.

#### Table 22. Innovasic Part Number Cross-Reference for the PLCC

| Innovasic Part Number      | Intel Part Number | Package Type | Temperature Grades |
|----------------------------|-------------------|--------------|--------------------|
| IA186EBPLC84IR2            | EE80C186EB25      | 84-Pin PLCC  | Commercial and     |
| lead free (RoHS-compliant) | EE80C186EB20      |              | industrial         |
|                            | EN80C186EB25      |              |                    |
|                            | EN80C186EB20      |              |                    |
|                            | EN80C186EB13      |              |                    |
|                            | N80C186EB25       |              |                    |
|                            | N80C186EB20       |              |                    |
|                            | N80C186EB13       |              |                    |
|                            | TN80C186EB25      |              |                    |
|                            | TN80C186EB20      |              |                    |
|                            | TN80C186EB13      |              |                    |
|                            | N80L186EB16       |              |                    |
|                            | N80L186EB13       |              |                    |
|                            | TN80L186EB16      |              |                    |
|                            | TN80L186EB13      |              |                    |
|                            | EN80L186EB13      |              |                    |
| IA188EBPLC84IR2            | EE80C188EB25      | 84-Pin PLCC  | Commercial and     |
| lead free (RoHS-compliant) | EE80C188EB20      |              | industrial         |
|                            | EE80C188EB13      |              |                    |
|                            | EN80C188EB25      |              |                    |
|                            | EN80C188EB20      |              |                    |
|                            | EN80C188EB13      |              |                    |
|                            | N80C188EB25       |              |                    |
|                            | N80C188EB20       |              |                    |
|                            | N80C188EB13       |              |                    |
|                            | TN80C188EB25      |              |                    |
|                            |                   |              |                    |
|                            | TN80C188EB13      |              |                    |
|                            | EE80L188EB16      |              |                    |
|                            |                   |              |                    |
|                            | N80L188EB16       |              |                    |
|                            |                   |              |                    |
|                            |                   |              |                    |
|                            | IN80L188EB13      |              |                    |



### Errata No. 2

**Problem:** When the extension byte (mod field) is set to "11," some instructions will cause the CPU to hang.

**Description:** Although there are faster versions of each instruction (these are not commonly used by compilers), the following instructions will cause the CPU to hang when the extension byte (mod field) is set to "11":

- 8D (LEA)
- 8F (POP memory)
- C6 (MOV immediate8 to memory/register)
- C7 (MOV immediate16 to memory/register)
- FE (PUSH memory)
- FF (PUSH memory)

Workaround: Substitute instructions in the following table.

| Instruction                             | Workaround                                  |
|-----------------------------------------|---------------------------------------------|
| 8D (LEA)                                | Use MOV register (89 or 8B)                 |
| 8F (POP memory)                         | Use POP register (0101_0xxx)                |
| C6 (MOV immediate8 to memory/register)  | Use MOV immediate8 to register (1011_0xxx)  |
| C7 (MOV immediate16 to memory/register) | Use MOV immediate16 to register (1011_1xxx) |
| FE (PUSH memory)                        | Use PUSH register (0101_0xxx)               |
| FF (PUSH memory)                        | Use PUSH register (0101_0xxx)               |

#### Errata No. 3

**Problem:** When the chip is put in SFNM mode for INT0 or INT1, the LVL bit is automatically set for those interrupts.

### Workaround: None.



IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 79 of 85

| Date              | Revision | Description                                                              | Page(s)    |
|-------------------|----------|--------------------------------------------------------------------------|------------|
| September 4, 2009 | 08       | Added a note to Table 12 regarding the Step ID register.                 | 50         |
| February 25, 2011 | 09       | Elimination of pages with SnPb lead plating options                      | 74-76      |
| March 23, 2011    | 10       | Updated Instruction Set Timing Table to incorporate DIV and IDIV values. | 70         |
| June 12, 2011     | 11       | Added Errata 11 and 12.                                                  | 77, 78, 81 |
| July 5, 2011      | 12       | Added Errata 13.                                                         | 78, 82     |
| July 10, 2011     | 13       | Added Errata 14.                                                         | 78, 82     |



# **10.** For Additional Information

The Innovasic Semiconductor IA186EB and IA188EB microcontrollers are form, fit, and function replacements for the original Intel<sup>®</sup> 80C186EB, 80C188EB, 80L186EB, and 80L188EB 16-bit high-integration embedded processors.

The Innovasic Support Team wants our information to be complete, accurate, useful, and easy to understand. Please feel free to contact our experts at Innovasic at any time with suggestions, comments, or questions.

Innovasic Support Team 3737 Princeton NE Suite 130 Albuquerque, NM 87107

(505) 883-5263 Fax: (505) 883-5477 Toll Free: (888) 824-4184 E-mail: support@innovasic.com Website: http://www.Innovasic.com

