

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	8/16-Bit
Speed	50MHz
Connectivity	UART/USART
Peripherals	-
Number of I/O	16
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ia188ebplq80ir2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.4 IA186EB 80 PQFP Package

The pinout for the IA186EB 80 PQFP Package is as shown in Figure 4. The corresponding pinout is provided in Table 3.

Figure 4. IA186EB 80-Pin PQFP Package Diagram

Pin

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Name

int2/inta0_n

int3/inta1_n

ucs n

int0

int1

int4

pdtmr

resin_n

resout

oscout

clkin

Vcc

Vss

clkout

t0out

t1out

t0in

t1in

p2.7

p2.6

Pin	Name	Pin	Name	Pin	Name	
1	cts0_n	21	ad4	41	s1_n	
2	txd0	22	ad12	42	s0_n	
3	rxd0	23	ad5	43	den_n	
4	p2.5/bclk0	24	ad13	44	hlda	
5	p2.3/sint1	25	ad6	45	hold	
6	p2.4/cts1_n	26	ad14	46	test_n	
7	p2.0/rxd1	27	ad7	47	lock_n	
8	p2.1/txd1	28	ad15	48	nmi	
9	p2.2/bclk1	29	a16	49	ready	
10	ad0	30	a17	50	p1.7/gcs7_n	
11	ad8	31	a18	51	p1.6/gcs6_n	
12	Vss	32	a19/once_n	52	p1.5/gcs5_n	
13	Vcc	33	Vss	53	Vss	
14	Vss	34	Vcc	54	Vcc	
15	ad1	35	Vss	55	p1.4/gcs4_n	
16	ad9	36	rd_n	56	p1.3/gcs3_n	
17	ad2	37	wr_n	57	p1.2/gcs2_n	
18	ad10	38	ale	58	p1.1/gcs1_n	
19	ad3	39	bhe_n	59	p1.0/gcs0_n	
20	ad11	40	s2_n	60	lcs_n	

Table 3. IA186EB 80-Pin PQFP Pin Listing

Pin	Name]	Pin	Name]	Pin
1	cts0_n		21	ad4		41
2	txd0		22	a12		42
3	rxd0		23	ad5		43
4	p2.5/bclk0		24	a13		44
5	p2.3/sint1		25	ad6		45
6	p2.4/cts1_n		26	a14		46
7	p2.0/rxd1		27	ad7		47
8	p2.1/txd1		28	a15		48
9	p2.2/bclk1		29	a16		49
10	ad0		30	a17		50
11	a8		31	a18		51
12	Vss		32	a19/once_n		52
13	Vcc		33	Vss		53
14	Vss		34	Vcc		54
15	ad1		35	Vss		55
16	a9		36	rd_n		56
17	ad2		37	wr_n		57
18	a10		38	ale		58
19	ad3		39	rfsh_n		59
20	a11		40	s2_n		60

Table 4. IA188EB 80-Pin PQFP Pin Listing

Name	Pin	Name
s1_n	61	ucs_n
s0_n	62	int0
den_n	63	int1
hlda	64	int2/inta0_n
hold	65	int3/inta1_n
test_n	66	int4
lock_n	67	pdtmr
nmi	68	resin_n
ready	69	resout
p1.7/gcs7_n	70	oscout
p1.6/gcs6_n	71	clkin
p1.5/gcs5_n	72	Vcc
Vss	73	Vss
Vcc	74	clkout
p1.4/gcs4_n	75	t0out
p1.3/gcs3_n	76	t0in
p1.2/gcs2_n	77	t1out
p1.1/gcs1_n	78	t1in
p1.0/gcs0_n	79	p2.7
lcs_n	80	p2.6

2.2 IA186EB Pin/Signal Descriptions

Descriptions of the pin and signal functions for the IA186EB microcontroller are provided in Table 7.

Several of the IA186EB pins have different functions depending on the operating mode of the device. Each of the different signals supported by a pin is listed and defined in Table 7— indexed alphabetically in the first column of the table. Additionally, the name of the pin associated with the signal as well as the pin numbers for the PLCC, LQFP, and PQFP packages are provided in the "Pin" column. Signals not used in a specific package type are designated "NA."

Table 7. IA186EB Pin/Signal Descriptions

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
a16 (output only)	a16	80	66	29	a ddress Bits [16–19]. Input/Output. These pins provide the four most-significant bits of the Address Bus. During the address portion of the
a17 (output only)	a17	81	67	30	presented on the bus and can be latched using the ale signal (see table entry). During the data portion of the IA186EB bus cycle, these lines
a18 (output only)	a18	82	68	31	are driven to a logic 0.
a19	a19/once_n	83	69	32	
ad0	ad0	61	47	10	address/data Bits [0-15]. Input/Output. These
ad1	ad1	66	52	15	pins provide the multiplexed Address Bus and
ad2	ad2	68	54	17	Data Bus. During the address portion of the
ad3	ad3	70	56	19	IA186EB bus cycle, Address Bits [0–15] are
ad4	ad4	72	58	21	presented on the bus and can be latched using
ad5	ad5	74	60	23	the ale signal (see next table entry). During the
ad6	ad6	76	62	25	16 bit data are present on these lines
ad7	ad7	78	64	27	To-bit data are present on these lines.
ad8	ad8	62	48	11	
ad9	ad9	67	53	16	
ad10	ad10	69	55	18	
ad11	ad11	71	57	20	
ad12	ad12	73	59	22	
ad13	ad13	75	61	24	
ad14	ad14	77	63	26]
ad15	ad15	79	65	28	

Table 7.	IA186EB	Pin/Signal	Descriptions	(Continued)
----------	---------	-------------------	--------------	-------------

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
clkin	clkin	41	28	71	 clock input. Input. The clkin pin is the input connection for an external clock. An external oscillator operating at two times the required processor operating frequency can be connected to this pin. If a crystal is used to supply the clock, it is connected between the clkin pin and the oscout pin (see oscout table entry). When a crystal is connected, it drives an internal Pierce oscillator to the IA186EB.
clkout	clkout	44	31	74	clock out put. Output. The clkout pin provides a timing reference for inputs and outputs of the IA186EB. This clock output is one-half the input clock (clkin) frequency. The clkout signal has a 50% duty cycle, transitioning every falling edge of clkin .
cts0_n	cts0_n	51	38	1	c lear t o s end, Serial Port 0 . Input. Active Low. When this input is high (i.e., not asserted), data transmission from Serial Port 0 is inhibited. When the signal is asserted (low), data transmission is permitted.
cts1_n	p2.4/ cts1_n	56	43	6	c lear to s end, Serial Port 1 . Input. Active Low. When this input is high (i.e., not asserted), data transmission from Serial Port 1 is inhibited. When the signal is asserted (low), data transmission is permitted.
den_n	den_n	11	80	43	data enable. Output. Active Low. This signal is used to enable of bidirectional transceivers in a buffered system. The den_n signal is asserted (low) only when data is to be transferred on the bus.
dt/r_n	dt/r_n	16	NA	NA	data transmit/receive. Output. This signal is used to control the direction of data flow for bidirectional buffers in a buffered system. When dt/r_n is high, the direction indicated is transmit; when dt/t_n is low, the direction indicated is receive.
error_n	error_n	3	NA	NA	error . Input. Active Low. When this signal is asserted (low), it indicates that the last numerics coprocessor operation resulted in an exception condition.

		Pin				
Signal	Name	PLCC	LQFP	PQFP	Description	
gcs0_n	p1.0/ gcs0_n	28	16	59	g eneric c hip s elect n (n = $0-7$). Output. Active	
gcs1_n	p1.1/ gcs1_n	27	15	58	Low. When programmed and enabled, each of	
gcs2_n	p1.2/ gcs2_n	26	14	57	these pins provide a chip select signal that will	
gcs3_n	p1.3/ gcs3_n	25	13	56	be asserted (low) whenever the address of a	
gcs4_n	p1.4/ gcs4_n	24	12	55	space programmed for that output	
gcs5_n	p1.5/ gcs5_n	21	9	52		
gcs6_n	p1.6/ gcs6_n	20	8	51		
gcs7_n	p1.7/ gcs7_n	19	7	50		
hlda	hlda	12	1	44	hold acknowledge. Output. Active High. When hlda is asserted (high), it indicates that the IA186EB has relinquished control of the local bus to another bus master in response to a HOLD request (see next table entry). When hlda is asserted, the IA186EB data bus and control signals float, allowing another bus master to drive the signals directly.	
hold	hold	13	2	45	hold . Input. Active High. This signal is a request indicating that an external bus master wishes to gain control of the local bus. The IA186EB will relinquish control of the local bus between instruction boundaries not conditioned by a LOCK prefix.	
int0 (input)	int0 (input only)	31	19	62	interrupt n (n = 0-4). Input/Output. Active High. These maskable inputs interrupt program	
int1 (input)	int1 (input only)	32	20	63	flow and cause execution to continue at an interrupt vector of a specific interrupt type as follows:	
int2	int2/inta0_n	33	21	64	int0: Type 12 int1: Type 13 int2: Type 14	
int3	int3/inta1_n	34	22	65	int2: Type 14 int3: Type 15 int4: Type 17	
int4 (input)	int4 (input only)	35	23	66	To allow interrupt expansion, int0 and int1 can be used with the interrupt acknowledge signals inta0_n and inta1_n (see next table entries) to serve as external interrupt inputs or interrupt acknowledge outputs.	
inta0_n	int2/ inta0_n	33	21	64	int errupt a cknowledge 0 . Input/Output. Active Low. This pin provides an interrupt acknowledge handshake in response to an interrupt request on the int0 pin (see previous table entry).	

Table 7. IA186EB Pin/Signal Descriptions (Continued)

Table 7.	IA186EB	Pin/Signal	Descriptions	(Continued	()
	INICOLD	i ili/olgilai	Descriptions	Continuou	/

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
pdtmr	pdtmr	36	24	67	p ower- d own timer . Input/Output (push-pull). Note: The IA186EB enters Powerdown Mode when the PWRDN bit in the Power Control Register is set to 1 and a HALT instruction is executed. Exit from the Powerdown Mode occurs upon receipt of a non-maskable interrupt (i.e., assertion of the nmi input) or a reset (i.e., assertion of the resin_n input).
					The pdtmr pin, which is normally connected to an external capacitor, determines the amount of time that the IA186EB waits before resuming normal operation after an exit from the Powerdown when a non-maskable interrupt is received—essentially a delay between the assertion of the nmi input and the enabling of the IA186EB internal clocks. The delay required depends on the start-up characteristics of the crystal oscillator. The pdtmr pin does not apply when the Powerdown Mode is exited by the receipt of a reset (i.e., the assertion resin n)
pereq	pereq	39	NA	NA	numerics coprocessor external request. Input. Active High. When asserted (high), this signal indicates that a data transfer between an Intel 80C187 Numerics Coprocessor.and memory is pending. <i>This applies to the PLCC only.</i>
rd_n	rd_n	4	73	36	read. Output. Active Low. When asserted (low), rd_n indicates that the accessed memory or I/O device must drive data from the location being accessed onto the data bus.
ready	ready	18	6	49	ready . Input. Active High. When asserted (high) the ready line indicates a bus-cycle completion. This signal must be active to terminate any bus cycle unless the IA186EB Chip-Select Unit is configured to ignore ready.
resin_n	resin_n	37	25	68	reset in put. Input. Active Low. When resin_n is asserted (low), the IA186EB immediately terminates any bus cycle in progress and assumes an initialized state. All pins are driven to a known state, and resout (see next table entry) is asserted.

2.3 IA188EB Pin/Signal Descriptions

Descriptions of the pin and signal functions for the IA188EB microcontroller are provided in Table 8.

Several of the IA188EB pins have different functions depending on the operating mode of the device. Each of the different signals supported by a pin is listed and defined in Table 8— indexed alphabetically in the first column of the table. Additionally, the name of the pin associated with the signal as well as the pin numbers for the PLCC, LQFP, and LQFP packages are provided in the "Pin" column.

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
a8	a8	62	48	11	address Bits [8-19]. Output. These pins
a9	a9	67	53	16	provide the 12 most-significant bits of the
a10	a10	69	55	18	Address Bus. During the entire IA188EB bus
a11	a11	71	57	20	cycle, Address Bits [8–19] are presented on the
a12	a12	73	59	22	(see table entry)
a13	a13	75	61	24	
a14	a14	77	63	26	
a15	a15	79	65	28	
a16	a16	80	66	29	
a17	a17	81	67	30	
a18	a18	82	68	31	
a19	a19/once_n	83	69	32	
ad0	ad0	61	47	10	address/data Bits [0-7]. Input/Output. These
ad1	ad1	66	52	15	pins provide a multiplexed Address Bus and
ad2	ad2	68	54	17	Data Bus. During the address portion of the
ad3	ad3	70	56	19	IA 188EB DUS CYCIE, Address Bits [0–7] are
ad4	ad4	72	58	21	the ale signal (see next table entry). During the
ad5	ad5	74	60	23	data portion of the IA188EB bus cycle, 8-bit
ad6	ad6	76	62	25	data are present on these lines.
ad7	ad7	78	64	27	
ale	ale	6	75	38	a ddress latch e nable. Output. Active High. This signal is used to latch the address information during the address portion of a bus cycle.
bclk0	p2.5/ bclk0	54	41	4	b aud clock , Serial Port 0 . Input. The bclk0 pin can be used to provide an alternate clock source for Serial Port 0. The input clock rate cannot be greater than one-half the operating frequency of the IA188EB.

Table 8. IA188EB Pin/Signal Descriptions

		Pin			
Signal	Name	PLCC	LQFP	PQFP	Description
rxd0	rxd0	53	40	3	Receive (rx) d ata, Serial Port 0 . Input/Output. This pin is the serial data input for Serial Port 0. During synchronous serial communications, rxd0 is bidirectional and functions an output for data transmission (txd0 becomes the clock).
rxd1	p2.0/ rxd1	57	44	7	Receive (rx) d ata, Serial Port 1 . Input/Output. This pin is the serial data input for Serial Port 1 . During synchronous serial communications, rxd1 is bidirectional and functions an output for data transmission (txd1 becomes the clock).
s0_n	s0_n	10	79	42	status N (N = 0–2). Output. During a bus cycle the status (i.e., type) of cycle is encoded on these lines as follows:
s1_n	s1_n	9	78	41	 s2_n s1_n s0_n Bus Cycle Status 0 0 0 Interrupt Acknowledge 0 0 1 Read I/O 0 1 0 Write I/O
s2_n	s2_n	8	77	40	011Processor HALT100Queue Instruction Fetch101Read Memory110Write Memory111No Bus Activity
sint1	p2.3/ sint1	55	42	5	s erial int errupt, Serial Port 1 . Output. Active High. When sint1 is asserted (high), it indicates that Serial Port 1 requires service.
t0in	t0in	46	33	76	timer 0 input. Input. Depending on the Timer Mode programmed for Timer 0, this input is used either as clock input or a control signal.
t0out	t0out	45	32	75	timer 0 out put. Output. Depending on the Timer Mode programmed for Timer 0, this output can provide a single clock or a continuous waveform.
t1in	t1in	48	35	78	timer 1 input. Input. Depending on the Timer Mode programmed for Timer 1, this input is used either as clock input or a control signal.
t1out	t1out	47	34	77	timer 1 out put. Output. Depending on the Timer Mode programmed for Timer 1, this output can provide a single clock or a continuous waveform.

Table 8. IA188EB Pin/Signal Descriptions (Continued)

3. Maximum Ratings, Thermal Characteristics, and DC Parameters

For the Innovasic Semiconductor IA186EB and IA188EB microcontrollers, the absolute maximum ratings, thermal characteristics, and DC parameters are provided in Tables 9 through 11, respectively.

Table 9. IA186EB and IA188EB Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−40°C to +125°C
Supply Voltage with Respect to v _{ss}	-0.3V to +6.0V
Voltage on Pins other than Supply with Respect to v _{ss}	-0.3V to +(Vcc + 0.3)V

Table 10. IA186EB and IA188EB Thermal Characteristics

Symbol	Characteristic	Value	Units
T _A	Ambient Temperature	-40°C to 85°C	°C
PD	Power Dissipation	$MHz \times ICC \times V/1000$	W
Θ_{Ja}	84-Pin PLCC Package	30.7	°C/W
	80-Pin PQFP Package	46	
	80-Pin LQFP Package	52	
TJ	Average Junction Temperature	$T_A + (P_D \times \Theta_{Ja})$	°C

4. Functional Description

4.1 Device Architecture

Architecturally, the IA186EB and IA188EB microcontrollers include the following functional modules:

- Bus Interface Unit
- Clock Generator
- Interrupt Control Unit
- Timer/Counter Unit
- Serial Communications Unit
- Chip-Select Unit
- I/O Port Unit
- Refresh Control Unit
- Power Management Unit

A functional block diagram of the IA186EB/IA188EB is shown in Figure 10. Descriptions of the functional modules are provided in the following subsections.

4.1.1 Bus Interface Unit

The IA186EB/IA188EB bus controller that generates local bus control signals and uses a hold/hlda protocol to share the local bus with other bus masters. The bus controller generates 20 address bits, read and write control signals, and bus-cycle status information. A ready input is used to extend a bus cycle beyond the minimum four clock cycles.

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 44 of 85

4.1.2 Clock Generator

The IA186EB/IA188EB uses an on-chip clock generator to supply internal and external clocks. The clock generator makes use of a crystal oscillator and includes a divide-by-two counter.

Figure 11 shows the various operating modes of the clock circuit. The clock circuit can use either a parallel resonant fundamental mode crystal network (A) or a third-overtone mode crystal network (B), or it can be driven by an external clock source (C).

The following parameters are recommended when choosing a crystal:

- Temperature Range
 - Application Specific
 - ESR (Equivalent Series Resistance): 40Ω max
 - C0 (Shunt Capacitance of Crystal): 7.0 pF max
 - CL (Load Capacitance): $20 \text{ pF} \pm 2 \text{ pF}$
 - Drive Level: 1 mW max

(C) External Clock Connection

Figure 11. Clock Circuit Connection Options

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 46 of 85

• Power Management Unit

The registers associated with each integrated peripheral are contained within a 128×16 register file called the Peripheral Control Block (PCB). The PCB can be located in either memory or I/O space on any 256-byte address boundary.

Table 12 provides a list of the registers associated with the PCB.

Table 12.	Peripheral	Control	Block I	Registers
-----------	------------	---------	---------	-----------

PCB		PCB]	PCB		1	PCB	
Offset	Function	Offset	Function		Offset	Function		Offset	Function
00H	Reserved	40H	Timer2 Count		80H	GCS0 Start		COH	Reserved
02H	End Of Interrupt	42H	Timer2 Compare		82H	GCS0 Stop		C2H	Reserved
04H	Poll	44H	Reserved		84H	GCS1 Start		C4H	Reserved
06H	Poll Status	46H	Timer2 Control		86H	GCS1 Stop		C6H	Reserved
08H	Interrupt Mask	48H	Reserved		88H	GCS2 Start		C8H	Reserved
0AH	Priority Mask	4AH	Reserved		8AH	GCS2 Stop		CAH	Reserved
0CH	In-Service	4CH	Reserved		8CH	GCS3 Start		CCH	Reserved
0EH	Interrupt Request	4EH	Reserved		8EH	GCS3 Stop		CEH	Reserved
10H	Interrupt Status	50H	Port 1 Direction		90H	GCS4 Start		D0H	Reserved
12H	Timer Control	52H	Port 1 Pin		92H	GCS4 Stop		D2H	Reserved
14H	Serial Control	54H	Port 1 Control		94H	GCS5 Start		D4H	Reserved
16H	INT4 Control	56H	Port 1 Latch		96H	GCS5 Stop		D6H	Reserved
18H	INT0 Control	58H	Port 2 Direction		98H	GCS6 Start		D8H	Reserved
1AH	INT1 Control	5AH	Port 2 Pin		9AH	GCS6 Stop		DAH	Reserved
1CH	INT2 Control	5CH	Port 2 Control		9CH	GCS7 Start		DCH	Reserved
1EH	INT3 Control	5EH	Port 2 Latch		9EH	GCS7 Stop		DEH	Reserved

PCB		PCB] [PCB		PCB	
Offset	Function	Offset	Function		Offset	Function	Offset	Function
20H	Reserved	60H	Serial0 Baud		A0H	LCS Start	E0H	Reserved
22H	Reserved	62H	Serial0 Count		A2H	LCS Stop	E2H	Reserved
PCB Offset	Offset	PCB Offset	Function		PCB Offset	Function	PCB Offset	Function
24H	Reserved	64H	Serial0 Control		A4H	UCS Start	E4H	Reserved
26H	Reserved	66H	Serial0 Status		A6H	UCS Stop	E6H	Reserved
28H	Reserved	68H	Serial0 RBUF		A8H	Relocation	E8H	Reserved
2AH	Reserved	6AH	Serial0 TBUF		AAH	Reserved	EAH	Reserved
2CH	Reserved	6CH	Reserved	1	ACH	Reserved	ECH	Reserved
2EH	Reserved	6EH	Reserved		AEH	Reserved	EEH	Reserved
30H	Timer0 Count	70H	Serial1 Baud		B0H	Refresh Base	F0H	Reserved
32H	Timer0 Compare A	72H	Serial1 Count		B2H	Refresh Time	F2H	Reserved
34H	Timer0 Compare B	74H	Serial1 Control		B4H	Refresh Control	F4H	Reserved
36H	Timer0 Control	76H	Serial1 Status		B6H	Refresh Address	F6H	Reserved
38H	Timer1 Count	78H	Serial1 RBUF		B8H	Power Control	F8H	Reserved
3AH	Timer1 Compare A	7AH	Serial1 TBUF		BAH	Reserved	FAH	Reserved
3CH	Timer1 Compare B	7CH	Reserved		BCH	Step ID ¹	FCH	Reserved
3EH	Timer1 Control	7EH	Reserved		BEH	Reserved	FEH	Reserved

Table 12. Peripheral Control Block Registers (Continued)

Note:

¹The **Step ID** register (offset 0xBC) for Revision 2 of the Innovasic device is read-only, and is uniquely identified in software by having a value of 0x0080. The original Intel device established a value between 0x0000 and 0x0002, depending on the revision of the part.

6. Reset Operation

The IA186EB/IA188EB will perform a reset operation any time the resin_n pin is active. Figure 18 shows the reset sequence when power is applied to the IA186EB/IA188EB. An external clock connected to clkin must not exceed the V_{CC} threshold being applied to the processor. This is normally not a problem if the clock driver is supplied with the same V_{CC} that supplies the processor. When attaching a crystal to the device, resin_n must remain active until both V_{CC} and clkout are stable (the length of time is application-specific and depends on the startup characteristics of the crystal circuit). The resin_n pin is designed to operate correctly using an RC reset circuit, but the designer must ensure that the ramp time for V_{CC} is not so long that resin_n is never really sampled at a logic low level when V_{CC} reaches minimum operating conditions.

Note: Failure to assert resin_n while the device is powering up will result in unpredictable operation.

Figure 19, Warm Reset Timing, shows the timing sequence when resin_n is applied after V_{cc} is stable and the device has been operating. Any bus operation that is in progress at the time resin_n is asserted will terminate immediately.

While resin_n is active, bus signals lock_n, a19/once_n, and a18–a16 are configured as inputs and weakly held high by internal pull-up transistors. Only a19/ once_n can be overdriven to a low-to-enable ONCE Mode.

7. Bus Timing

Figures 18 through 26 on the following pages present the various bus cycles that are generated by the processor. The figures show the relationship of the various bus signals to clkout. Together with the information present in AC Characteristics, the figures allow the user to determine all the critical timing analysis needed for a given application.

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 59 of 85

Figure 20. Read, Fetch, and Refresh Cycle Timing

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 62 of 85

IA186EB/IA188EB 8-Bit/16-Bit Microcontrollers

Figure 21. Write Cycle Timing

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 63 of 85

IA186EB/IA188EB 8-Bit/16-Bit Microcontrollers

Figure 24. hold/hlda Timing

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 66 of 85

Table 21. Instruction Set Timing (Continued)

	Clock	Cycles	
Instruction	IA186EB	IA188EB	Comments
DIV Memory-Byte	46	46	_
DIV Memory-Word	49	51	_
DIV Register-Byte	39	39	_
DIV Register-Word	39	39	_
IDIV Memory-Byte	46	46	_
IDIV Memory-Word	49	51	_
IDIV Register-Byte	39	39	_
IDIV Register-Word	39	39	_
IMUL Immediate (signed)	5/24	5/33	register/memory
IMUL Memory-Byte	4	20	_
IMUL Memory-Word	13	28	_
IMUL Register-Byte	5	5	_
IMUL Register-Word	5	5	_
INC Register	1	1	_
INS	8	16	_
INS (repeated <i>n</i> times)	8+8 <i>n</i>	16+16 <i>n</i>	_
INT Type specified	33	41	_
INT Type 3	33	41	_
INTO	33	48	_
IRFT	30	30	_
	3/5	3/5	.lump.not.taken/.lump.taken
	3/5	3/5	
IB	3/5	3/5	-
JBE	3/5	3/5	-
	3/4	3/4	lump not taken/lump taken
	3/5	3/5	Jump not taken/Jump taken
	3/5	3/5	
IGE	3/5	3/5	-
	3/5	3/5	-
	3/5	3/5	-
IMP Direct intersegment	3/3	3/5	
IMP Direct within segment	3	3	
IMP Short/long	3	3	
	3/5	3/5	 lump not taken/lump taken
	3/5	3/5	
	3/5	3/5	-
	3/3	3/5	-
	3/5	3/3	-
	3/5	3/5	4
	3/5	3/5	4
	3/5	3/5	4
	3/5	3/5	4
JINLE	3/5	3/5	4
JNO	3/5	3/5	4
JNP	3/5	3/5	

IA211080314-13 UNCONTROLLED WHEN PRINTED OR COPIED Page 70 of 85

Errata No. 12

Problem:

Illegal serial port modes do not match OEM part.

Description: If the mode bits of the serial control register (S1CON, S0CON) are set to an illegal encoding (0x5, 0x6, or 0x7), the Innovasic part acts as though it were in mode 4. The OEM part acts as if it were in mode 1.

Workaround: Use a valid encoding for serial mode.

Errata No. 13

Problem:

Non-maskable interrupt (NMI) can be pre-empted by maskable interrupt.

Description: When instruction execution unit is in Decode state for 2 or more consecutive cycles and an NMI is recognized, it could be pre-empted by a maskable interrupt.

Workaround: None.

Errata No. 14

Problem:

Ready signal may not be recognized in bus cycles with zero wait states.

Description: When a chip select is set to use the ready signal to extend a bus cycle that normally has no wait states (Start register bits 3-0 == 0000), the ready signal may not be recognized in time to extend the bus cycle.

Workaround: Set wait states to 1 or more if using ready to extend bus cycles.

