

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c773-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Figure 2-3, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

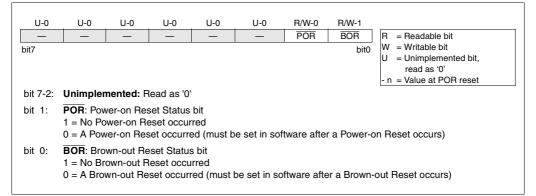
The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

Note 1: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 2-3: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)


R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x		
IRP	RP1	RP0	TO	PD	Z	DC	C	R = Readable bit W = Writable bit	
bit7							bit0	U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7:	IRP: Regis 1 = Bank 2 0 = Bank 0	2, 3 (100h	- 1FFh)	(used for ir	ndirect addr	essing)			
bit 6-5:	RP1:RP0: 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	3 (180h - 2 (100h - 1 (80h - F 0 (00h - 7	1FFh) 17Fh) FFh) 7Fh)	ct bits (use	ed for direct	addressin	g)		
bit 4:	$\overline{\mathbf{TO}}$: Time- 1 = After p 0 = A WD	ower-up,		struction,	or SLEEP in	struction			
bit 3:	PD : Power 1 = After p 0 = By exe	ower-up c							
bit 2:		sult of an			peration is z peration is r				
bit 1:	1: DC : Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result								
bit 0:	1 = A carry 0 = No car Note: For	y-out from rry-out from borrow the perand. Fo	the most n the mos polarity is	significant t significar s reversed		esult occuri result occu ion is exec	red irred uted by ado	ling the two's complement of the either the high or low order bit of	

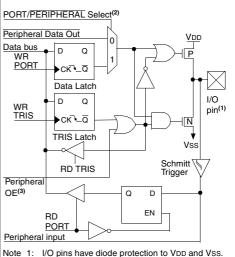
2.2.2.8 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external $\overline{\text{MCLR}}$ Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output, i.e., put the contents of the output latch on the selected pin.


PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

EXAMPLE 3-1: INITIALIZING PORTC

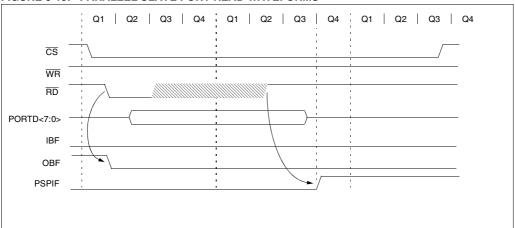
BCF CLRF	STATUS, PORTC	RPO	;;	Select Bank 0 Initialize PORTC by clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISC		;	Set RC<3:0> as inputs
			;	RC<5:4> as outputs
			;	RC<7:6> as inputs

FIGURE 3-9: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

- Port/Peripheral select signal selects between port data and peripheral output.
 - 3: Peripheral OE (output enable) is only activated if peripheral select is active.

PIC16C77X

TABLE 3-9 PORTE FUNCTIONS


Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in parallel slave port mode or analog input: RD 1 = Not a read operation 0 = Read operation. Reads PORTD register (if chip selected)
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in parallel slave port mode or analog input: WR 1 = Not a write operation 0 = Write operation. Writes PORTD register (if chip selected)
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in parallel slave port mode or analog input: CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
09h	PORTE	—		_	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE D	Data Direct	ion Bits	0000 -111	0000 -111
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

FIGURE 3-15: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 3-11 REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	R,	Value other	
08h	PORTD	Port dat	a latch w	hen writte	n: Port pins v	hen read			xxxx	xxxx	uuuu	uuuu	
09h	PORTE	_	_	_	_	—	RE2	RE1	RE0		-xxx		-uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE I	Data Direct	ion Bits	0000	-111	0000	-111
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000	0000	0000	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE(S)

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 7-1 shows the timer resources of the CCP module modes.

The operation of CCP1 is identical to that of CCP2, with the exception of the special trigger. Therefore, operation of a CCP module in the following sections is described with respect to CCP1.

Table 7-2 shows the interaction of the CCP modules.

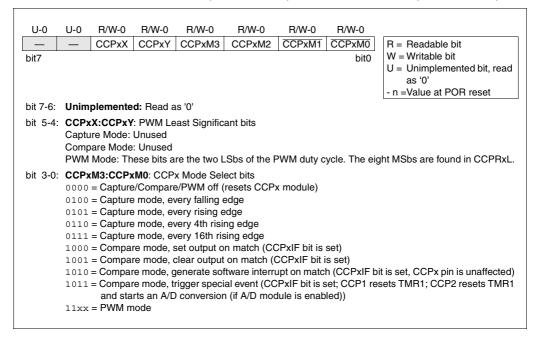
CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

Additional information on the CCP module is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

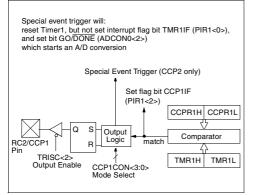

TABLE 7-1 CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

TABLE 7-2 INTERACTION OF TWO CCP MODULES

FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)


7.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 7-3: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP2 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP2 module will not set interrupt flag bit TMR1IF (PIR1<0>).

TABLE 7-3 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on:)R,)R	allo	e on other sets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC Da	ata Dire	ction Regis	ster					1111	1111	1111	1111
0Eh	TMR1L	Holding reg	gister fo	or the Least	Significant	Byte of the	16-bit TMF	1 register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the 1	6-bit TMR	1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Capture/Compare/PWM register1 (LSB)								xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM register1 (MSB)								xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin, always maintain these bits clear.

8.2.6 MULTI-MASTER OPERATION

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle with both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored, for abitration, to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

8.2.7 I²C MASTER OPERATION SUPPORT

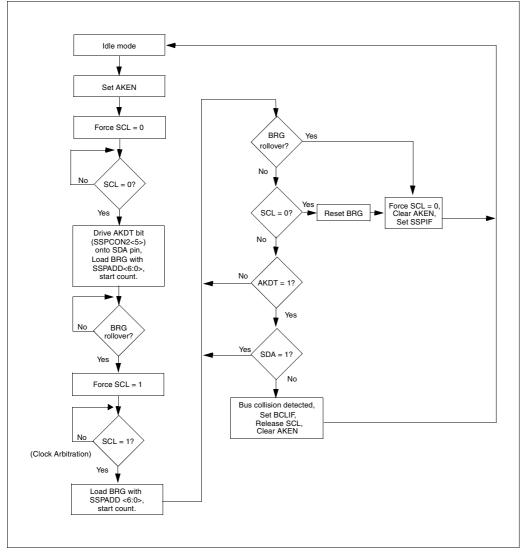
Master Mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. Once master mode is enabled, the user has six options.

- Assert a start condition on SDA and SCL.
- Assert a Repeated Start condition on SDA and SCL.
- Write to the SSPBUF register initiating transmission of data/address.
- Generate a stop condition on SDA and SCL.
- Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.
- Note: The MSSP Module, when configured in I²C Master Mode, does not allow queueing of events. For instance: The user is not allowed to initiate a start condition, and immediately write the SSPBUF register to initiate transmission before the START condition is complete. In this case the SSPBUF will not be written to, and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

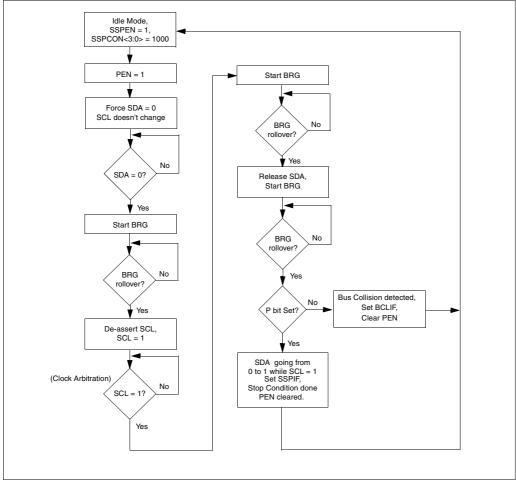
8.2.7.4 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the l^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/\overline{W}) bit. In this case, the R/\overline{W} bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.


In Master receive mode the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/ \overline{W} bit. In this case the R/ \overline{W} bit will be logic '1'. Thus the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz, or 1 MHz I^2C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSP-BUF. Once the given operation is complete (i.e. transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state


A typical transmit sequence would go as follows:

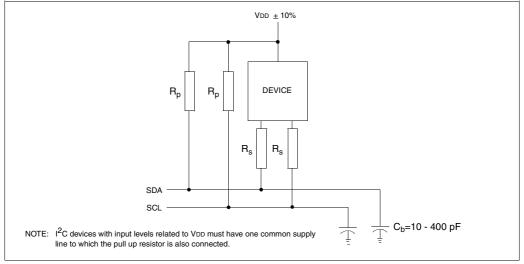
- a) The user generates a Start Condition by setting the START enable bit (SEN) in SSPCON2.
- SSPIF is set. The module will wait the required start time before any other operation takes place.
- c) The user loads the SSPBUF with address to transmit.
- d) Address is shifted out the SDA pin until all 8 bits are transmitted.
- e) The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) The user loads the SSPBUF with eight bits of data.
- h) DATA is shifted out the SDA pin until all 8 bits are transmitted.

FIGURE 8-30: ACKNOWLEDGE FLOWCHART

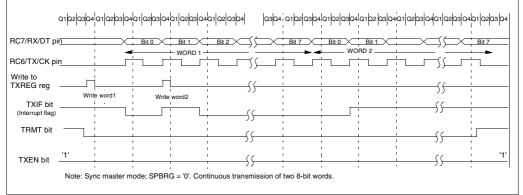
8.3 <u>Connection Considerations for I²C</u> Bus

For standard-mode I^2C bus devices, the values of resistors $\mathbf{R_p} \mathbf{R_s}$ in Figure 8-42 depends on the following parameters

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current).


The supply voltage limits the minimum value of resistor R_p due to the specified minimum sink current of 3 mA at VoL max = 0.4V for the specified output stages. For

example, with a supply voltage of VDD = $5V\pm10\%$ and VoL max = 0.4V at 3 mA, R_{p min} = (5.5-0.4)/0.003 = 1.7 k\Omega. VDD as a function of **R**_p is shown in Figure 8-42. The desired noise margin of 0.1VDD for the low level limits the maximum value of **R**_s. Series resistors are optional and used to improve ESD susceptibility.


The bus capacitance is the total capacitance of wire, connections, and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 8-42).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register, and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

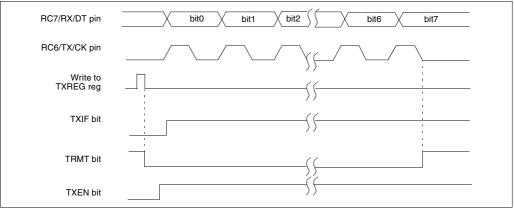
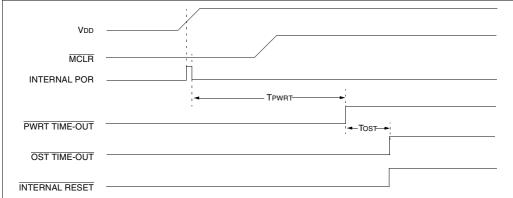

FIGURE 8-42: SAMPLE DEVICE CONFIGURATION FOR I²C BUS

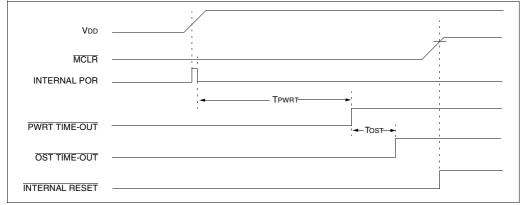
FIGURE 9-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 12-6 INITIALIZATION CONDITIONS FOR ALL REGISTERS										
Register	Dev	ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt					
W	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu					
INDF	773	774	N/A	N/A	N/A					
TMR0	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu					
PCL	773	774	0000h	0000h	PC + 1 (2)					
STATUS	773	774	0001 1xxx	000q quuu (3)	uuuq quuu (3)					
FSR	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu					
PORTA	773	774	0x 0000	0u 0000	uu uuuu					
PORTB	773	774	xxxx 11xx	uuuu 11uu	uuuu uuuu					
PORTC	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu					
PORTD	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu					
PORTE	773	774	000	000	uuu					
PCLATH	773	774	0 0000	0 0000	u uuuu					
INTCON	773	774	0000 000x	0000 000u	uuuu uuuu (1)					
PIR1	773	774	r000 0000	r000 0000	ruuu uuuu (1)					
	773	774	0000 0000	0000 0000	uuuu uuuu (1)					
PIR2	773	774	00	00	u uu (1)					
TMR1L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu					
TMR1H	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu					
T1CON	773	774	00 0000	uu uuuu	uu uuuu					
TMR2	773	774	0000 0000	0000 0000	uuuu uuuu					
T2CON	773	774	-000 0000	-000 0000	-uuu uuuu					
SSPBUF	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu					
SSPCON	773	774	0000 0000	0000 0000	uuuu uuuu					
CCPR1L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu					
CCPR1H	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu					
CCP1CON	773	774	00 0000	00 0000	uu uuuu					
RCSTA	773	774	0000 000x	0000 000x	uuuu uuuu					
TXREG	773	774	0000 0000	0000 0000	uuuu uuuu					
RCREG	773	774	0000 0000	0000 0000	uuuu uuuu					
CCPR2L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu					
CCPR2H	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu					
CCP2CON	773	774	00 0000	00 0000	uu uuuu					
ADRESH	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu					
ADCON0	773	774	0000 0000	0000 0000	uuuu uuuu					
OPTION_REG	773	774	1111 1111	1111 1111	uuuu uuuu					

TABLE 12-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for reset value for specific condition.

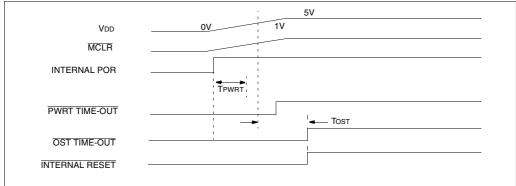


FIGURE 12-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-10: SLOW RISE TIME (MCLR TIED TO VDD)

14.0 DEVELOPMENT SUPPORT

14.1 Development Tools

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- MPLAB[™] -ICE Real-Time In-Circuit Emulator
- ICEPIC[™] Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- SIMICE
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB[™] SIM Software Simulator
- MPLAB-C17 (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH[®]–MP)
- KEELOQ[®] Evaluation Kits and Programmer

14.2 <u>MPLAB-ICE: High Performance</u> Universal In-Circuit Emulator with MPLAB IDE

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). MPLAB-ICE is supplied with the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support all new Microchip microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x or Windows 95 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE is available in two versions. MPLAB-ICE 1000 is a basic, low-cost emulator system with simple trace capabilities. It shares processor modules with the MPLAB-ICE 2000. This is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems will operate across the entire operating speed reange of the PICmicro MCU.

14.3 ICEPIC: Low-Cost PICmicro In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC12CXXX, PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 386 through Pentium™ based machines under Windows 3.x, Windows 95, or Windows NT environment. ICEPIC features real time, non-intrusive emulation.

14.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.

14.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923, PIC16C924 and PIC17C756 may be supported with an adapter socket. PICSTART Plus is CE compliant.

15.4 DC Characteristics: VREF

TABLE 15-2 ELECTRICAL CHARACTERISTICS: VREF

DC CHAR	perating Co mperature	-40°C 0°C	: TA ≥ C ≤ TA ≥	≤ +85°C ≤ +70°C	for industr for comme	ial and		
Param No.	Characte		Symbol	Min	Typ†	Max	Units	Conditions
D400	Output Voltage		VRL	2.0	2.048	2.1	V	VDD ≥ 2.5V
			VRH	4.0	4.096	4.2	V	VDØ ≥ 4.5V
D401A	VRL Quiescent S	upply Current	$\Delta IVRL$	—	70	TBD	μΑ	No load on VRL.
D401B	VRH Quiescent S	Supply Current	$\Delta IVRH$	_	70	TBD	µtA	No load on VRH.
D402	Ouput Voltage Dr	ift	TCVOUT	—	15*	50*	ppm/°C/	Note 1
D404	External Load So	urce	IVREFSO	—	—	,5*	(mA	
D405	External Load Sir	ık	IVREFSI	—	—	<- 5 * \	∖mA	
D406	Load Regulation			_	\checkmark	†βD/₹ (Isource = 0 mA to
			$\Delta VOUT/$		$\langle \rangle$		mV/mA	5 mA
			ΔΙΟυτ	~	71/	TBD		Isink = 0 mA to 5 mA
D407	Line Regulation			B		50*	μV/V	5 111A

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Production tested at TAMB $= 25^{\circ}$ C. Specifications over temp limits guaranteed by characterization.

PIC16C77X

NOTES:

PIC16C77X

INDEX

A

A/D
A/D Converter Enable (ADIE Bit)
A/D Converter Flag (ADIF Bit)
ADCON0 Register
ADCON1 Register 117, 118
ADRES Register
Analog Port Pins
Block Diagram
Configuring Analog Port119
Conversion time
Conversions121
converter characteristics 156, 157, 158, 165
Faster Conversion - Lower Resolution Tradeoff 125
Internal Sampling Switch (Rss) Impedence
Operation During Sleep126
Sampling Requirements 123
Sampling Time
Source Impedance
Special Event Trigger (CCP) 49
A/D Conversion Clock
ACK
Acknowledge Data bit, AKD56
Acknowledge Pulse64
Acknowledge Sequence Enable bit, AKE56
Acknowledge Status bit, AKS56
ADCON0 Register
ADCON1 Register 117, 118
ADRES 117
ADRES Register
AKD
AKE
AKS
Application Note AN578, "Use of the SSP
Module in the I2C Multi-Master Environment."
Architecture
PIC16C63A/PIC16C73B Block Diagram5
PIC16C65B/PIC16C74B Block Diagram6
Assembler
MPASM Assembler147
В
-
Banking, Data Memory 11, 16

Banking, Data Memory11,	16
Baud Rate Generator	73
BF54, 64, 79,	82
Block Diagrams	
Baud Rate Generator	73
I ² C Master Mode	71
I ² C Module	
SSP (I ² C Mode)	63
SSP (SPI Mode)	57
BOR. See Brown-out Reset	
BRG	73
Brown-out Reset (BOR) 127, 131, 132, 133, 1	34
BOR Status (BOR Bit)	23
Buffer Full bit, BF	64
Buffer Full Status bit, BF	54
Bus Arbitration	90
Bus Collision	
Section	90
Bus Collision During a RESTART Condition	93
Bus Collision During a Start Condition	91
Bus Collision During a Stop Condition	94

С

C				
Capture (CCP Module) 48				
Block Diagram				
CCP Pin Configuration				
CCPR1H:CCPR1L Registers				
Changing Between Capture Prescalers				
Software Interrupt				
Timer1 Mode Selection				
Capture/Compare/PWM (CCP) 47				
CCP1				
CCP1CON Register 47				
CCPR1H Register				
CCPR1L Register 47				
Enable (CCP1IE Bit) 19				
Flag (CCP1IF Bit)				
RC2/CCP1 Pin				
CCP2				
CCP2CON Register				
CCPR2H Register				
CCPR2L Register				
Enable (CCP2IE Bit)				
Flag (CCP2IF Bit)				
RC1/T10SI/CCP2 Pin				
Interaction of Two CCP Modules				
Timer Resources				
CCP1CON				
CCP1CON Register				
CCP1M3:CCP1M0 Bits				
CCP1X:CCP1Y Bits				
CCP2CON				
CCP2CON Register				
CCP200N Register				
CCP2XIS.CCP2XID Bits				
CCPR1H Register				
CCPR1L Register				
CCPR2H Register				
CCPR2L Register				
CKE				
CKP				
Clock Polarity Select bit, CKP 55				
Code Examples				
Loading the SSPBUF register				
Code Protection				
Compare (CCP Module)				
Block Diagram				
CCP Pin Configuration				
CCPR1H:CCPR1L Registers				
Software Interrupt				
Special Event Trigger 43, 49				
Timer1 Mode Selection 49				
Configuration Bits 127				
Conversion Considerations 187				
n				

D

D/Ā	54
Data Memory	11
Bank Select (RP1:RP0 Bits)	11, 16
General Purpose Registers	11
Register File Map	12
Special Function Registers	13
Data/Address bit, D/A	
DC Characteristics	
PIC16C73	152
PIC16C74	152
Development Support	145
Development Tools	145
Device Differences	
Direct Addressing	25

BIT/REGISTER CROSS-REFERENCE LIST

10001 10000	
ADCS1:ADCS0	
ADIE	
ADIF	
ADON	
BF	
BOR	
BRGH	
С	
CCP1IE	
CCP1IF	
CCP1M3:CCP1M0	
CCP1X:CCP1Y	
CCP2IE	
CCP2IF	
CCP2M3:CCP2M0	
CCP2X:CCP2Y	
CHS2:CHS0	
CKE	SSPSTAT<6>
СКР	SSPCON<4>
CREN	RCSTA<4>
CSRC	TXSTA<7>
D/A	SSPSTAT<5>
DC	STATUS<1>
FERR	RCSTA<2>
GIE	INTCON<7>
GO/DONE	
IBF	
IBOV	
INTE	
INTEDG	
INTF	
IRP	
OBF	
OERB	
P	
PCFG2:PCFG0	
PD	
PEIE	
POR	
PS2:PS0	_
PSA	
PSPIE	
PSPIF	
PSPMODE	
R/W	
RBIE	
RBIF	
RBPU	_
RCIE	
RCIF	
RP1:RP0	
RX9	
RX9D	
S	
SMP	
SPEN	
SREN	
SSPEN	
SSPIE	
SSPIF	
SSPM3:SSPM0	SSPCON<3:0>
SSPOV	
SYNC	TXSTA<4>

T0CS	
TOIE	INTCON<5>
TOIF	INTCON<2>
T0SE	OPTION_REG<4>
T1CKPS1:T1CKPS0	T1CON<5:4>
T1OSCEN	T1CON<3>
T1SYNC	T1CON<2>
T2CKPS1:T2CKPS0	T2CON<1:0>
TMR1CS	T1CON<1>
TMR1IE	PIE1<0>
TMR1IF	PIR1<0>
TMR1ON	T1CON<0>
TMR2IE	PIE1<1>
TMR2IF	PIR1<1>
TMR2ON	T2CON<2>
TO	STATUS<4>
TOUTPS3:TOUTPS0	T2CON<6:3>
TRMT	TXSTA<1>
ТХ9	TXSTA<6>
TX9D	TXSTA<0>
TXEN	TXSTA<5>
TXIE	PIE1<4>
TXIF	PIR1<4>
UA	SSPSTAT<1>
WCOL	SSPCON<7>
Z	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	2: Technical Publications Manager	Total Pages Sent
RE:	E: Reader Response	
From	om: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
• •	oplication (optional):	
Wou	ould you like a reply?YN	
Dev	evice: PIC16C77X Literature Number: DS30	275B
Que	uestions:	
4	What are the best features of this document?	
1.	what are the best leatures of this document?	
2.	How does this document meet your hardware and software	development needs?
3.	Do you find the organization of this data sheet easy to follow	v? If not, why?
4.	What additions to the data sheet do you think would enhance	ce the structure and subject?
		<i></i>
5.	What deletions from the data sheet could be made without a	affecting the overall usefulness?
6	Is there any incorrect or misleading information (what and w	(here)?
0.		
7.	How would you improve this document?	
8.	How would you improve our software, systems, and silicon	products?