

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c773-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	Ι	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	2	18	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	4	20	I/O	TTL	RA1 can also be analog input1
RA2/AN2/VREF-/VRL	4	5	21	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage input or internal voltage reference low
RA3/AN3/VREF+/VRH	5	6	22	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage input or internal voltage reference high
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/AN4	7	8	24	I/O	TTL	RA5 can also be analog input4
						PORTB is a bi-directional I/O port. PORTB can be soft- ware programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1/SS	34	37	9	I/O	TTL/ST ⁽¹⁾	RB1 can also be the SSP slave select
RB2/AN8	35	38	10	I/O	TTL	RB2 can also be analog input8
RB3/AN9/LVDIN	36	39	11	I/O	TTL	RB3 can also be analog input9 or input reference for low voltage detect
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.

TABLE 1-2 PIC16C774 PINOUT DESCRIPTION

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

FIGURE 2-2: REGISTER FILE MAP

			1		100	
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG
PCL	02h	PCL	82h	PCL	102h	PCL
STATUS	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
PORTC	07h	TRISC	87h		107h	
PORTD (1)	08h	TRISD (1)	88h		108h	
PORTE (1)	09h	TRISE ⁽¹⁾	89h		109h	
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	0Ch	PIE1	8Ch		10Ch	
PIR2	0Dh	PIE2	8Dh		10Dh	
TMR1L	0Eh	PCON	8Eh		10Eh	
TMR1H	0Fh		8Fh		10Fh	
T1CON	10h		90h		110h	
TMR2	11h	SSPCON2	91h		111h	
T2CON	12h	PR2	92h		112h	
SSPBUF	13h	SSPADD	93h		113h	
SSPCON	14h	SSPSTAT	94h		114h	
CCPR1L	15h		95h		115h	
CCPR1H	16h		96h		116h	
CCP1CON	17h		97h		117h	
RCSTA	18h	TXSTA	98h		118h	
TXREG	19h	SPBRG	99h		119h	
RCREG	1Ah		9Ah		11Ah	
CCPR2L	1Bh	REFCON	9Bh		11Bh	
CCPR2H	1Ch	LVDCON	9Ch		11Ch	
CCP2CON	1Dh		9Dh		11Dh	
ADRESH	1Eh	ADRESL	9Eh		11Eh	
ADCON0	1Fh	ADCON1	9Fh		11Fh	
	20h		A0h		120h	
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		
96 Bytes		accesses 70h-7Fh	EFh F0h	accesses 70h - 7Fh	6Fh 70h	accesses 70h - 7Fh
	7Fh	7011-7FN	FFh	7011 - 7F11	17Fh	7011 - 7F11
Bank 0		Bank 1		Bank 2		Bank 3
plemented on PI	C16C773	8.				

PIC16C77X

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 1				1	1		1		1	1	
80h ⁽⁴⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	emory (not a	ı physical reç	gister)	0000 0000	0000 0000
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽⁴⁾	PCL	Program Co	unter's (PC)	Least Signifi	cant Byte	ł				0000 0000	0000 0000
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽⁴⁾	FSR	Indirect data	a memory ad	Idress pointer						xxxx xxxx	uuuu uuuu
85h	TRISA	_	— bit5 ⁽⁵⁾ PORTA Data Direction Register								11 1111
86h	TRISB	PORTB Dat	a Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Dat	a Direction F	Register						1111 1111	1111 1111
88h ⁽⁵⁾	TRISD	PORTD Dat	a Direction F	Register						1111 1111	1111 1111
89h (5)	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Dat	a Direction E	Bits	0000 -111	0000 -111
8Ah ^(1,4)	PCLATH	_	-	—	Write Buffer fo	or the upper	5 bits of the F	Program Cou	inter	0 0000	0 0000
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	LVDIE	-	_	_	BCLIE	_	-	CCP2IE	0 00	0 00
8Eh	PCON	-	-	—	—	—	—	POR	BOR	qq	uu
8Fh	—	Unimplemer	nted							—	—
90h	—	Unimplemen	nted							—	-
91h	SSPCON2	GCEN	AKSTAT	AKDT	AKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	s Serial Port	t (I ² C mode) A	Address Regist	er				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	—	Unimplemer	nted							_	_
96h	_	Unimpleme	nted							_	_
97h	—	Unimplemer	nted							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate (Generator Re	egister						0000 0000	0000 0000
9Ah	—	Unimplemer	nted							_	_
9Bh	REFCON	VRHEN	VRLEN	VRHOEN	VRLOEN	—	—	_	—	0000	0000
9Ch	LVDCON	—	_	BGST	LVDEN	LV3	LV2	LV1	LV0	00 0101	00 0101
9Ah	—	Unimplemer	nimplemented								_
9Eh	ADRESL	A/D Low By	Low Byte Result Register								uuuu uuuu
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	0000 0000

TABLE 2-1 PIC16C77X SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Legend:

Shaded locations are unimplemented, read as '0'. Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset. 2:

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

4: These registers can be addressed from any bank.

5: These registers/bits are not implemented on the 28-pin devices read as '0'.

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- · Reset from CCP module trigger

Timer1 has a control register, shown in Figure 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-3 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PICmicro™ Mid-Range Reference Manual, (DS33023).

5.1 **Timer1 Operation**

Timer1 can operate in one of these modes:

- · As a timer
- · As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit. TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 7.0).

T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h) U-0 U-0 R/W-0 R/W-0 B/W-0 R/W-0 **B/W-0** R/W-0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON R = Readable bit W = Writable bit bit7 bit0 = Unimplemented bit, U read as '0' n = Value at POR reset bit 7-6: Unimplemented: Read as '0' bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value T1OSCEN: Timer1 Oscillator Enable Control bit hit 3 1 = Oscillator is enabled 0 = Oscillator is shut off Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain T1SYNC: Timer1 External Clock Input Synchronization Control bit bit 2: TMR1CS = 11 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0. TMR1CS: Timer1 Clock Source Select bit bit 1: 1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4)

FIGURE 5-1:

- 1 = Enables Timer1
- 0 = Stops Timer1

PIC16C77X

NOTES:

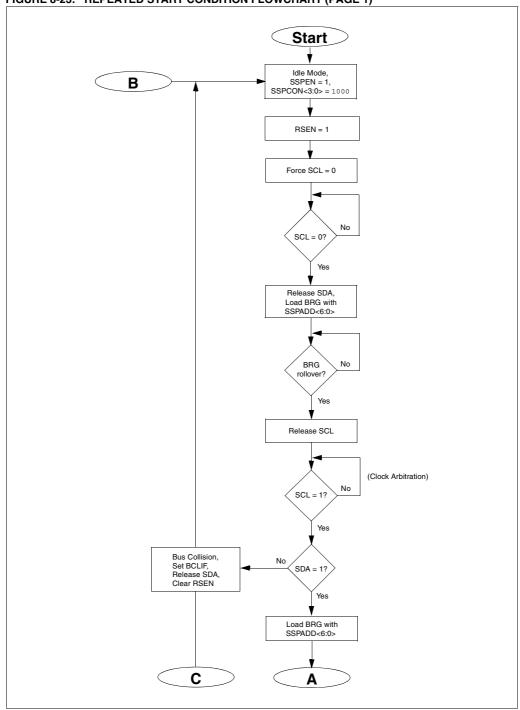
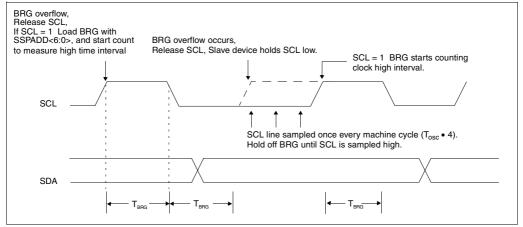


FIGURE 8-23: REPEATED START CONDITION FLOWCHART (PAGE 1)

8.2.15 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit, or repeated start/stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 8-33).


8.2.16 SLEEP OPERATION

While in sleep mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs wake the processor from sleep (if the SSP interrupt is enabled).

8.2.17 EFFECTS OF A RESET

A reset disables the SSP module and terminates the current transfer.

FIGURE 8-33: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

8.2.18.15 BUS COLLISION DURING A START CONDITION

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 8-35).
- b) SCL is sampled low before SDA is asserted low. (Figure 8-36).

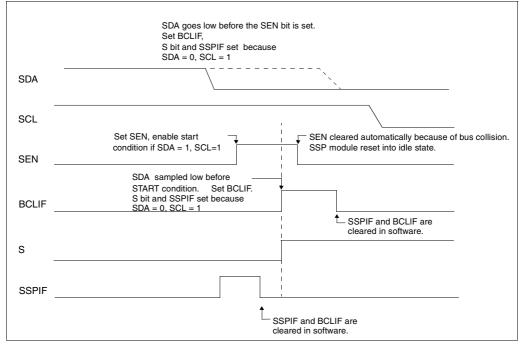
During a START condition both the SDA and the SCL pins are monitored.

lf:

the SDA pin is already low or the SCL pin is already low,

then:

the START condition is aborted, and the BCLIF flag is set, and the SSP module is reset to its IDLE state (Figure 8-35).


The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low

while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

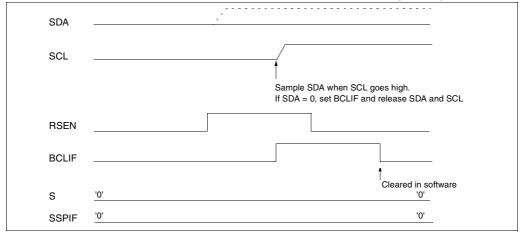
If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 8-37). If however a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0, and during this time, if the SCL pins is sampled as '0', a bus collision does not occur. At the end of the BRG count the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the START condition, and if the address is the same, arbitration must be allowed to continue into the data portion, REPEATED START, or STOP conditions.

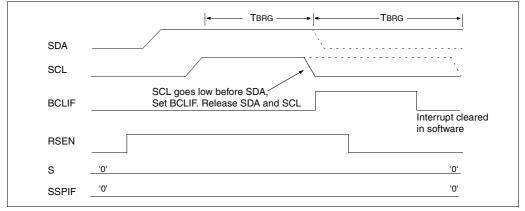
FIGURE 8-35: BUS COLLISION DURING START CONDITION (SDA ONLY)

8.2.18.16 BUS COLLISION DURING A REPEATED START CONDITION

During a Repeated Start condition, a bus collision occurs if:


- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user de-asserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0>, and counts down to 0. The SCL pin is then deasserted, and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e. another master is attempting to transmit a data '0'). If however SDA is sampled high then the BRG is reloaded and begins counting. If SDA goes from high to low before the BRG times out, no bus collision occurs, because no two masters can assert SDA at exactly the same time.


If, however, SCL goes from high to low before the BRG times out and SDA has not already been asserted, then a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition.

If at the end of the BRG time out both SCL and SDA are still high, the SDA pin is driven low, the BRG is reloaded, and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete (Figure 8-38).

FIGURE 8-38: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 8-39: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

9.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 9-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 9-1. From this, the error in baud rate can be determined.

Example 9-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 9-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

9600 = 1600000 / (64 (X + 1))X = $\lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

Error = (Calculated Baud Rate - Desired Baud Rate) Desired Baud Rate

= (9615 - 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

9.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 9-1BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = FOSC/(4(X+1))	NA

X = value in SPBRG (0 to 255)

TABLE 9-2 REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	99h SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

12.0 SPECIAL FEATURES OF THE CPU

These PICmicro devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Low-voltage detection
- SLEEP
- Code protection
- · ID locations
- · In-circuit serial programming

These devices have a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up type resets only (POR, BOR), designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

Some of the core features provided may not be necessary to each application that a device may be used for. The configuration word bits allow these features to be configured/enabled/disabled as necessary. These features include code protection, brown-out reset and its trippoint, the power-up timer, the watchdog timer and the devices oscillator mode. As can be seen in Figure 12-1, some additional configuration word bits have been provided for brown-out reset trippoint selection.

14.0 DEVELOPMENT SUPPORT

14.1 Development Tools

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- MPLAB[™] -ICE Real-Time In-Circuit Emulator
- ICEPIC[™] Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- SIMICE
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB[™] SIM Software Simulator
- MPLAB-C17 (C Compiler)
- Fuzzy Logic Development System (*fuzzy*TECH[®]–MP)
- KEELOQ[®] Evaluation Kits and Programmer

14.2 <u>MPLAB-ICE: High Performance</u> Universal In-Circuit Emulator with MPLAB IDE

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). MPLAB-ICE is supplied with the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support all new Microchip microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x or Windows 95 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE is available in two versions. MPLAB-ICE 1000 is a basic, low-cost emulator system with simple trace capabilities. It shares processor modules with the MPLAB-ICE 2000. This is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems will operate across the entire operating speed reange of the PICmicro MCU.

14.3 ICEPIC: Low-Cost PICmicro In-Circuit Emulator

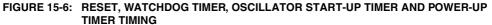
ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC12CXXX, PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

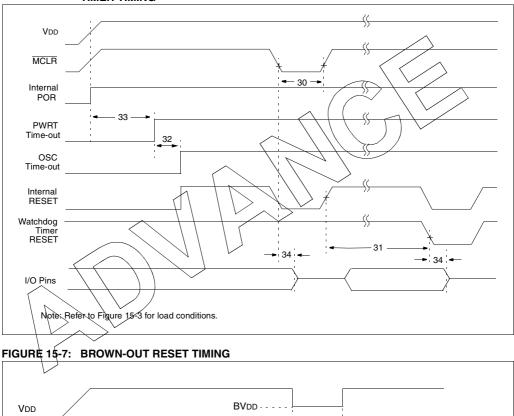
ICEPIC is designed to operate on PC-compatible machines ranging from 386 through Pentium™ based machines under Windows 3.x, Windows 95, or Windows NT environment. ICEPIC features real time, non-intrusive emulation.

14.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices. It can also set configuration and code-protect bits in this mode.


14.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>


The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12CXXX, PIC14C000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923, PIC16C924 and PIC17C756 may be supported with an adapter socket. PICSTART Plus is CE compliant.

TABLE 14-1 DEVELOPMENT TOOLS FROM MICROCHIP

TABLE	14-1 DE	VELO	PMENT T	OOL	SFROM	MICH	OCHIP				,					,
HCS200 HCS300 HCS301								>	~						>	>
24CXX 25CXX 93CXX						>		>		>						
PIC17C7XX	>		>	∕			>	>								
PIC17C4X	>		>	~	>		>	>				``	>			
PIC16C9XX	`	`	`		>		>	>						>		
PIC16C8X	>	>	>		>		>	>				``	>			
PIC16C7XX	``	`	`		>		>	>					`			
PIC16C6X	>	>	>		>		>	>					`			
PIC16CXXX	>	>	>		>		>	>				`	~			
PIC16C5X	>	>	>		>		>	>			>	``	>			
PIC14000	>		>		>		>	>				>				
PIC12C5XX	>		>		>		>	>			>					
	MPLAB [™] -ICE	ICEPIC TM Low-Cost In-Circuit Emulator	MPLAB™ Integrated Development Environment	MPLAB™ C17* Compiler	<i>fuzzy</i> TECH®-MP Explorer/Edition Fuzzy Logic Dev. Tool	Total Endurance™ Software Model	PICSTART®Plus Low-Cost Universal Dev. Kit	PRO MATE® II Universal Programmer	KEELOQ [®] Programmer	SEEVAL [®] Designers Kit	SIMICE	PICDEM-14A	PICDEM-1	PICDEM-3	KEELoq [®] Evaluation Kit	KεεLoα Transponder Kit
	tor Products	Software Tools Emulator Product						ւօգւթաս	d			spi	soa	owe	Ð	

TABLE 15-7 RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

← 35 →

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	100	—	—	ns	$VDD = 5V$, $-40^{\circ}C$ to $+85^{\circ}C$
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32*	Tost	Oscillation Start-up Timer Period	-	1024Tosc		—	Tosc = OSC1 period
33*	Tpwrt	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34*	Tioz	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset		_	100	ns	
35*	TBOR	Brown-out Reset pulse width	100	—	—	μS	$VDD \le VBOR (D005)$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-8: BANDGAP START-UP TIME

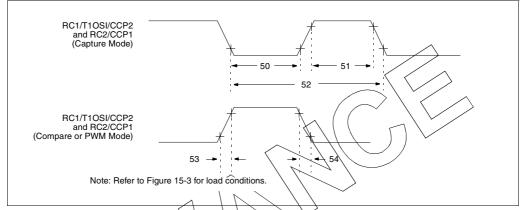
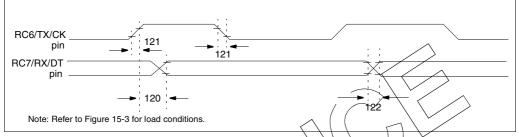

TABLE 15-8	BANDGAP START-UP TIME	\sum
		2
Bandgap stable	← TBGAP —►	
Enable Bandgap		
Vbgap		 'BGAP = 1.2V

TABLE 15-8 BANDGAP START-UP TIME

Parameter No.	Sym	Characteristic	Min	Тур	t	Max	ί	Inits	\nearrow	Conc	litions	>
36*	Tbgap	Bandgap start-up time		30	//	THED		μs	the insta is enabl	ed and bandg	e time bet t the ban d the mor gap refere ble.	dgap nent
* Tho	eo naramo	store are characterized but not tested						ノー	•			

These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

FIGURE 15-12: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

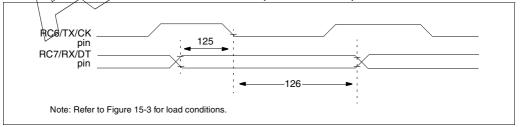

TABLE 15-13 CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic		/ /		Min	Тур†	Мах	Units	Conditions
50*	Tcç⊾∕	CCP1 and CCP2	No Pres	caler		0.5TCY + 20	_	_	ns	
		input low time			PIC16 C 77X	10	_	-	ns	
		$\land \land)$	With Pre	escaler	PIC16 LC 77X	20	—		ns	
51*	TCCH	CCP1 and CCP2	No Pres	caler		0.5TCY + 20	—		ns	
	>)	input high time			PIC16 C 77X	10	—		ns	
	\frown	\checkmark	With Prescaler		PIC16 LC 77X	20	_	-	ns	
52*	TccP	CCP1 and CCP2 ir	nput peric	bd		<u>3Tcy + 40</u> N		Ι	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 o	utput fall	time	PIC16 C 77X	_	10	25	ns	
					PIC16 LC 77X	—	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall	time	PIC16 C 77X	—	10	25	ns	
					PIC16 LC 77X	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-14: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING


TABLE 15-15 USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

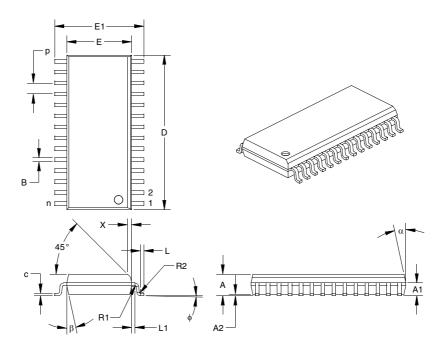
Param No.	Sym	Characteristic		Min_	Typt	Max	Units	Conditions
120*	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16C774/773	_	_	80	ns	
		Clock high to data out valid	PIC16LC774/773	—	—	100	ns	
121*	Tckrf	Clock out rise time and fall time	PIC16C774/773	_	—	45	ns	
		(Master Mode)	PIC16LC774/773	—	—	50	ns	
122*	Tdtrf	Data out rise time and fall time	PIC16 C 774/773	—	—	45	ns	
			PIC16 LC 774/773	—	—	50	ns	

* These parameters are characterized but not tested.

+: Data in "Typ" column is at \$V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 15-16 USART SYNCHRONOUS RECEIVE REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125*	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before $CK \downarrow$ (DT setup time)	15				
126*	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	=		ns ns	

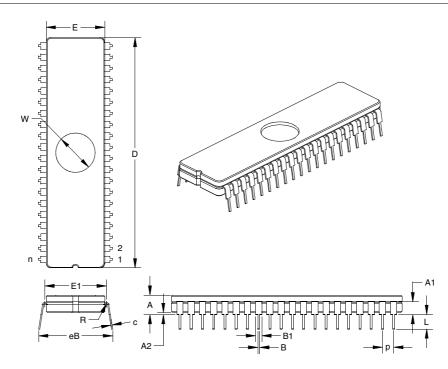
* These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.4 K04-052 28-Lead Plastic Small Outline (SO) – Wide, 300 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Pitch	р		0.050			1.27		
Number of Pins	n		28			28		
Overall Pack. Height	A	0.093	0.099	0.104	2.36	2.50	2.64	
Shoulder Height	A1	0.048	0.058	0.068	1.22	1.47	1.73	
Standoff	A2	0.004	0.008	0.011	0.10	0.19	0.28	
Molded Package Length	D [‡]	0.700	0.706	0.712	17.78	17.93	18.08	
Molded Package Width	E‡	0.292	0.296	0.299	7.42	7.51	7.59	
Outside Dimension	E1	0.394	0.407	0.419	10.01	10.33	10.64	
Chamfer Distance	х	0.010	0.020	0.029	0.25	0.50	0.74	
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25	
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25	
Foot Length	L	0.011	0.016	0.021	0.28	0.41	0.53	
Foot Angle	φ	0	4	8	0	4	8	
Radius Centerline	L1	0.010	0.015	0.020	0.25	0.38	0.51	
Lead Thickness	с	0.009	0.011	0.012	0.23	0.27	0.30	
Lower Lead Width	B [†]	0.014	0.017	0.019	0.36	0.42	0.48	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	


* Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

17.7 K04-014 40-Lead Ceramic Dual In-line with Window (JW) – 600 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
PCB Row Spacing			0.600			15.24		
Number of Pins	n		40			40		
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59	
Lower Lead Width	В	0.016	0.020	0.023	0.41	0.50	0.58	
Upper Lead Width	B1	0.050	0.053	0.055	1.27	1.33	1.40	
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25	
Lead Thickness	с	0.008	0.011	0.014	0.20	0.28	0.36	
Top to Seating Plane	А	0.190	0.205	0.220	4.83	5.21	5.59	
Top of Lead to Seating Plane	A1	0.117	0.135	0.153	2.97	3.43	3.89	
Base to Seating Plane	A2	0.030	0.045	0.060	0.00	1.14	1.52	
Tip to Seating Plane	L	0.135	0.140	0.145	3.43	3.56	3.68	
Package Length	D	2.040	2.050	2.060	51.82	52.07	52.32	
Package Width	E	0.514	0.520	0.526	13.06	13.21	13.36	
Radius to Radius Width	E1	0.560	0.580	0.600	14.22	14.73	15.24	
Overall Row Spacing	eB	0.610	0.660	0.710	15.49	16.76	18.03	
Window Diameter	W	0.340	0.350	0.360	8.64	8.89	9.14	

* Controlling Parameter.

PIC16C77X

NOTES: