

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

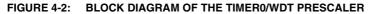
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

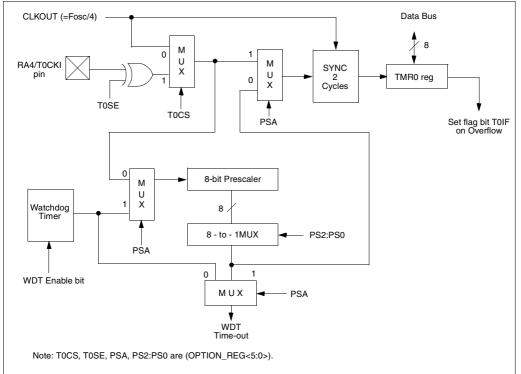
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c773-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


4.2.1 SWITCHING PRESCALER ASSIGNMENT


The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution.

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PICmicro™ Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

4.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP.

TABLE 4-1 REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h,101h	TMR0	Timer0	module's r	egister						xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	_	_	PORTA Data Direction Register						11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

8.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 8-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

EXAMPLE 8-1: LOADING THE SSPBUF (SSPSR) REGISTER

	BSF	STATUS,	RP0	;Specify Bank 1
LOOP	BTFSS	SSPSTAT	, BF	;Has data been
				;received
				;(transmit
				;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents
				;of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents
				; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

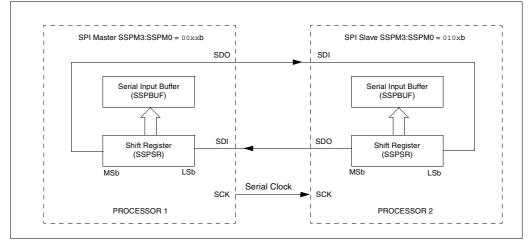
The SSPSR is not directly readable or writable, and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP status register (SSPSTAT) indicates the various status conditions.

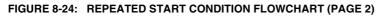
8.1.2 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers, and then set bit SSPEN. This configures the

FIGURE 8-5: SPI MASTER/SLAVE CONNECTION

SDI, SDO, SCK, and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:


- · SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set


Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

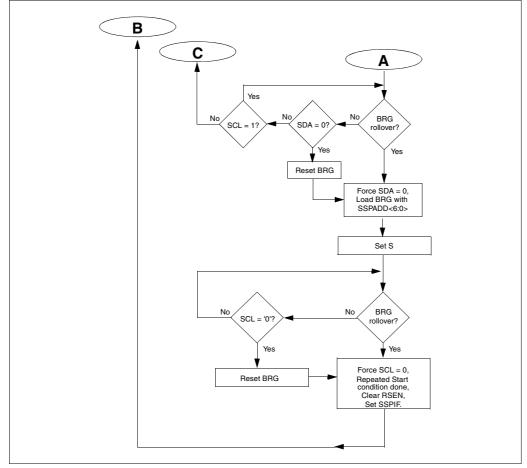

8.1.3 TYPICAL CONNECTION

Figure 8-5 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

8.2.18 MULTI -MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I²C port to its IDLE state. (Figure 8-34).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are de-asserted, and the SSPBUF can be written to. When the user services the bus collision interrupt service routine, and if the l^2C bus is free, the user can resume communication by asserting a START condition.

If a START, Repeated Start, STOP, or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision interrupt service routine, and if the l^2 C bus is free, the user can resume communication by asserting a START condition.

The Master will continue to monitor the SDA and SCL pins, and if a STOP condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when bus collision occurred.

In multi-master mode, the interrupt generation on the detection of start and stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is idle and the S and P bits are cleared.

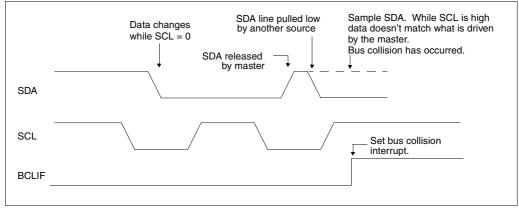
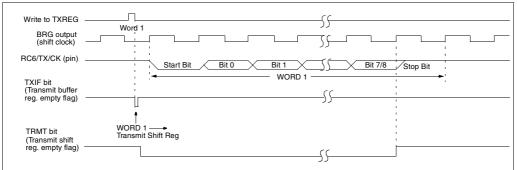
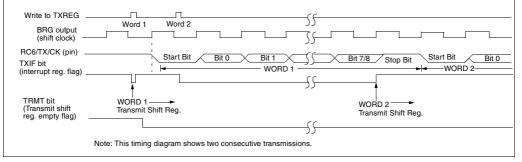




FIGURE 8-34: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

FIGURE 9-4: ASYNCHRONOUS TRANSMISSION

FIGURE 9-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 9-6 REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	ansmit F	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	99h SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

9.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 9-6. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at FOSC.

The USART module has a special provision for multiprocessor communication. When the RX9 bit is set in the RCSTA register, 9-bits are received and the ninth bit is placed in the RX9D status bit of the RSTA register. The port can be programmed such that when the stop bit is received, the serial port interrupt will only be activated if the RX9D bit = 1. This feature is enabled by setting the ADDEN bit RCSTA<3> in the RCSTA register. This feature can be used in a multi-processor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by the RX9D bit being a '1' (instead of a '0' for a data byte). If the ADDEN bit is set in the slave's RCSTA register, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave can examine the received byte to see if it is addressed. The addressed slave will then clear its ADDEN bit and prepare to receive data bytes from the master.

When ADDEN is set, all data bytes are ignored. Following the STOP bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost.

The ADDEN bit will only take effect when the receiver is configured in 9-bit mode.

The receiver block diagram is shown in Figure 9-6.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

9.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

Steps to follow when setting up an Asynchronous Reception with Address Detect Enabled:

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- · If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- · Set ADDEN to enable address detect.
- Enable the reception by setting enable bit CREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register, to determine if the device is being addressed.
- If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer, and interrupt the CPU.

9.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner i.e. transmission and reception do not occur at the same time. When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

9.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 9-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG is empty and interrupt bit, TXIF (PIR1<4>) is set. The interrupt can be

enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 9.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register										0000 0000

TABLE 9-8 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

9.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set then CREN takes precedence.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 9.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive I	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	99h SPBRG Baud Rate Generator Register										0000 0000

TABLE 9-9 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

FIGURE 9-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

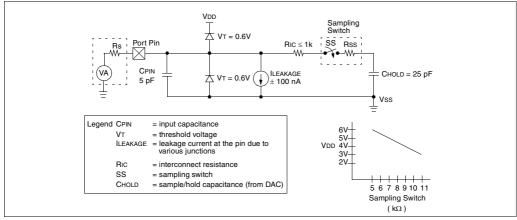

C7/RX/DT pin	bit0	, bit1	bit2	,bit3	bit4	, bit5	bit6	bit7	1
C6/TX/CK pin									1 1 1
Write to		1 1 1	1 1 1	1 T L T	 	1 1 1 1	1 T T	1 1 1 1	1 1 1 1
SREN bit	1	1 1 1	1 1 1	1 1 1		1	t t t		1
CREN bit	1	1 1 1	1 1	t t		, ,	t	1 1	
RCIF bit (interrupt)	1 1 1	1 1 1	1 1 1	1 1 1		1	1 1 1	ſ	
Read RXREG	1	1 1 1		1 1		, , ,	1 1 1		

FIGURE 11-7: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ =	+ Holding Capacitor Charging Time +Temperature Coefficient †
TACQ =	1
	+ Tc
	+ [(Temp - 25°C)(0.05 μs/°C)] †
Tc= +	Holding Capacitor Charging Time
Tc = (C	HOLD) (RIC + RSS + RS) In (1/16384)
Tc = -2	5 pF (1 kΩ +10 kΩ + 2.5 kΩ) ln (1/16384)
Tc = -2	5 pF (13.5 kΩ) In (1/16384)
Tc = -0	.338 (-9.704)μs
Tc = 3.	3μs
TACQ =	5 μs
	+ 3.3 μs
	+ [(50°C - 25°C)(0.05 μs / °C)]
TACQ =	8.3 μs + 1.25 μs
TACQ =	9.55 μs

† The temperature coefficient is only required for temperatures > 25°C.

FIGURE 11-8: ANALOG INPUT MODEL

FIGURE 12-1: CONFIGURATION WORD

CP1	CP0	BORV1	BORV0	CP1	CP0	-	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register: Address	CONFIG 2007h
bit13	12	11	10	9	8	7	6	5	4	3	2	1	bit0	Address	2007h
oit 13	-12: (CP1:CP	0: Code	Prote	ction b	oits ⁽²⁾								1	
bit 9-8	3: ·	11 = Pro	gram m	emory	code p	rotecti	on off								
oit 5-4		10 = 080													
		01 = 040													
		00 = 000			•			(3)							
bit 11					n-out F	eset V	oltage bit	s ⁽³⁾							
		11 = Vвс 10 = Vвс													
		0 = VBC													
	(00 = Vвс	R set to	4.5V											
bit 7:	I	Unimple	mented	I, Rea	d as '1'										
bit 6:		BODEN:	Brown-	out Re	eset En	able bi	_† (1)								
		1 = Brow													
	() = Brow	n-out R	eset d	isabled										
bit 3:	ī	WRTE:	Power-	up Tin	ner Ena	ble bit	(1)								
		1 = PWF													
	(D = PWF	RT enabl	ed											
bit 2:		WDTE: \		0	er Enał	ole bit									
		1 = WDT		-											
		D = WDT		-											
bit 1-0		FOSC1:			ator Se	lectior	bits								
		11 = RC 10 = HS													
		0 = HS 01 = XT (
		00 = LP													
Note													dless of th	ne value of b	it PWRTE.
							ed anytim						tion scher	na listad	
														election of a	n unused
							nterrupt.	, 000							

12.2 Oscillator Configurations

12.2.1 OSCILLATOR TYPES

The PIC16C77X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

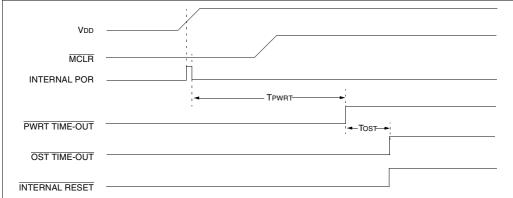
12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-2). The PIC16C77X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications.

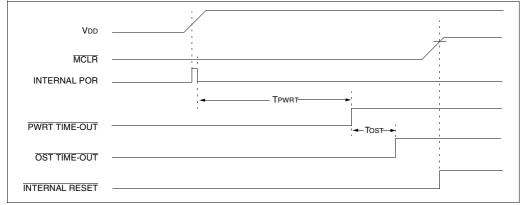
A difference from the other mid-range devices may be noted in that the device can be driven from an external clock only when configured in HS mode (Figure 12-3).

TABLE 12-6	INITIA	LIZA	TION CONDITIONS FO	OR ALL REGISTER	5
Register	Dev	ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu
INDF	773	774	N/A	N/A	N/A
TMR0	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCL	773	774	0000h	0000h	PC + 1 (2)
STATUS	773	774	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA	773	774	0x 0000	0u 0000	uu uuuu
PORTB	773	774	xxxx 11xx	uuuu 11uu	uuuu uuuu
PORTC	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTD	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTE	773	774	000	000	uuu
PCLATH	773	774	0 0000	0 0000	u uuuu
INTCON	773	774	0000 000x	0000 000u	uuuu uuuu (1)
PIR1	773	774	r000 0000	r000 0000	ruuu uuuu (1)
	773	774	0000 0000	0000 0000	uuuu uuuu (1)
PIR2	773	774	00	00	u uu (1)
TMR1L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	773	774	00 0000	uu uuuu	uu uuuu
TMR2	773	774	0000 0000	0000 0000	uuuu uuuu
T2CON	773	774	-000 0000	-000 0000	-uuu uuuu
SSPBUF	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	773	774	0000 0000	0000 0000	uuuu uuuu
CCPR1L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	773	774	00 0000	00 0000	uu uuuu
RCSTA	773	774	0000 000x	0000 000x	uuuu uuuu
TXREG	773	774	0000 0000	0000 0000	uuuu uuuu
RCREG	773	774	0000 0000	0000 0000	uuuu uuuu
CCPR2L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2H	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	773	774	00 0000	00 0000	uu uuuu
ADRESH	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	773	774	0000 0000	0000 0000	uuuu uuuu
OPTION_REG	773	774	1111 1111	1111 1111	uuuu uuuu

TABLE 12-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).


2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for reset value for specific condition.

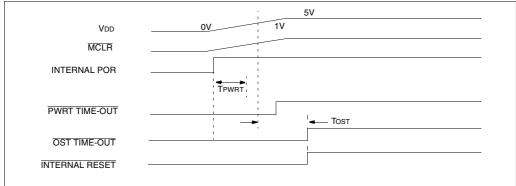


FIGURE 12-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-10: SLOW RISE TIME (MCLR TIED TO VDD)

PIC16C77X

NOTES:

		Standa	rd Opera	ting Co	onditions	(unles	s otherwise stated)
		Operati	ng tempe	rature	-40°C	≤ TA	\leq +85°C for industrial and
DC CHA	RACTERISTICS				0°C	≤ TA	\leq +70°C for commercial
		Operati	ng voltage	e VDD r	ange as d	escribe	ed in DC spec Section 15.1 and
		Section	15.2.				~
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions
No.							
	Output High Voltage						
D090	I/O ports (Note 3)	Voн	VDD - 0.7	_	—	V	$10_{H} = -3.0 \text{ mA}, \text{ VDD} = 4.5 \text{ V},$
						\int	-40°C to +85°C
D092	OSC2/CLKOUT (RC osc config)		VDD - 0.7		\sim	(v	IOH = -1.3 mA, VDP = 4.5V,
					$\langle \rangle \rangle$	\backslash	-40°C to +85°C
D150*	Open-Drain High Voltage	VOD	—	\sim	8.5	X	RA4 pin
	Capacitive Loading Specs on		<		1</td <td></td> <td></td>		
	Output Pins		~	11		\setminus $-$	
D100	OSC2 pin	Cos¢2	\sim	$ \neq $	15	۶F	In XT, HS and LP modes when
			\backslash		$\left \right\rangle$	ſ	external clock is used to drive
		1 /	$ \rangle$	\nearrow '	\searrow		OSC1.
D101	All I/O pins and OSC2 (in RC \	Cio		$\land \rightarrow$	5 0	pF	
D102	mode) SCL, SDA in / 2Ĉ mode ∖	∖Св		\geq	400	pF	
*	These parameters are characterized	zed but	not tested		•		·

 I nese parameters are characterized but not tested.
 Data in "Typ" column is at SV, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

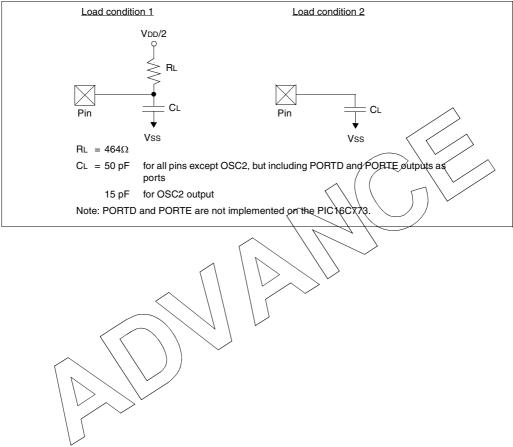
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels

represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3) Negative current is defined as current sourced by the pin.

The game current is defined as current sourced by the pin.

15.4 DC Characteristics: VREF

TABLE 15-2 ELECTRICAL CHARACTERISTICS: VREF


DC CHAR	ACTERISTICS	Standard Op Operating ter	mperature	-40°C 0°C	C` ≤ TA : ≤ TA :	≤ +85°C ≤ +70°C	for industr for comme	ial and
Param No.	Characte		Symbol	Min	Typ†	Max	Units	Conditions
D400	Output Voltage		VRL	2.0	2.048	2.1	V	VDD ≥ 2.5V
			VRH	4.0	4.096	4.2	V	VDØ ≥ 4.5V
D401A	VRL Quiescent S	upply Current	$\Delta IVRL$	—	70	TBD	μΑ	No load on VRL.
D401B	VRH Quiescent Supply Current		$\Delta IVRH$	_	70	TBD	µtA	No load on VRH.
D402	Ouput Voltage Drift		TCVOUT	—	15*	50*	ppm/°C/	Note 1
D404	External Load So	urce	IVREFSO	—	—	,5*	(mA	
D405	External Load Sir	ık	IVREFSI	—	—	<- 5 * \	∖mA	
D406	Load Regulation			_	\checkmark	†βD/₹ (Isource = 0 mA to
			$\Delta VOUT/$		$\langle \rangle$		mV/mA	5 mA
			∆IOUT	~	71	TBD*		Isink = 0 mA to 5 mA
D407	Line Regulation		AVOUT/ AVDD	A	_/	50*	μV/V	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

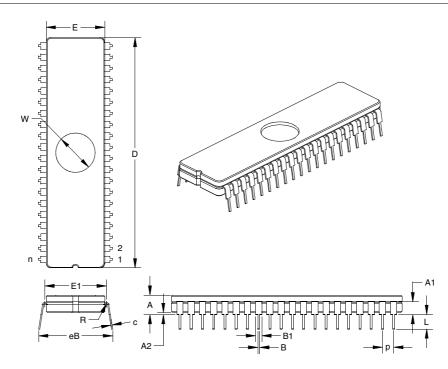
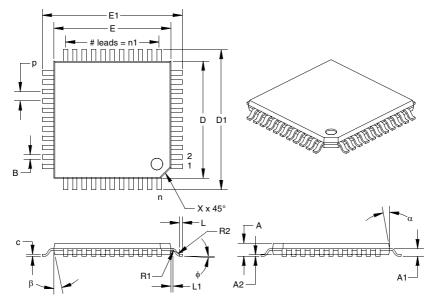

Note 1: Production tested at TAMB $= 25^{\circ}$ C. Specifications over temp limits guaranteed by characterization.

FIGURE 15-3: LOAD CONDITIONS

17.7 K04-014 40-Lead Ceramic Dual In-line with Window (JW) – 600 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Units			INCHES*		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
PCB Row Spacing			0.600			15.24	
Number of Pins	n		40			40	
Pitch	р	0.098	0.100	0.102	2.49	2.54	2.59
Lower Lead Width	В	0.016	0.020	0.023	0.41	0.50	0.58
Upper Lead Width	B1	0.050	0.053	0.055	1.27	1.33	1.40
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.008	0.011	0.014	0.20	0.28	0.36
Top to Seating Plane	А	0.190	0.205	0.220	4.83	5.21	5.59
Top of Lead to Seating Plane	A1	0.117	0.135	0.153	2.97	3.43	3.89
Base to Seating Plane	A2	0.030	0.045	0.060	0.00	1.14	1.52
Tip to Seating Plane	L	0.135	0.140	0.145	3.43	3.56	3.68
Package Length	D	2.040	2.050	2.060	51.82	52.07	52.32
Package Width	E	0.514	0.520	0.526	13.06	13.21	13.36
Radius to Radius Width	E1	0.560	0.580	0.600	14.22	14.73	15.24
Overall Row Spacing	eB	0.610	0.660	0.710	15.49	16.76	18.03
Window Diameter	W	0.340	0.350	0.360	8.64	8.89	9.14

* Controlling Parameter.

17.8 K04-076 44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.1 mm Lead Form

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES		MILLIMETERS*		*
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.031			0.80	
Number of Pins	n		44			44	
Pins along Width	n1		11			11	
Overall Pack. Height	А	0.039	0.043	0.047	1.00	1.10	1.20
Shoulder Height	A1	0.015	0.025	0.035	0.38	0.64	0.89
Standoff	A2	0.002	0.004	0.006	0.05	0.10	0.15
Shoulder Radius	R1	0.003	0.003	0.010	0.08	0.08	0.25
Gull Wing Radius	R2	0.003	0.006	0.008	0.08	0.14	0.20
Foot Length	L	0.005	0.010	0.015	0.13	0.25	0.38
Foot Angle	φ	0	3.5	7	0	3.5	7
Radius Centerline	L1	0.003	0.008	0.013	0.08	0.20	0.33
Lead Thickness	с	0.004	0.006	0.008	0.09	0.15	0.20
Lower Lead Width	Вţ	0.012	0.015	0.018	0.30	0.38	0.45
Outside Tip Length	D1	0.463	0.472	0.482	11.75	12.00	12.25
Outside Tip Width	E1	0.463	0.472	0.482	11.75	12.00	12.25
Molded Pack. Length	D‡	0.390	0.394	0.398	9.90	10.00	10.10
Molded Pack. Width	E‡	0.390	0.394	0.398	9.90	10.00	10.10
Pin 1 Corner Chamfer	х	0.025	0.035	0.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	12	15	5	12	15

Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E." JEDEC equivalent:MS-026 ACB

PIC16C77X

Е

Errata	4
External Power-on Reset Circuit	132
F	
Firmware Instructions	143
Flowcharts	
Acknowledge	
Master Receiver	
Master Transmit	80
Restart Condition	77
Start Condition	75
Stop Condition	
FSR Register	13, 14, 15
Fuzzy Logic Dev. System (fuzzyTECH®-MP)	147

G

GCE	. 56
General Call Address Sequence	. 69
General Call Address Support	. 69
General Call Enable bit, GCE	. 56

I

I/O Ports	
I ² C63	
I ² C Master Mode Receiver Flowchart83	
I ² C Master Mode Reception82	
I ² C Master Mode Restart Condition76	
I ² C Mode Selection63	
I ² C Module	
Acknowledge Flowchart86	
Acknowledge Sequence timing85	
Addressing64	
Baud Rate Generator73	
Block Diagram71	
BRG Block Diagram73	
BRG Reset due to SDA Collision92	
BRG Timing73	
Bus Arbitration90	
Bus Collision90	
Acknowledge90	
Restart Condition93	
Restart Condition Timing (Case1)93	
Restart Condition Timing (Case2)	
Start Condition91	
Start Condition Timing91, 92	
Stop Condition94	
Stop Condition Timing (Case1)94	
Stop Condition Timing (Case2)	
Transmit Timing90	
Bus Collision timing	
Clock Arbitration	
Clock Arbitration Timing (Master Transmit)89	
Conditions to not give ACK Pulse	
General Call Address Support69	
Master Mode71	
Master Mode 7-bit Reception timing84	
Master Mode Operation72	
Master Mode Start Condition74	
Master Mode Transmission79	
Master Mode Transmit Sequence72	
Master Transmit Flowchart	
Multi-Master Communication90	
Multi-master Mode72	
Operation63	
Repeat Start Condition timing76	

Restart Condition Flowchart	
Slave Mode	
Slave Reception	
Slave Transmission	
SSPBUF	
Start Condition Flowchart	
Stop Condition Flowchart Stop Condition Receive or Transmit timing	
Stop Condition timing	0/ 07
Waveforms for 7-bit Reception	
Waveforms for 7-bit Transmission	
I ² C Module Address Register, SSPADD	
I ² C Slave Mode	
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator	
ID Locations	
In-Circuit Serial Programming (ICSP)	
INDF	
INDF Register	
Indirect Addressing	
FSR Register	
Instruction Format	143
Instruction Set	143
Summary Table	
INTCON	
INTCON Register	
GIE Bit	
INTE Bit	
INTF Bit	
PEIE Bit	
RBIE Bit	
RBIF Bit	
TOIE Bit	
T0IF Bit	
Inter-Integrated Circuit (I ² C)	53
internal sampling switch (Rss) impedence	123
Interrupt Sources	. 127, 137
Block Diagram	137
Capture Complete (CCP)	48
Compare Complete (CCP)	
Interrupt on Change (RB7:RB4)	
RB0/INT Pin, External	. 7, 8, 138
TMR0 Overflow	
TMR1 Overflow	41, 43
TMR2 to PR2 Match	
TMR2 to PR2 Match (PWM)	45, 50
USART Receive/Transmit Complete	
Interrupts, Context Saving During	138
Interrupts, Enable Bits	
A/D Converter Enable (ADIE Bit)	
CCP1 Enable (CCP1IE Bit)	19, 48
CCP2 Enable (CCP2IE Bit)	
Global Interrupt Enable (GIE Bit)	18, 137
Interrupt on Change (RB7:RB4) Enable	
(RBIE Bit)	
Peripheral Interrupt Enable (PEIE Bit)	
PSP Read/Write Enable (PSPIE Bit)	19
RB0/INT Enable (INTE Bit)	
SSP Enable (SSPIE Bit)	
TMR0 Overflow Enable (T0IE Bit)	
TMR1 Overflow Enable (TMR1IE Bit)	19
TMR2 to PR2 Match Enable (TMR2IE Bit)	
UNADT Dessive Enchle (DOIE Bit)	
USART Receive Enable (RCIE Bit) USART Transmit Enable (TXIE Bit)	