

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c773-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1	PIC16C773 PINOUT DESCRIPTION

Pin Name	DIP, SSOP, SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
				PORTA is a bi-directional I/O port.
RA0/AN0	2	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	I/O	TTL	RA1 can also be analog input1
RA2/AN2/VREF-/VRL	4	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage input or internal voltage reference low
RA3/AN3/VREF+/VRH	5	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage input or internal voltage reference high
RA4/T0CKI	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
				PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.
RB0/INT	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1/SS	22	I/O	TTL/ST ⁽¹⁾	RB1 can also be the SSP slave select
RB2/AN8	23	I/O	TTL	RB2 can also be analog input8
RB3/AN9/LVDIN	24	I/O	TTL	RB3 can also be analog input9 or the low voltage detect input reference
RB4	25	I/O	TTL	Interrupt on change pin.
RB5	26	I/O	TTL	Interrupt on change pin.
RB6	27	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.
RB7	28	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.
				PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI/CCP2	12	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/ Compare2 output/PWM2 output.
RC2/CCP1	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).
RC5/SDO	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	18	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
AVss	8	Р		Ground reference for A/D converter
AVDD	7	Р		Positive supply for A/D converter
Vss	19	Р	_	Ground reference for logic and I/O pins.
Vdd	20	Р	_	Positive supply for logic and I/O pins.
Legend: I = input C Note 1: This buffer is a 2: This buffer is a 3: This buffer is a	D = output – = Not us a Schmitt a Schmitt a Schmitt	sed Trigger inp Trigger inp Trigger inp	I/O = input TTL = TTL ut when config ut when used i	/output P = power input ST = Schmitt Trigger input ured for the multiplexed function. n serial programming mode. ured in RC oscillator mode and a CMOS input otherwise.

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	Ι	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	2	18	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	4	20	I/O	TTL	RA1 can also be analog input1
RA2/AN2/VREF-/VRL	4	5	21	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage input or internal voltage reference low
RA3/AN3/VREF+/VRH	5	6	22	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage input or internal voltage reference high
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/AN4	7	8	24	I/O	TTL	RA5 can also be analog input4
						PORTB is a bi-directional I/O port. PORTB can be soft- ware programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1/SS	34	37	9	I/O	TTL/ST ⁽¹⁾	RB1 can also be the SSP slave select
RB2/AN8	35	38	10	I/O	TTL	RB2 can also be analog input8
RB3/AN9/LVDIN	36	39	11	I/O	TTL	RB3 can also be analog input9 or input reference for low voltage detect
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
Legend: I = input C) = outp	ut	I/O	= input	/output	P = power

TABLE 1-2 PIC16C774 PINOUT DESCRIPTION

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

TARI F 2-1	PIC16C77X SPECIAL FUNCTI	ION REGISTER SUMMARY	(Cont'd)
			100111.07

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)	
Bank 2	Bank 2											
100h ⁽⁴⁾	INDF	Addressing	this location	gister)	0000 0000	0000 0000						
101h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu	
102h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	0000 0000	
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu	
104h ⁽⁴⁾	FSR	Indirect data	a memory ad	dress pointer						xxxx xxxx	uuuu uuuu	
105h	—	Unimpleme	nted							_	_	
106h	PORTB	PORTB Dat	ta Latch whe	n written: PO	RTB pins wher	n read				xxxx 11xx	uuuu 11uu	
107h	_	Unimpleme	nted							_	—	
108h	—	Unimpleme	nted							—	—	
109h	—	Unimpleme	nted		n					—	—	
10Ah ^(1,4)	PCLATH	—	—	—	Write Buffer fe	or the upper	5 bits of the I	Program Cou	inter	0 0000	0 0000	
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
10Ch- 10Fh	-	Unimpleme	nted	•						-	-	
Bank 3										-		
180h ⁽⁴⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	nemory (not a	a physical reg	gister)	0000 0000	0000 0000	
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
182h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000	
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu	
184h ⁽⁴⁾	FSR	Indirect data	a memory ad	dress pointer						xxxx xxxx	uuuu uuuu	
185h	—	Unimpleme	nted							-	_	
186h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111	
187h	—	Unimpleme	nted		_	—						
188h	_	Unimplemented									—	
189h	—	Unimplemented									—	
18Ah ^(1,4)	PCLATH	—	Write Buffer for the upper 5 bits of the Program Counter									
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
18Ch- 18Fh	-	Unimpleme	nted							-	-	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.
 Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 3: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.
 4: These registers can be addressed from any bank.
 5: These registers/bits are not implemented on the 28-pin devices read as '0'.

FIGURE 3-15: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 3-11 REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	Port dat	ta latch w	hen writte	en: Port pins v	vhen read	I			xxxx xxxx	uuuu uuuu
09h	PORTE	—	—	—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE I	Data Direc	tion Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 8-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

EXAMPLE 8-1: LOADING THE SSPBUF (SSPSR) REGISTER

	BSF	STATUS,	RP0	;Specify Bank 1
LOOP	BTFSS	SSPSTAT,	BF	;Has data been
				;received
				;(transmit
				;complete)?
	GOTO	LOOP		;No
	BCF	STATUS,	RP0	;Specify Bank 0
	MOVF	SSPBUF,	W	;W reg = contents
				;of SSPBUF
	MOVWF	RXDATA		;Save in user RAM
	MOVF	TXDATA,	W	;W reg = contents
				; of TXDATA
	MOVWF	SSPBUF		;New data to xmit

The SSPSR is not directly readable or writable, and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP status register (SSPSTAT) indicates the various status conditions.

8.1.2 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers, and then set bit SSPEN. This configures the

FIGURE 8-5: SPI MASTER/SLAVE CONNECTION

SDI, SDO, SCK, and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- · SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

8.1.3 TYPICAL CONNECTION

Figure 8-5 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START (S) or STOP (P) bit, specifies if the received byte was data or address if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer.

SSPBUF is the register to which the transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is transferred to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and bit SSPOV (SSPCON<6>) is set and the byte in the SSPSR is lost.

The SSPADD register holds the slave address. In 10-bit mode, the user needs to write the high byte of the address (1111 0 A9 A8 0). Following the high byte address match, the low byte of the address needs to be loaded (A7:A0).

8.2.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs. The MSSP module will override the input state with the output data when required (slavetransmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the MSSP module not to give this ACK pulse. These are if either (or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

If the BF bit is set, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF and SSPOV are set. Table 8-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low time for proper operation. The high and low times of the l^2 C specification as well as the requirement of the MSSP module is shown in timing parameter #100 and parameter #101 of the Electrical Specifications.

8.2.1.1 ADDRESSING

Once the MSSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register on the falling edge of the 8th SCL pulse.
- b) The buffer full bit, BF is set on the falling edge of the 8th SCL pulse.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the 9th SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT-2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for a 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address. This will clear bit UA and release the SCL line.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- Note: Following the Repeated Start condition (step 7) in 10-bit mode, the user only needs to match the first 7-bit address. The user does not update the SSPADD for the second half of the address.

8.2.18.15 BUS COLLISION DURING A START CONDITION

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 8-35).
- b) SCL is sampled low before SDA is asserted low. (Figure 8-36).

During a START condition both the SDA and the SCL pins are monitored.

lf:

the SDA pin is already low or the SCL pin is already low,

then:

the START condition is aborted, and the BCLIF flag is set, and the SSP module is reset to its IDLE state (Figure 8-35).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low

while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 8-37). If however a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0, and during this time, if the SCL pins is sampled as '0', a bus collision does not occur. At the end of the BRG count the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the START condition, and if the address is the same, arbitration must be allowed to continue into the data portion, REPEATED START, or STOP conditions.

FIGURE 8-35: BUS COLLISION DURING START CONDITION (SDA ONLY)

9.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI). The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- · Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>), and bits TRISC<7:6>, have to be set in order to configure pins RC6/TX/CK and RC7/ RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The USART module also has a multi-processor communication capability using 9-bit address detection.

FIGURE 9-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0	
CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	CSRC: Clo	ck Source	Select bit					
	Asynchrone Don't care	ous mode						
	Synchronor 1 = Master 0 = Slave n	<u>us mode</u> mode (Clo node (Cloc	ck generat k from exte	ed interna ernal sourc	lly from BR æ)	G)		
bit 6:	TX9 : 9-bit 7 1 = Selects 0 = Selects	Fransmit Er 9-bit trans 8-bit trans	nable bit mission mission					
bit 5:	TXEN : Trar 1 = Transm 0 = Transm Note: SREI	nsmit Enab it enabled it disabled N/CREN o	le bit verrides TX	(EN in SYI	NC mode.			
bit 4:	SYNC: US/ 1 = Synchro 0 = Asynch	ART Mode onous moo ronous mo	Select bit le de					
bit 3:	Unimplem	ented: Rea	ad as '0'					
bit 2:	BRGH: Hig	h Baud Ra	ite Select b	bit				
	Asynchrone 1 = High sp	<u>ous mode</u> beed						
	0 = Low sp	eed						
	Synchronol Unused in t	<u>us mode</u> this mode						
bit 1:	TRMT : Trar 1 = TSR en 0 = TSR ful	nsmit Shift npty II	Register S	tatus bit				
bit 0:	TX9D: 9th I	bit of trans	mit data. C	an be pari	ty bit.			

FIGURE 9-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 9-6 REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	ansmit F	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

9.4 USART Synchronous Slave Mode

Synchronous slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

9.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{TXIE}}$.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

9.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the synchronous master and slave modes is identical except in the case of the SLEEP mode. Also, bit SREN is a don't care in slave mode.

If receive is enabled, by setting bit CREN, prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Steps to follow when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, then set enable bit $\ensuremath{\mathsf{RCIE}}$.
- 3. If 9-bit reception is desired, then set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.

FIGURE 11-7: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ =	Amplifier Settling Time + Holding Capacitor Charging Time +Temperature Coefficient †
TACQ =	5 μs + Tc + [(Temp - 25°C)(0.05 μs/°C)] †
Tc = · Tc = · Tc = · Tc = · Tc = ·	+ Holding Capacitor Charging Time (CHOLD) (RiC + RSS + RS) In (1/16384) -25 pF (1 $k\Omega$ +10 $k\Omega$ + 2.5 $k\Omega$) In (1/16384) -25 pF (13.5 $k\Omega$) In (1/16384) -0.338 (-9.704) μ s 3.3 μ s
TACQ =	5 μs + 3.3 μs + [(50°C - 25°C)(0.05 μs / °C)]
TACQ = TACQ =	8.3 μs + 1.25 μs 9.55 μs

† The temperature coefficient is only required for temperatures > 25°C.

FIGURE 11-8: ANALOG INPUT MODEL

FIGURE 12-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 12-3: EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

TABLE 12-1 CERAMIC RESONATORS

Ranges Tested:									
Mode	Freq	OSC2							
XT	455 kHz	68 - 100 pF	68 - 100 pF						
	2.0 MHz	15 - 68 pF	15 - 68 pF						
	4.0 MHz	15 - 68 pF	15 - 68 pF						
HS	8.0 MHz	10 - 68 pF	10 - 68 pF						
	16.0 MHz	10 - 22 pF	10 - 22 pF						
The	se values are f	or design guidar	nce only. See						
note	es at bottom of p	bage.							
Resonator	rs Used:								
455 kHz	Panasonic E	FO-A455K04B	± 0.3%						
2.0 MHz	Murata Erie	CSA2.00MG	$\pm 0.5\%$						
4.0 MHz	Murata Erie	CSA4.00MG	$\pm 0.5\%$						
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%								
16.0 MHz	16.0 MHz Murata Erie CSA16.00MX ± 0.5%								
All reso	onators used did	d not have built-in	capacitors.						

TABLE 12-2 CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2		
LP	32 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
XT	200 kHz	47-68 pF	47-68 pF		
	1 MHz	15 pF	15 pF		
	4 MHz	15 pF	15 pF		
HS	4 MHz	15 pF	15 pF		
	8 MHz	15-33 pF	15-33 pF		
	20 MHz	15-33 pF	15-33 pF		
These notes	values are at bottom of	for design guidar page.	nce only. See		
	Crys	tals Used			
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM		
200 kHz	STD XTL 2	± 20 PPM			
1 MHz	ECS ECS-	± 50 PPM			
4 MHz	ECS ECS-40-20-1 ± 50 PPM				
8 MHz	EPSON CA-301 8.000M-C ± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C ± 30 PPM				

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 12-1).

- Higher capacitance increases the stability of oscillator but also increases the start-up time.
- Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

TABLE 12-6	INITIA	LIZA	TION CONDITIONS F	OR ALL REGISTERS	•			
Register	Devices		r Devices Power-on Reset, Brown-out Reset		MCLR Resets WDT Reset	Wake-up via WDT or Interrupt		
W	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
INDF	773	774	N/A	N/A	N/A			
TMR0	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PCL	773	774	0000h	0000h	PC + 1 ⁽²⁾			
STATUS	773	774	0001 1xxx	000q quuu (3)	uuuq quuu (3)			
FSR	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTA	773	774	0x 0000	0u 0000	uu uuuu			
PORTB	773	774	xxxx 11xx	uuuu 11uu	uuuu uuuu			
PORTC	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTD	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTE	773	774	000	000	uuu			
PCLATH	773	774	0 0000	0 0000	u uuuu			
INTCON	773	774	0000 000x	0000 000u	uuuu uuuu (1)			
PIR1	773	774	r000 0000	r000 0000	ruuu uuuu (1)			
	773	774	0000 0000	0000 0000	uuuu uuuu (1)			
PIR2	773	774	00	00	u uu ⁽¹⁾			
TMR1L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
TMR1H	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
T1CON	773	774	00 0000	uu uuuu	uu uuuu			
TMR2	773	774	0000 0000	0000 0000	uuuu uuuu			
T2CON	773	774	-000 0000	-000 0000	-uuu uuuu			
SSPBUF	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
SSPCON	773	774	0000 0000	0000 0000	uuuu uuuu			
CCPR1L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCPR1H	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCP1CON	773	774	00 0000	00 0000	uu uuuu			
RCSTA	773	774	0000 000x	0000 000x	uuuu uuuu			
TXREG	773	774	0000 0000	0000 0000	uuuu uuuu			
RCREG	773	774	0000 0000	0000 0000	uuuu uuuu			
CCPR2L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCPR2H	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCP2CON	773	774	00 0000	00 0000	uu uuuu			
ADRESH	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
ADCON0	773	774	0000 0000	0000 0000	uuuu uuuu			
OPTION_REG	773	774	1111 1111	1111 1111	uuuu uuuu			

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for reset value for specific condition.

Param	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
No.							
A01	NR	Resolution		_	12 bits	bit	Min. resolution for A/D is 1 mV, VREF+ = AVDD = 4.096V, VREF- = AVS8 = 0V, VREF- = AVS8 = 0V,
A03	E⊫	Integral error	_	_	+/-2 LSb		VREF+ = AVDR = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A04	Edl	Differential error		-	+2 LSb -1 LSb		No missing codes to 12-tits VREF+ = AV\$D = 4,296V, WREF- = AV\$S = 0V, VREF- ≤ VA(N ≤ VREF+
A06	EOFF	Offset error	—	_ \	less than ±21_Sb		VREFT = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- \leq VAIN \leq VREF+
A07	Egn	Gain Error	T		+/- 2LSb	LSb	$\label{eq:VREF+} \begin{array}{l} AVDD = 4.096V,\\ VREF- = AVSS = 0V,\\ VREF- \leq VAIN \leq VREF+ \end{array}$
A10	—	Monotonicity	/—/	guaranteed ⁽³⁾	—	_	$AVss \leq Vain \leq Vref+$
A20	VREF	Reference voltage (VREF+ VREF-)	4.096		VDD +0.3V	V	Absolute minimum electrical spec to ensure 12-bit accuracy.
A21	VREF+	Reference V Nigh (AVDD or VREF+)	VREF	—	AVDD	V	Min. resolution for A/D is 1 mV
A22	VREF-	Reference V Low (Avss or VREF-)	AVss	—	VREF+	V	Min. resolution for A/D is 1 mV
A25	VAIN	Analog input voltage	VREFL	—	VREFH	V	
A30	ZAIN	Recommended impedance of analog voltage source	_	—	2.5	kΩ	
A50	REF	VREF input current (Note 2)	_	_	10	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 11.0. During A/D conversion cycle.

TABLE 15-9 A/D CONVERTER CHARACTERISTICS:

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power down current spec includes any such leakage from the A/D module.

2: VREF current is from External VREF+, OR VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

FIGURE 15-10: A/D CONVERSION TIMING (SLEEP MODE)

TABLE 15-11 A/D CONVERSION REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
NOL	\rightarrow						
130† L	TAD	A/D clock period	1.6	—	—	μS	$V_{REF} \ge 2.5V$
		~	TBD	—	—	μs	VREF full range
130*	TAD	A/D Internal RC					ADCS1:ADCS0 = 11 (RC mode)
		oscillator period	3.0	6.0	9.0	μs	At VDD = 3.0V
			2.0	4.0	6.0	μs	At VDD = 5.0V
131*	TCNV	Conversion time (not including acquisition time)(Note 1)	_	13Tad	_	_	
132*	TACQ	Acquisition Time	Note 2	11.5	_	μS	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start	_	Tosc/2 + Tcy	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

FIGURE 15-11: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

	1	$\langle \rangle$	\sim
TADIE 16 10	EVTEDNAL OL	OOV DEOL	INDEMENTO
IADLE 13-12	EXTERINAL OF		/IREI/IEIN 1 3

Param	Sym	Characteristic		1	\rightarrow	Min	Typ†	Max	Units	Conditions
No.			$ \rightarrow $		$\overset{\cdot}{\checkmark}$	\sim				
40*	Tt0H	T0CKI High Pulse ∜	Vidth	No Pre	scaler	0.5TCY + 20	—	—	ns	Must also meet
			///	With Pr	escaler	10	—	—	ns	parameter 42
41*	TtOL	TOCKI Low Pulse W	/iðth 🗸 🗸	No Pre	scaler	0.5TCY + 20	_	—	ns	Must also meet
		$\langle \langle \rangle$		With Pr	rescaler	10	—	—	ns	parameter 42
42*	Tt0P	TOCK Peñod	$\langle \rangle \rangle \sim$	No Pre	escaler	TCY + 40	—	—	ns	
				With P	rescaler	Greater of:	—	—	ns	N = prescale value
		$\land \land \land \checkmark$				20 or <u>TCY + 40</u>				(2, 4,, 256)
		$ \setminus $	/			N				
45*	Ttt1H	DICKI High Time	Synchronous, P	rescaler	· = 1	0.5TCY + 20	—	—	ns	Must also meet
		\wedge	Synchronous,	PIC16C	2 77X	15	—	—	ns	parameter 47
		Ť	Prescaler =	PIC16L	.C 77X	25		_	ns	
			2,4,8							
			Asynchronous	PIC16	2 77X	30	_	—	ns	
	-			PIC16L	.C 77X	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, P	rescaler	· = 1	0.5TCY + 20	—	—	ns	Must also meet
			Synchronous,	PIC16C	2 77X	15	—	—	ns	parameter 47
			Prescaler =	PIC16L	.C 77X	25	—	—	ns	
			2,4,8							
			Asynchronous	PIC16 C	2 77X	30	-	—	ns	
				PIC16L	.C 77X	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16C	2 77X	Greater of:	—	—	ns	N = prescale value
						30 OR <u>TCY + 40</u>				(1, 2, 4, 8)
						N				
				PIC16L	.C 77X	Greater of:	—	—	ns	N = prescale value
						50 OR <u>TCY + 40</u>				(1, 2, 4, 8)
						N				
			Asynchronous	PIC16 C	2 77X	60	-	—	ns	
				PIC16L	.C 77X	100	—	—	ns	
	Ft1	Timer1 oscillator inp	out frequency ran	ge		DC	-	50	kHz	
		(oscillator enabled b	by setting bit T10	SCEN)						
48	TCKEZtmr1	Delay from external	clock edge to tin	ner incre	ement	2Tosc	-	7Tosc	—	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-12: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-13 CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter	Sym	Characteristic			Min	Typ†	Max	Units	Conditions	
No.			\sum							
50*	Tcc	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—		ns		
		nput low time	input low time	input low time	PIC16 C 77X	10	—		ns	
		$\land \land))$	With Prescaler	PIC16 LC 77X	20	_		ns		
51*	TCCH	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—		ns		
	\geq	input high time		PIC16 C 77X	10	—	_	ns		
			With Prescaler	PIC16 LC 77X	20	—	-	ns		
52*	TccP	CCP1 and CCP2 ir	nput period		<u>3Tcy + 40</u>	-		ns	N = prescale value	
					N				(1,4 or 16)	
53*	TccR	CCP1 and CCP2 o	output fall time	PIC16 C 77X	—	10	25	ns		
				PIC16 LC 77X	—	25	45	ns		
54*	TccF	CCP1 and CCP2 o	output fall time	PIC16 C 77X	_	10	25	ns		
				PIC16 LC 77X	_	25	45	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.0 PACKAGING INFORMATION

17.1 Package Marking Information

28-Lead CERDIP Windowed

28-Lead SOIC

28-Lead SSOP

PIC16C773-20/SP

Example

Example

Example

Legend: MMM	Microchip part number information				
XXX	Customer specific information*				
AA	Year code (last 2 digits of calendar year)				
BB	Week code (week of January 1 is week '01')				
С	Facility code of the plant at which wafer is manufactured				
	O = Outside Vendor				
	C = 5" Line				
	S = 6" Line				
	H = 8" Line				
D	Mask revision number				
E	Assembly code of the plant or country of origin in which				
	part was assembled				
Note: In the eve	nt the full Microchip part number cannot be marked on one line, it will				
be carried	be carried over to the next line thus limiting the number of available characters				
for custor	ner specific information.				

* Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

· · · · · · · · · · · · · · · · · · ·
RC0/T1OSO/T1CKI Pin7, 9
RC1/T1OSI/CCP2 Pin7, 9
Special Event Trigger (CCP) 43, 49
T1CON Register41
TMR1H Register41
TMR1L Register41
Timer2
Block Diagram46
PR2 Register 45, 50
SSP Clock Shift 45, 46
T2CON Register45
TMR2 Register45
TMR2 to PR2 Match Enable (TMR2IE Bit)
TMR2 to PR2 Match Flag (TMR2IF Bit)
TMR2 to PR2 Match Interrupt 45, 46, 50
Timing Diagrams
Acknowledge Sequence Timing
Baud Rate Generator with Clock Arbitration
BRG Reset Due to SDA Collision
Brown-out Reset 163
Bus Collision
Start Condition Timing 91
Bus Collision During a Bestart Condition (Case 1) 93
Bus Collision During a Restart Condition (Case 1)
Bus Collision During a Start Condition ($Case2$)
Bus Collision During a Start Condition (SOL = 0)
Bus Collision burning a Stop Condition
Bus Collision for Transmit and Acknowledge
CLKOUT and I/O
CLROUT and I/O
External Clock Timing
I ⁻ C Master Mode First Start bit timing
I-C Master Mode Reception timing
I ² C Master Mode Transmission timing
I ² C Master Mode Transmission timing
I ² C Master Mode Transmission timing
I ² C Master Mode Transmission timing81 Master Mode Transmit Clock Arbitration89 Power-up Timer
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Receiption 109
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Transmission 108, 171
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer1 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 108, 171 USART, Asynchronous Reception 108, 171
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART, Asynchronous Reception 108, 171 USART, Asynchronous Reception 105 Wake-up from SLEEP via Interrupt 141
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 108, 171 USART, Asynchronous Reception 105 Wake-up from SLEEP via Interrupt 141
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 15
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 15 TMR0 Register 13 TMR1H 15
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 15 TMR0 Register 13 TMR1H Register 13
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Receivin 109 USART Synchronous Receiption 108, 171 USART, Asynchronous Receiption 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 15 TMR0 Register 13 TMR1H 15 TMR1H 15
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Synchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 Register 13 TMR1H Register 13 TMR1H Register 13 TMR1L Register 13
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 Register 13 TMR1H 15 TMR1H Register 13 TMR1L Register 13 TMR12 15
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Synchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 108 TIMBO Register 163 TMR0 Register 15 TMR1H Register 13 TMR1L Register 13 TMR2 13 TMR2 13
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 Register 13 TMR1H 15 TMR1L Register 13 TMR2 13 TMR2 Register 13 TMR2 Register 13
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Synchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 108, 171 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR1H 15 TMR1H Register 13 TMR1H Register 13 TMR2 15 TMR2 Register 14 TARS Register 14
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 108 USART Asynchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 Register 13 TMR1H Register 13 TMR1L Register 13 TMR2 15 TMR2 Register 14 TMR2 Register 14
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Synchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 15 TMR1H 15 TMR1H Register 13 TMR1L Register 13 TMR2 Register 14 TMR2 Register 14 TMR2 Register 14 TRISD Register 14 TRISC Register 14
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 108, 171 USART, Asynchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 Register 13 TMR1H 15 TMR1L 15 TMR2 15 TMR2 Register 14 TMS2 Register 14 TISE Register 14 TIRISA Register 14 TRISC Register 14 TRISC Register 14 TRISC Register 14
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Receive 171 USART Synchronous Receivin 109 USART Synchronous Receivin 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 15 TMR1H 15 TMR1H Register 13 TMR2 15 TMR2 Register 14 TMR2 Register 14 TMSD Register 14 TISE Register 14 TISE Register 14 TISE Register 14 TISE Register 14
I ² C Master Mode Transmission timing 81 Master Mode Transmit Clock Arbitration 89 Power-up Timer 163 Repeat Start Condition 76 Reset 163 Slave Synchronization 60 Start-up Timer 163 Stop Condition Receive or Transmit 87 Time-out Sequence on Power-up 135, 136 Timer0 168 Timer1 168 USART Asynchronous Master Transmission 103 USART Synchronous Receive 171 USART Synchronous Reception 109 USART Synchronous Reception 108, 171 USART Synchronous Reception 105 Wake-up from SLEEP via Interrupt 141 Watchdog Timer 163 TMR0 Register 13 TMR1H Register 13 TMR1H Register 13 TMR2 Register 14 TRISA Register 14 TISC Register 14 TISC Register 14 TISC Register 14 TIRISC Register 14 TIRISE Register

PSPMODE Bit	34, 35, 37
TXREG	15
TXSTA Register	97
BRGH Bit	97, 99
CSRC Bit	97
SYNC Bit	97
TRMT Bit	
TX9 Bit	97
TX9D Bit	97
TXEN Bit	97

U

UA	54
Universal Synchronous Asynchronous Receiver Transn	nitter
(USART)	
Asynchronous Receiver	
Setting Up Reception	104
Timing Diagram	105
Update Address, UA	
USABT	
Asynchronous Mode	102
Master Transmission	103
Receive Block Diagram	105
Transmit Block Diagram	102
Baud Bate Generator (BBG)	99
Baud Rate Error Calculating	
Baud Rate Formula	99
Baud Rates Asynchronous Mode (BBGH=0)	100
Baud Rates, Asynchronous Mode (BRGH=1)	101
Baud Rates, Synchronous Mode	100
High Baud Bate Select (BBGH Bit) 9	7 99
Sampling	00
Clock Source Select (CSBC Bit)	33
Continuous Receive Enable (CREN Bit)	37
Eroming Error (EEDD Bit)	90
Mode Select (SVNC Bit)	90
	37
Dreituri Erior (DERR Bit)	90
	7,9
	7,9
RUSTA Register	90
Receive Data, still bit (RASD bit)	90
	19
Receive Enable, 9-bit (RX9 Bit)	98
Receive Flag (RUIF Bit)	20
Serial Port Enable (SPEN Bit)	r, 98
Single Receive Enable (SREN Bit)	98
Synchronous Master Mode	107
	109
Transmission	108
Synchronous Slave Mode	110
Transmit Data, 9th Bit (TX9D)	97
Transmit Enable (TXEN Bit)	97
Transmit Enable (TXIE Bit)	19
Transmit Enable, Nine-bit (TX9 Bit)	97
Transmit Flag (TXIE Bit)	20
Transmit Shift Register Status (TRMT Bit)	97
TXSTA Register	97

PIC16C77X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-xx x /</u>	<u>/xx xxx</u>	Examples:
Device Fr	equency Temperature Pac Range Range	ckage Pattern	 pIC16C774 -04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301.
Device	PIC16C77X ⁽¹⁾ , PIC16C77XT ⁽²⁾ ;y PIC16LC77X ⁽¹⁾ , PIC16LC77XT ⁽²⁾	VDD range 4.0V to 5.5V ²⁾ ;VDD range 2.5V to 5.5V	 h) PIC16LC773 - 04I/SO = Industrial temp., SOIC package, 200 kHz, Extended VDD limits. i) PIC16C774 - 20I/P = Industrial temp., PDIP package, 20MHz, normal VDD limits.
Frequency Range	04 = 4 MHz 20 = 20 MHz		Note 1: C = CMOS
Temperature Range	$b^{(3)} = 0^{\circ}C \text{ to } 70^{\circ}C $ (0 I = -40°C to +85°C (1	(Commercial) Industrial)	LC = Low Power CMOS T = in tape and reel - SOIC, SSOP, PLCC, MQFP, TQFP packages only. 2: b = blank
Package	JW = Windowed CERDIP, PQ = MQFP (Metric PQFI PT = TOFP (Thin Quad F SO = SOIC SP = Skinny plastic dip P = PDIP L = PLCC SS = SSOP	P/Ceramic 'P) Flatpack)	
Pattern	QTP, SQTP, Code or Special Rec (blank otherwise)	quirements	

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.