

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c774-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PICmicro™ Mid-Range Reference Manual (DS33023)	PIC16C773	PIC16C774
Operating Frequency	DC - 20 MHz	DC - 20 MHz
Resets (and Delays)	POR, BOR, MCLR, WDT (PWRT, OST)	POR, BOR, MCLR, WDT (PWRT, OST)
Program Memory (14-bit words)	4K	4K
Data Memory (bytes)	256	256
Interrupts	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3
Capture/Compare/PWM modules	2	2
Serial Communications	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP
12-bit Analog-to-Digital Module	6 input channels	10 input channels
Instruction Set	35 Instructions	35 Instructions

Table of Contents

1.0 Device Overview	5
2.0 Memory Organization	11
3.0 I/O Ports	
4.0 Timer0 Module	
5.0 Timer1 Module	41
6.0 Timer2 Module	45
7.0 Capture/Compare/PWM (CCP) Module(s)	
8.0 Master Synchronous Serial Port (MSSP) Module	53
9.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
10.0 Voltage Reference Module and Low-voltage Detect	113
11.0 Analog-to-Digital Converter (A/D) Module	117
12.0 Special Features of the CPU	127
13.0 Instruction Set Summary	143
14.0 Development Support	145
15.0 Electrical Characteristics	151
16.0 DC and AC Characteristics Graphs and Tables	173
17.0 Packaging Information	175
Appendix A: Revision History	187
Appendix B: Device Differences	187
Appendix C: Conversion Considerations	187
Index	189
Bit/Register Cross-Reference List	196
On-Line Support	197
Reader Response	198
PIC16C77X Product Identification System	199

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please check our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.


1.0 DEVICE OVERVIEW

This document contains device-specific information. Additional information may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

There a two devices (PIC16C773 and PIC16C774) covered by this datasheet. The PIC16C773 devices come in 28-pin packages and the PIC16C774 devices come in 40-pin packages. The 28-pin devices do not have a Parallel Slave Port implemented.

The following two figures are device block diagrams sorted by pin number; 28-pin for Figure 1-1 and 40-pin for Figure 1-2. The 28-pin and 40-pin pinouts are listed in Table 1-1 and Table 1-2, respectively.

2.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the peripheral interrupts.

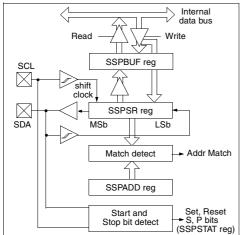
Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 2-7: PIR1 REGISTER (ADDRESS 0Ch)

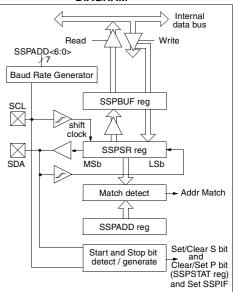
R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
PSPIF ⁽¹⁾ bit7	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R = Readable bit W = Writable bit	
2							5110	U = Unimplemented bit, read as '0' - n = Value at POR reset	
bit 7:		d or a write	e operatio	n has take	e Interrupt I en place (m		red in soft	ware)	
bit 6:	ADIF : A/E 1 = An A/I 0 = The A	D convers	ion compl	eted (mus	t be cleared	d in softwa	re)		
bit 5:	RCIF : US 1 = The U 0 = The U	ISART rec	eive buffe	r is full (cl	eared by re	ading RCF	REG)		
bit 4:	TXIF : USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty (cleared by writing to TXREG) 0 = The USART transmit buffer is full								
bit 3:	SSPIF : Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive								
bit 2:	CCPTIF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode								
bit 1:	 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred 								
bit 0:	TMR1IF : 1 1 = TMR1 0 = TMR1	register o	overflowed	l (must be	bit cleared in s	software)			
Note 1:	PSPIF is	reserved o	on the 28-	pin device	s, always m	naintain thi	s bit clear.		

FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
SMP	CKE	D/A	Р	S	R/W	UA	BF	R =Readable bit
bit7							bit0	W =Writable bit U =Unimplemented bit, read as '0' - n =Value at POR reset
oit 7:	<u>SPI Ma</u>	ample bi ster Mod	<u>e</u>	end of data	a output time			
	0 = Inpi <u>SPI Sla</u>	ut data sa <u>ve Mode</u>	impled at i	middle of c	lata output ti ed in slave r	me		
	1= Slev	rate cor		ed for star	dard speed	•	<hz 1="" and="" i<="" td=""><td>MHz)</td></hz>	MHz)
oit 6:	CKP =	<u>0</u>	-	ect (Figure	8-6, Figure 8	3-8, and Fig	ure 8-9)	
	0 = Dat <u>CKP =</u> 1 = Dat	a transmi <u>1</u> a transmi	tted on fal tted on fal	ling edge o ling edge o ling edge o	of SCK of SCK			
oit 5:	1 = Indi	cates tha	t the last b		/) ed or transm ed or transm			
oit 4:	1 = Indi	de only. cates tha		t has been	en the MSS detected las			SSPEN is cleared) ET)
oit 3:	1 = Indi	de only. cates tha		it has beer	en the MSS			SSPEN is cleared) EET)
oit 2:	This bit address	holds the match te holds the holds the holds the holds are holds and holds the holds are holds and holds the holds are holds a	e R/W bit the next	informatio	mode only) on following top bit, or no		lress matc	h. This bit is only valid from th
	0 = Wri <u>In I²C n</u> 1 = Trai 0 = Trai	te <u>naster mo</u> nsmit is ir nsmit is n	n progress ot in progr	ess.		KEN will in	diagta if th	e MSSP is in IDLE mode
oit 1:	UA : Up 1 = Indi	date Add cates tha	ress (10-b t the user	it I ² C mod	e only) Ipdate the ac			
oit O:	<u>Receive</u> 1 = Rec 0 = Rec <u>Transm</u>	eive com eive not it (l ² C mo	<u>d I²C mod</u> plete, SSI complete, <u>ode only)</u>	PBUF is fu SSPBUF i				


8.2 MSSP I²C Operation

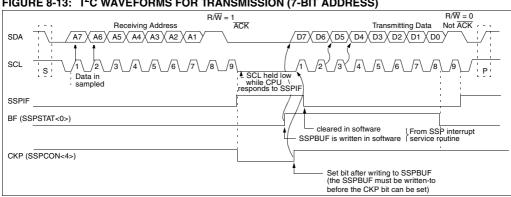
The MSSP module in I²C mode fully implements all master and slave functions (including general call support) and provides interrupts on start and stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

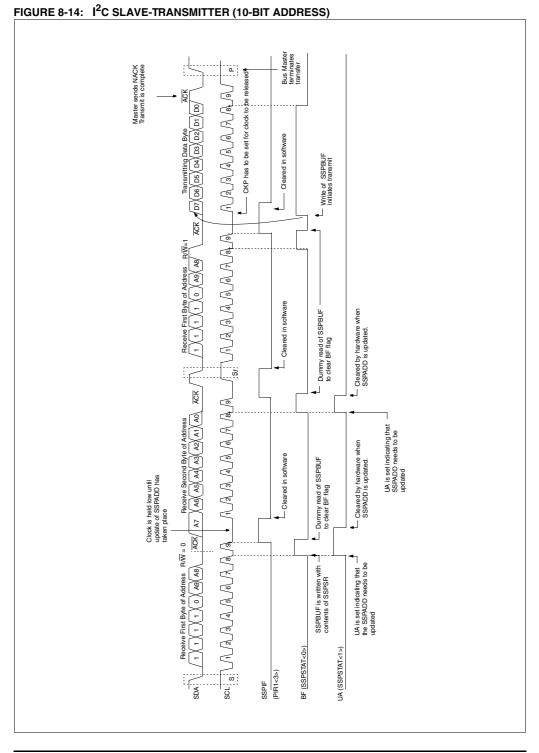

Refer to Application Note AN578, "Use of the SSP Module in the I²C Multi-Master Environment."

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of the pin that is independent of device frequency.

FIGURE 8-11: I²C MASTER MODE BLOCK DIAGRAM

Two pins are used for data transfer. These are the SCL pin, which is the clock, and the SDA pin, which is the data. The SDA and SCL pins that are automatically configured when the l^2C mode is enabled. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).


The MSSP module has six registers for ${\rm I}^2 C$ operation. They are the:


- SSP Control Register (SSPCON)
- SSP Control Register2 (SSPCON2)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Master mode, clock = OSC/4 (SSPADD +1)

Before selecting any I^2C mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate TRIS bits. Selecting an I^2C mode, by setting the SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in I^2C mode.

SLEEP OPERATION 8.2.3

While in sleep mode, the I²C module can receive addresses or data, and when an address match or complete byte transfer occurs wake the processor from sleep (if the SSP interrupt is enabled).

EFFECTS OF A RESET 8.2.4

A reset diables the SSP module and terminates the current transfer.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR2	LVDIF	—		-	BCLIF	—	_	CCP2IF	00	00
PIE2	LVDIE	_	_	_	BCLIE	_	_	CCP2IE	00	00
SSPBUF	Synchronou	is Serial Po	rt Receive	Buffer/Tra	ansmit Reg	ister			xxxx xxxx	uuuu uuuu
SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPCON2	GCEN	AKSTAT	AKDT	AKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
	INTCON PIR1 PIE1 PIR2 PIE2 SSPBUF SSPCON SSPCON2	INTCON GIE PIR1 PSPIF ⁽¹⁾ PIE1 PSPIE ⁽¹⁾ PIR2 LVDIF PIE2 LVDIE SSPBUF Synchronou SSPCON WCOL SSPCON2 GCEN	INTCON GIE PEIE PIR1 PSPIF ⁽¹⁾ ADIF PIE1 PSPIE ⁽¹⁾ ADIF PIR2 LVDIF PIE2 LVDIE SSPBUF Synchronous Serial Po SSPCON WCOL SSPOV SSPCON2 GCEN AKSTAT	INTCONGIEPEIETOIEPIR1PSPIF(1)ADIFRCIFPIE1PSPIE(1)ADIERCIEPIR2LVDIFPIE2LVDIESSPBUFSynchronous Serial PortRceiveSSPCONWCOLSSPOVSSPENSSPCON2GCENAKSTATAKDT	INTCONGIEPEIETOIEINTEPIR1PSPIF(1)ADIFRCIFTXIFPIE1PSPIE(1)ADIERCIETXIEPIR2LVDIFPIE2LVDIESSPBUFSynchronous serial Der Recieve Buffer/TriSSPCONWCOLSSPOVSSPENCKPSSPCON2GCENAKSTATAKDTAKEN	INTCONGIEPEIETOIEINTERBIEPIR1PSPIF(1)ADIFRCIFTXIFSSPIFPIE1PSPIF(1)ADIERCIETXIFSSPIFPIR2LVDIFIBCLIFPIE2LVDIEIBCLIFSSPBUFSynchronous Serial Port Receive Buffer/Trasmit RegSSPCONWCOLSSPOVSSPENCKPSSPMSSPCON2GCENAKSTATAKENAKENRCEN	INTCONGIEPEIETOIEINTERBIETOIFPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFSSPIFCCP1IFPIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIECCP1IEPIR2LVDIFBCLIFPIE2LVDIEBCLIESSPBUFSynchronous Serial Port Receive Buffer/Trasmit RegisterSSPMKKPSSPMSSPCON2GCENAKSTATAKENAKENRCENPEN	INTCONGIEPEIETOIEINTERBIETOIFINTFPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFSSPIFCCP1IFTMR2IFPIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIECCP1IETMR2IEPIR2LVDIFBCLIFPIE2LVDIEBCLIESSPBUFSynchronous Serial Port Receive Buffer/Tursmit RegisterSSPM2SSPM1SSPM3SSPM2SSPCON2GCENAKSTATAKDTAKENRCENPENRSEN	INTCONGIEPEIETOIEINTERBIETOIFINTFRBIFPIR1PSPIF ⁽¹⁾ ADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IFPIE1PSPIE ⁽¹⁾ ADIERCIETXIESSPIECCP1IETMR2IETMR1IEPIR2LVDIFBCLIFCCP2IESPBUFSynchronous Serial Port Receive Buffer/Trasmit RegistrSSPM3SSPM2SSPM1SSPM0SSPCON2GCENAKSTATAKDTAKENRCENPENRSENSEN	INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF 0000 0000x PIR1 PSPIF ⁽¹⁾ ADIF RCIE TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 PIR1 PSPIF ⁽¹⁾ ADIF RCIE TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 PIR1 PSPIF ⁽¹⁾ ADIF RCIE TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 PIR2 LVDIF BCLIF 00 0 0000 0000 PIE2 LVDIE BCLIE 00 0 00 0 0000

REGISTERS ASSOCIATED WITH I²C OPERATION TABLE 8-3

x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in I²C mode. Legend:

These bits are reserved on the 28-pin devices, always maintain these bits clear. Note 1:

2:

8.2.6 MULTI-MASTER OPERATION

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle with both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored, for abitration, to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

8.2.7 I²C MASTER OPERATION SUPPORT

Master Mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. Once master mode is enabled, the user has six options.

- Assert a start condition on SDA and SCL.
- Assert a Repeated Start condition on SDA and SCL.
- Write to the SSPBUF register initiating transmission of data/address.
- Generate a stop condition on SDA and SCL.
- Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.
- Note: The MSSP Module, when configured in I²C Master Mode, does not allow queueing of events. For instance: The user is not allowed to initiate a start condition, and immediately write the SSPBUF register to initiate transmission before the START condition is complete. In this case the SSPBUF will not be written to, and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

8.2.7.4 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the l^2C bus will not be released.

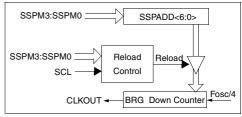
In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/\overline{W}) bit. In this case, the R/\overline{W} bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master receive mode the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/ \overline{W} bit. In this case the R/ \overline{W} bit will be logic '1'. Thus the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

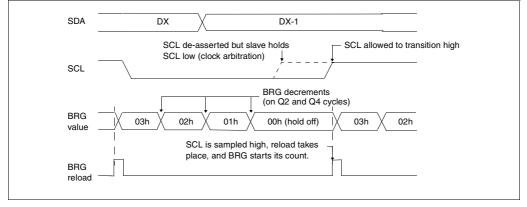
The baud rate generator used for SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz, or 1 MHz I^2C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSP-BUF. Once the given operation is complete (i.e. transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state

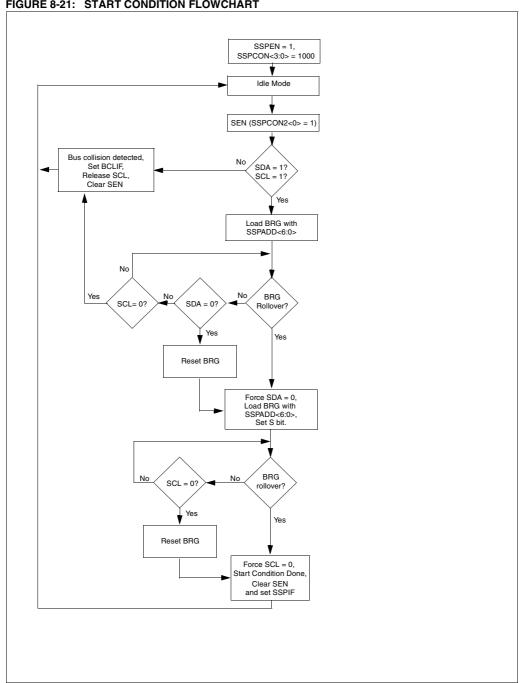
A typical transmit sequence would go as follows:

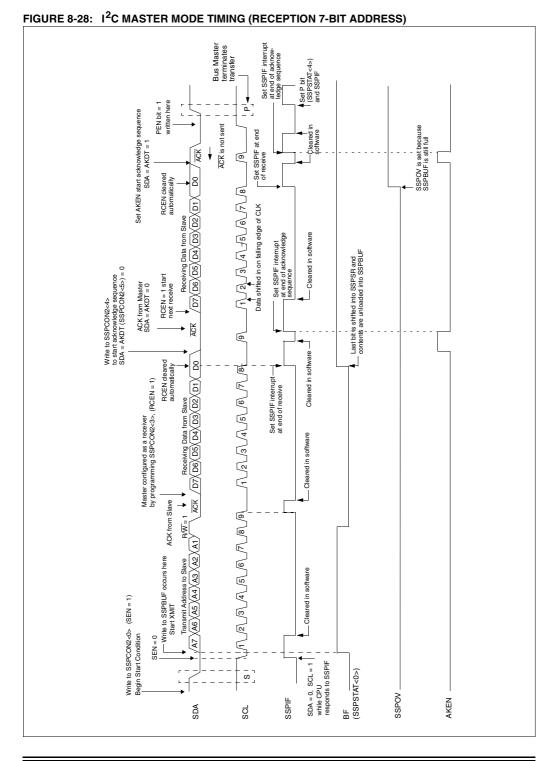
- a) The user generates a Start Condition by setting the START enable bit (SEN) in SSPCON2.
- b) SSPIF is set. The module will wait the required start time before any other operation takes place.
- c) The user loads the SSPBUF with address to transmit.
- d) Address is shifted out the SDA pin until all 8 bits are transmitted.
- e) The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) The user loads the SSPBUF with eight bits of data.
- h) DATA is shifted out the SDA pin until all 8 bits are transmitted.

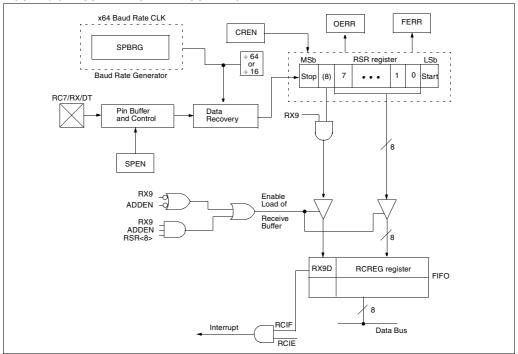

- The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user generates a STOP condition by setting the STOP enable bit PEN in SSPCON2.
- I) Interrupt is generated once the STOP condition is complete.

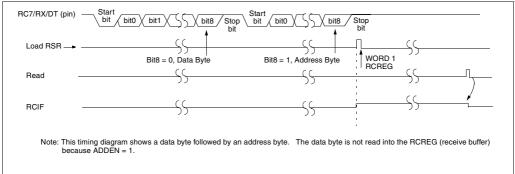
8.2.8 BAUD RATE GENERATOR


In l^2 C master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 8-18). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TCY) on the Q2 and Q4 clock.


In I²C master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 8-19).


FIGURE 8-18: BAUD RATE GENERATOR BLOCK DIAGRAM





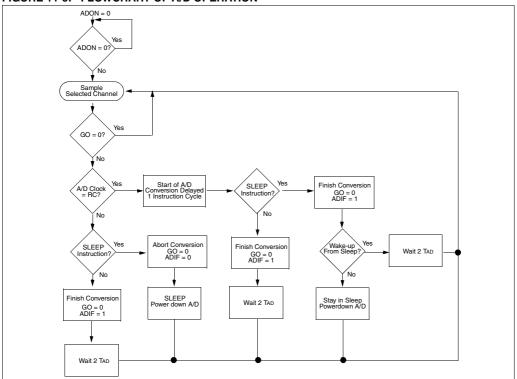


FIGURE 9-6: USART RECEIVE BLOCK DIAGRAM

FIGURE 9-7: ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

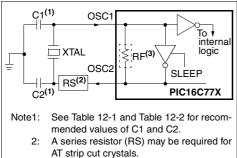
FIGURE 12-1: CONFIGURATION WORD

CP1	CP0	BORV1	BORV0	CP1	CP0	-	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register: Address	CONFIG 2007h
bit13	12	11	10	9	8	7	6	5	4	3	2	1	bit0	Address	2007h
oit 13	-12: (CP1:CP	0: Code	Prote	ction b	oits ⁽²⁾								1	
bit 9-8	3: ·	11 = Pro	gram m	emory	code p	rotecti	on off								
oit 5-4		10 = 080													
		01 = 040													
		00 = 000			•			(3)							
bit 11					n-out F	eset V	oltage bit	s ⁽³⁾							
		11 = Vвс 10 = Vвс													
		0 = VBC													
	(00 = Vвс	R set to	4.5V											
bit 7:	I	Unimple	mented	I, Rea	d as '1'										
bit 6:		BODEN:	Brown-	out Re	eset En	able bi	_† (1)								
		1 = Brow													
	() = Brow	n-out R	eset d	isabled										
bit 3:	ī	WRTE:	Power-	up Tin	ner Ena	ble bit	(1)								
		1 = PWF													
	(D = PWF	RT enabl	ed											
bit 2:		WDTE: \		0	er Enał	ole bit									
		1 = WDT		-											
		O = WDT		-											
bit 1-0		FOSC1:			ator Se	lectior	bits								
		11 = RC 10 = HS													
		0 = HS 01 = XT (
		00 = LP													
Note													dless of th	ne value of b	it PWRTE.
							ed anytim						tion scher	na listad	
														election of a	n unused
							nterrupt.	, 000							

12.2 Oscillator Configurations

12.2.1 OSCILLATOR TYPES

The PIC16C77X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:


- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-2). The PIC16C77X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications.

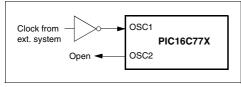

A difference from the other mid-range devices may be noted in that the device can be driven from an external clock only when configured in HS mode (Figure 12-3).

FIGURE 12-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 12-3: EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

TABLE 12-1 CERAMIC RESONATORS

Ranges Te	Ranges Tested:					
Mode	Freq	OSC1	OSC2			
XT	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF	68 - 100 pF 15 - 68 pF 15 - 68 pF			
HS	8.0 MHz 16.0 MHz	10 - 68 pF 10 - 22 pF	10 - 68 pF 10 - 22 pF			
	es at bottom of p	or design guidar bage.	nce only. See			
455 kHz	Panasonic E	FO-A455K04B	± 0.3%			
2.0 MHz	Murata Erie	CSA2.00MG	$\pm 0.5\%$			
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz Murata Erie CSA16.00MX ± 0.5%						
All reso	onators used did	d not have built-in	capacitors.			

TABLE 12-2 CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF	15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	15-33 pF	15-33 pF
	20 MHz	15-33 pF	15-33 pF
	values are at bottom of	for design guida r page.	nce only. See
	Crys	tals Used	
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM
200 kHz	STD XTL 2	± 20 PPM	
1 MHz	ECS ECS-	± 50 PPM	
4 MHz	ECS ECS-4	40-20-1	± 50 PPM
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM
20 MHz	EPSON CA	-301 20.000M-C	± 30 PPM

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 12-1).

- Higher capacitance increases the stability of oscillator but also increases the start-up time.
- Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

FIGURE 12-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT(4)	Tost(2)		\;	\	
INT pin			1 i	1	
INTF flag	<u>لې او </u>		Interrupt Latency		
(INTCOŇ<1>)			(Note 2)	1	1
GIE bit (INTCON<7>)	Processor in		·	1	
(SLEEP		· ·	I I	1
INSTRUCTION FLOW			1 I 1 I	I I	I I
PC X PC X PC+1	PC+2	PC+2	χ PC + 2	(0004h	(0005h
Instruction { Inst(PC) = SLEEP Inst(PC + 1)		Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP oscillator mode assumed.	-				

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

12.14 Program Verification/Code Protection

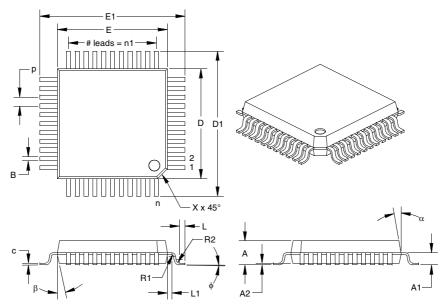
If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

12.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.


12.16 In-Circuit Serial Programming

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, (DS30277).

17.9 K04-071 44-Lead Plastic Quad Flatpack (PQ) 10x10x2 mm Body, 1.6/0.15 mm Lead Form

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES		MI	LLIMETERS	*
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.031			0.80	
Number of Pins	n		44			44	
Pins along Width	n1		11			11	
Overall Pack. Height	A	0.079	0.086	0.093	2.00	2.18	2.35
Shoulder Height	A1	0.032	0.044	0.056	0.81	1.11	1.41
Standoff	A2	0.002	0.006	0.010	0.05	0.15	0.25
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.012	0.015	0.13	0.30	0.38
Foot Length	L	0.015	0.020	0.025	0.38	0.51	0.64
Foot Angle	φ	0	3.5	7	0	3.5	7
Radius Centerline	L1	0.011	0.016	0.021	0.28	0.41	0.53
Lead Thickness	с	0.005	0.007	0.009	0.13	0.18	0.23
Lower Lead Width	Bţ	0.012	0.015	0.018	0.30	0.37	0.45
Outside Tip Length	D1	0.510	0.520	0.530	12.95	13.20	13.45
Outside Tip Width	E1	0.510	0.520	0.530	12.95	13.20	13.45
Molded Pack. Length	D‡	0.390	0.394	0.398	9.90	10.00	10.10
Molded Pack. Width	E‡	0.390	0.394	0.398	9.90	10.00	10.10
Pin 1 Corner Chamfer	Х	0.025	0.035	0.045	0.635	0.89	1.143
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	12	15	5	12	15

Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E." JEDEC equivalent:MS-022 AB

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	2: Technical Publications Manager	Total Pages Sent
RE:	E: Reader Response	
From	om: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
• •	oplication (optional):	
Wou	ould you like a reply?YN	
Dev	evice: PIC16C77X Literature Number: DS30	275B
Que	uestions:	
4	What are the best features of this document?	
1.	what are the best leatures of this document?	
2.	How does this document meet your hardware and software	development needs?
3.	Do you find the organization of this data sheet easy to follow	v? If not, why?
4.	What additions to the data sheet do you think would enhance	ce the structure and subject?
		<i></i>
5.	What deletions from the data sheet could be made without a	affecting the overall usefulness?
6	Is there any incorrect or misleading information (what and w	where)?
0.		
7.	How would you improve this document?	
8.	How would you improve our software, systems, and silicon p	products?