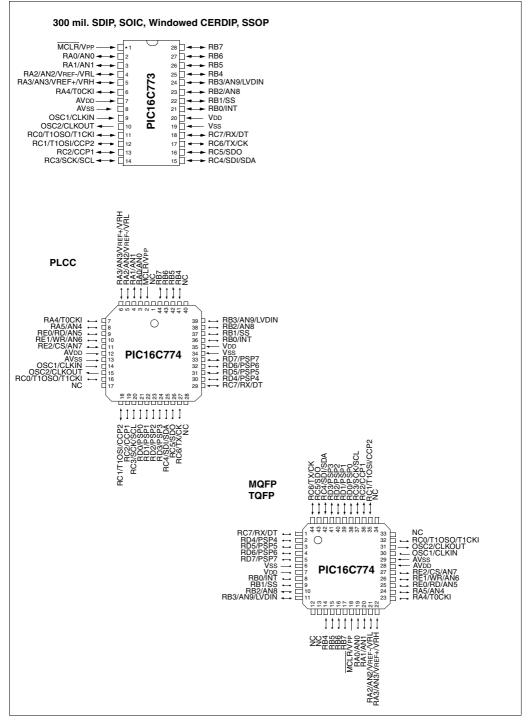


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c774-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Table of Contents

1.0 Device Overview	5
2.0 Memory Organization	11
3.0 I/O Ports	
4.0 Timer0 Module	
5.0 Timer1 Module	41
6.0 Timer2 Module	45
7.0 Capture/Compare/PWM (CCP) Module(s)	
8.0 Master Synchronous Serial Port (MSSP) Module	53
9.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART)	
10.0 Voltage Reference Module and Low-voltage Detect	113
11.0 Analog-to-Digital Converter (A/D) Module	117
12.0 Special Features of the CPU	127
13.0 Instruction Set Summary	143
14.0 Development Support	145
15.0 Electrical Characteristics	151
16.0 DC and AC Characteristics Graphs and Tables	173
17.0 Packaging Information	175
Appendix A: Revision History	187
Appendix B: Device Differences	187
Appendix C: Conversion Considerations	187
Index	189
Bit/Register Cross-Reference List	196
On-Line Support	197
Reader Response	198
PIC16C77X Product Identification System	199

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please check our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (602) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

TABLE 1-2 P	PIC16C774 PINOUT DESCRIPTION	(Cont.'d)
-------------	------------------------------	-----------

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/ output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O ($I^{2}C$ mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
						PORTD is a bi-directional I/O port or parallel slave port
						when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽³⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽³⁾ ST/TTL ⁽³⁾	
RD3/PSP3 RD4/PSP4	22 27	24 30	41 2	1/O 1/O	ST/TTL ⁽³⁾	
RD5/PSP5	27	30	2	1/O	ST/TTL ⁽³⁾	
RD6/PSP6	20 29	32	4	1/O	ST/TTL ⁽³⁾	
RD7/PSP7	29 30	32	4 5	1/O	ST/TTL ⁽³⁾	
	30		5	1/0	31/112	PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
AVss	12	13	29	Р		Ground reference for A/D converter
AVDD	11	12	28	Р		Positive supply for A/D converter
Vss	31	34	6	Р	_	Ground reference for logic and I/O pins.
VDD	32	35	7	P	_	Positive supply for logic and I/O pins.
NC	-	1,17,28, 40	12,13, 33,34		-	These pins are not internally connected. These pins should be left unconnected.
Legend: I = input	O = outp	ut	I/C) = input	/output	P = power
	— = Not	used	TT	L = TTL	. input	ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

PIC16C77X

2.2.2.5 PIR1 REGISTER

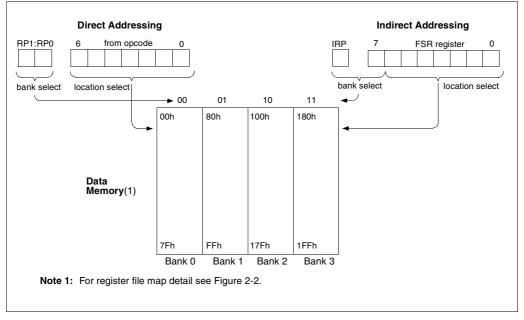
This register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 2-7: PIR1 REGISTER (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
PSPIF ⁽¹⁾ bit7	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF bit0	R = Readable bit W = Writable bit
2							5110	U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7:		d or a write	e operatio	n has take	e Interrupt I en place (m		red in softw	ware)
bit 6:	ADIF : A/E 1 = An A/I 0 = The A	D convers	ion compl	eted (mus	t be cleared	d in softwa	re)	
bit 5:	RCIF : US 1 = The U 0 = The U	ISART rec	eive buffe	r is full (cl	eared by re	ading RCF	REG)	
bit 4:	TXIF : US/ 1 = The U 0 = The U	ISART trai	nsmit buffe	er is empty	t y (cleared	by writing t	o TXREG)	
bit 3:		, ansmissio	n/receptic	on is comp	pt Flag bit lete (must l	be cleared	in software	9)
bit 2:	0 = No TM Compare	<u>Aode</u> R1 registe MR1 regist <u>Mode</u> R1 registe MR1 regist <u>de</u>	r capture er capture r compare er compa	occurred (e occurred e match oc	curred (mu			rare)
bit 1:	TMR2IF: 1 = TMR2 0 = No TM	to PR2 m	natch occu	irred (mus	Flag bit t be cleared	d in softwa	re)	
bit 0:	TMR1IF : 1 1 = TMR1 0 = TMR1	register o	overflowed	l (must be	bit cleared in s	software)		
Note 1:	PSPIF is	reserved o	on the 28-	pin device	s, always m	naintain thi	s bit clear.	

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.


Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	incf btfss	FSR INDF FSR FSR,4	; to RAM ;clear INDF register ;inc pointer ;all done?
	goto	NEX.L.	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-11.

FIGURE 2-11: DIRECT/INDIRECT ADDRESSING

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro™ Mid-Range Reference Manual, (DS33023).

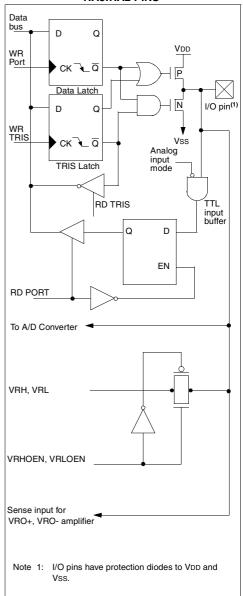
3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide bi-directional port for the 40/44 pin devices and is 5-bits wide for the 28-pin devices. PORTA<5> is not on the 28-pin devices. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, i.e., put the contents of the output latch on the selected pin.

Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF inputs and precision on-board references (VRL/VRH). The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS,	RP0	;	
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<5:4> as outputs
			;	TRISA<7:6> are always
			;	read as '0'.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA2 PINS

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- · Reset from CCP module trigger

Timer1 has a control register, shown in Figure 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-3 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PICmicro™ Mid-Range Reference Manual, (DS33023).

5.1 **Timer1 Operation**

Timer1 can operate in one of these modes:

- · As a timer
- · As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit. TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 7.0).

T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h) U-0 U-0 R/W-0 R/W-0 B/W-0 R/W-0 **B/W-0** R/W-0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON R = Readable bit W = Writable bit bit7 bit0 = Unimplemented bit, U read as '0' n = Value at POR reset bit 7-6: Unimplemented: Read as '0' bit 5-4: T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value T1OSCEN: Timer1 Oscillator Enable Control bit hit 3 1 = Oscillator is enabled 0 = Oscillator is shut off Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain T1SYNC: Timer1 External Clock Input Synchronization Control bit bit 2: TMR1CS = 11 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0. TMR1CS: Timer1 Clock Source Select bit bit 1: 1 = External clock from pin RC0/T1OSO/T1CKI (on the rising edge) 0 = Internal clock (Fosc/4)

FIGURE 5-1:

- 1 = Enables Timer1
- 0 = Stops Timer1

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE(S)

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 7-1 shows the timer resources of the CCP module modes.

The operation of CCP1 is identical to that of CCP2, with the exception of the special trigger. Therefore, operation of a CCP module in the following sections is described with respect to CCP1.

Table 7-2 shows the interaction of the CCP modules.

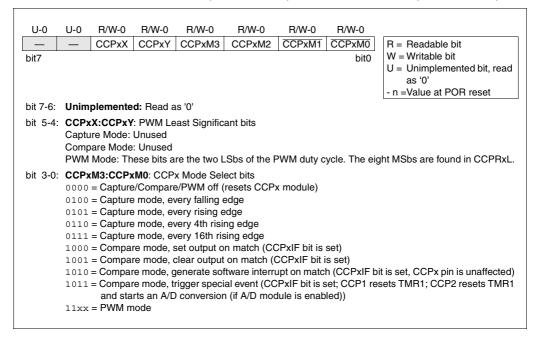
CCP1 Module

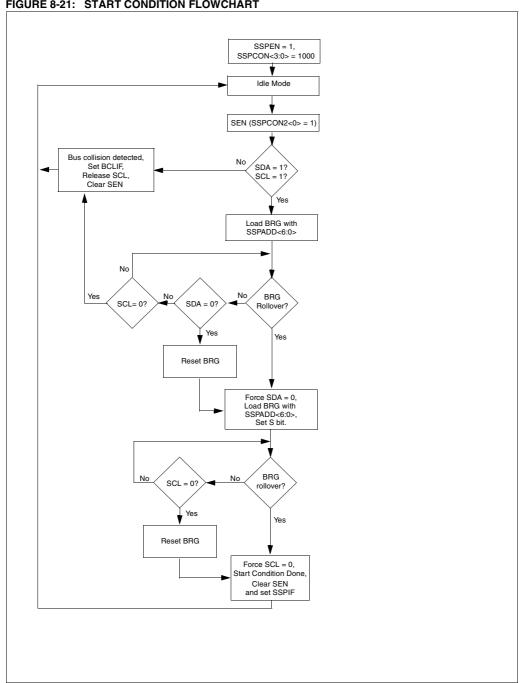
Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

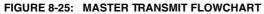
CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

Additional information on the CCP module is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).


TABLE 7-1 CCP MODE - TIMER RESOURCE


CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2


CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

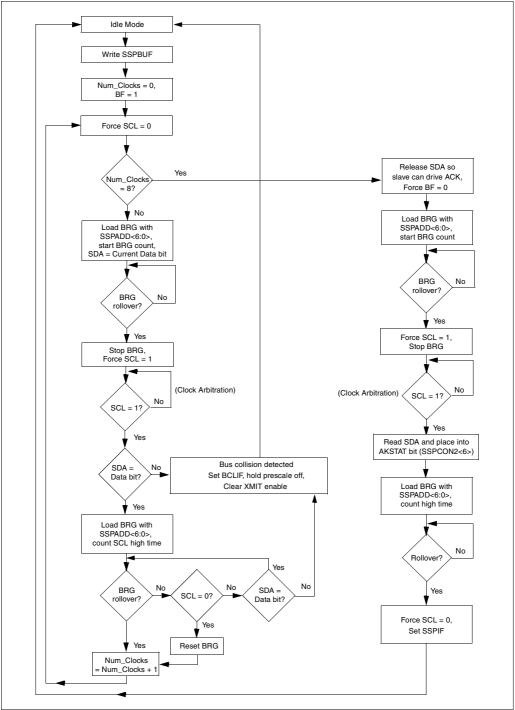
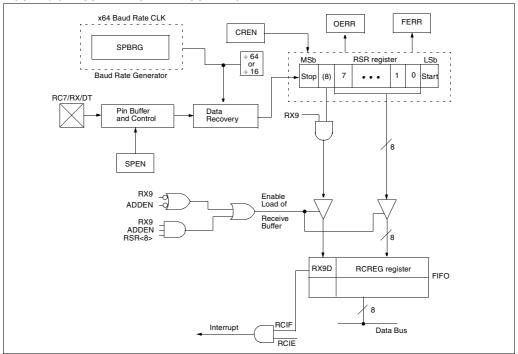
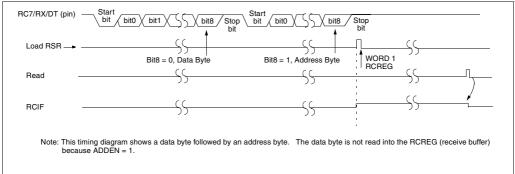

TABLE 7-2 INTERACTION OF TWO CCP MODULES

FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)



1)
1


BAUD RATE (K)	Fosc = 2 KBAUD	0 MHz % ERROR	SPBRG value (decimal)	16 MHz KBAUD	% ERROF	SPBRG value decimal		%	b Va	PBRG alue cimal)	7.16 MHz KBAUD E	%	SPBRG value decimal)		
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	5 +0.	16	64	9.520	-0.83	46		
19.2	19.230	+0.16	64	19.230	+0.16	51	18.93	9 -1.3	36	32	19.454	+1.32	22		
38.4	37.878	-1.36	32	38.461	+0.16	25	39.06	2 +1	.7	15	37.286	-2.90	11		
57.6	56.818	-1.36	21	58.823	+2.12	16	56.81	8 -1.3	36	10	55.930	-2.90	7		
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.	51	4	111.860	-2.90	3		
250	250	0	4	250	0	3	NA	-		-	NA	-	-		
625	625	0	1	NA	-	-	625	0		0	NA	-	-		
1250	1250	0	0	NA	-	-	NA	-		-	NA	-	-		
DALID	Fosc = 5	000 1411-													
BAUD RATE		%	SPBRG value	4 MHz	%	SPBRG value	8.579 MH	%	SPBRG value		%	SPBRG value		%	SPBRG value
	KBAUD	%	SPBRG value			SPBRG		%	value		%				value
RATE		%	SPBRG value			SPBRG value (decimal) ł		%	value		% UD ERROF	value		%	value
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD		SPBRG value (decimal) ł	KBAUD	% ERROR	value (decimal) KBA	% UD ERROF 28 -6.99	value (decimal)) KBAUD	%	value
RATE (K) 9.6	KBAUD 9.6	% ERROR 0	SPBRG value (decimal) 32	KBAUD NA	ERROR -	SPBRG value (decimal) F 207	KBAUD 9.727	% ERROR +1.32	value (decimal 22) KBA	% UD ERROF 28 -6.99 33 +8.51	value (decimal) 6) KBAUD	%	value
RATE (K) 9.6 19.2	KBAUD 9.6 18.645	% ERROR 0 -2.94	SPBRG value (decimal) 32 16	KBAUD NA 1.202	ERROR - +0.17	SPBRG value (decimal) F - 207 103	KBAUD 9.727 18.643	% ERROR +1.32 -2.90	value (decimal 22 11) KBA 8.92 20.8	% UD ERROF 28 -6.99 33 +8.51 25 -18.61	value (decimal) 6 2) KBAUD NA NA	ERROR - -	value (decimal) - -
RATE (K) 9.6 19.2 38.4 57.6 115.2	KBAUD 9.6 18.645 39.6 52.8 105.6	% ERROR 0 -2.94 +3.12	SPBRG value (decimal) 32 16 7	KBAUD NA 1.202 2.403 9.615 19.231	- +0.17 +0.13	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860	% ERROR +1.32 -2.90 -2.90 -2.90 -2.90	value (decimal 22 11 5) KBA 8.92 20.8 31.2 62. NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A -	value (decimal) 6 2 1) KBAUD NA NA NA NA NA	* ERROR - - -	value (decimal) - -
RATE (K) 9.6 19.2 38.4 57.6 115.2 250	KBAUD 9.6 18.645 39.6 52.8 105.6 NA	% ERROR 0 -2.94 +3.12 -8.33	SPBRG value (decimal) 32 16 7 5	KBAUD NA 1.202 2.403 9.615 19.231 NA	+0.17 +0.13 +0.16	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860 223.721	% ERROR +1.32 -2.90 -2.90 -2.90	value (decimal 22 11 5 3) KBA 8.92 20.8 31.2 62. NA NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A - A -	value (decimal) 6 2 1 0) KBAUD NA NA NA NA NA NA	* ERROR - - - -	value (decimal) - - - -
RATE (K) 9.6 19.2 38.4 57.6 115.2	KBAUD 9.6 18.645 39.6 52.8 105.6	% ERROR 0 -2.94 +3.12 -8.33 -8.33	SPBRG value (decimal) 32 16 7 5 2	KBAUD NA 1.202 2.403 9.615 19.231	+0.17 +0.13 +0.16 +0.16	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860	% ERROR +1.32 -2.90 -2.90 -2.90 -2.90	value (decimal) 22 11 5 3 1) KBA 8.92 20.8 31.2 62. NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A - A - A - A -	value R (decimal) 6 2 1 0 -) KBAUD NA NA NA NA NA	% ERROR - - - - - - -	value (decimal) - - - - - -

PIC16C77X

FIGURE 9-6: USART RECEIVE BLOCK DIAGRAM

FIGURE 9-7: ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

11.7 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP module. This requires that the CCPnM<3:0> bits be programmed as 1011b and that the A/D module is enabled (ADON is set). When the trigger occurs, the GO/DONE bit will be set on Q2 to start the A/D conversion and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D conversion cycle, with minimal software overhead (moving the ADRESH and ADRESL to the desired location). The appropriate analog input channel must be selected before the "special event trigger" sets the GO/DONE bit (starts a conversion cycle).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

11.8 Effects of a RESET

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted. The value that is in the ADRESH and ADRESL registers are not modified. The ADRESH and ADRESL registers will contain unknown data after a Power-on Reset.

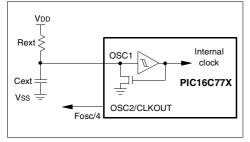
11.9 <u>Faster Conversion - Lower</u> <u>Resolution Trade-off</u>

Not all applications require a result with 12-bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the trade-off of conversion speed to resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the A/D module may be halted by clearing the GO/DONE bit after the desired number of bits in the result have been converted. Once the GO/DONE bit has been cleared, all of the remaining A/D result bits are '0'. The equation to determine the time before the GO/DONE bit can be switched is as follows:

Conversion time = $N \bullet TAD + 1TAD$

Where: N = number of bits of resolution required, and 1TAD is the amplifier settling time.


Since TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D GO/\overline{DONE} bit may be cleared. Table 11-2 shows a comparison of time required for a conversion with 4-bits of resolution, versus the normal 12-bit resolution conversion. The example is for devices operating at 20 MHz. The A/D clock is programmed for 32 Tosc.

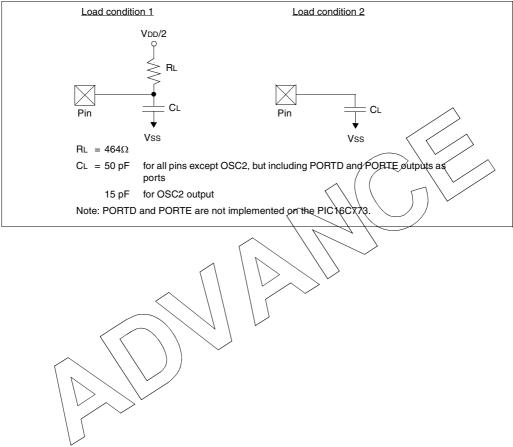

TABLE 11-2 4-BIT vs. 12-BIT CONVERSION TIMES

	Freq.	Resol	ution
	(MHz)	4-bit	12-bit
Tosc	20	50 ns	50 ns
TAD = 32 Tosc	20	1.6 μs	1.6 μs
1Tad+N•Tad	20	8 µs	20.8 μs

12.2.3 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. These factors and the variation due to tolerances of external R and C components used need to be taken into account for each application. Figure 12-4 shows how the R/C combination is connected to the PIC16C77X.

Standard Operating Conditions (unless otherwise stated)											
		Operating temperature			-40°C ≤ TA		\leq +85°C for industrial and				
DC CHARACTERISTICS					0°C ≤ TA		$\Delta \leq +70^{\circ}C$ for commercial				
		Operating voltage VDD range as described in DC spec Section 15.1 a									
Section 15.2.											
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions				
No.											
	Output High Voltage										
D090	I/O ports (Note 3)	Voн	VDD - 0.7	· —	—	V	$10_{H} = -3.0 \text{ mA}, \text{ VDD} = 4.5 \text{ V},$				
						\int	-40°C to +85°C				
D092	OSC2/CLKOUT (RC osc config)		VDD - 0.7	· _	\sim	(v	IOH = -1.3 mA, VDP = 4.5V,				
					$\langle \rangle \rangle$	\backslash	-40°C to +85°C				
D150*	Open-Drain High Voltage	Vod	—	\sim	8.5	X	RA4 pin				
	Capacitive Loading Specs on		<		1</td <td></td> <td></td>						
	Output Pins		~	1 /		$\backslash -$					
D100	OSC2 pin	Cos¢2	\sim	Ξź,	15	рF	In XT, HS and LP modes when				
			\backslash		$\left \right\rangle$	ſ	external clock is used to drive				
		$\langle \rangle$	$ \rangle$	\nearrow '	$\langle \rangle$		OSC1.				
D101	All I/O pins and OSC2 (in RC \	Cio \		$\land \rightarrow$	5 0	pF					
D102	mode) SCL, SDA in / 2Ĉ mode ∖	∖Св		\leq	400	pF					
* These parameters are characterized but not tested.											


 I nese parameters are characterized but not tested.
Data in "Typ" column is at SV, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels

represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3) Negative current is defined as current sourced by the pin.

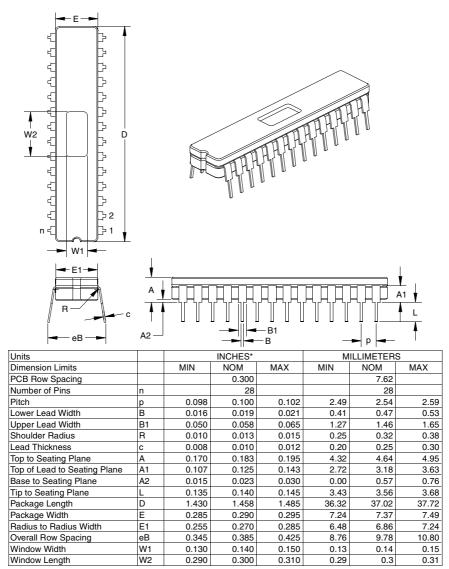
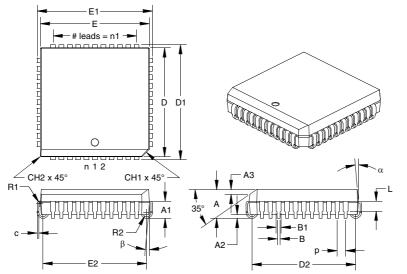

The game current is defined as current sourced by the pin.

FIGURE 15-3: LOAD CONDITIONS

17.3 K04-080 28-Lead Ceramic Dual In-line with Window (JW) – 300 mil


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

* Controlling Parameter.

17.10 K04-048 44-Lead Plastic Leaded Chip Carrier (L) – Square

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		0.050			1.27	
Overall Pack. Height	А	0.165	0.173	0.180	4.19	4.38	4.57
Shoulder Height	A1	0.095	0.103	0.110	2.41	2.60	2.79
Standoff	A2	0.015	0.023	0.030	0.38	0.57	0.76
Side 1 Chamfer Dim.	A3	0.024	0.029	0.034	0.61	0.74	0.86
Corner Chamfer (1)	CH1	0.040	0.045	0.050	1.02	1.14	1.27
Corner Chamfer (other)	CH2	0.000	0.005	0.010	0.00	0.13	0.25
Overall Pack. Width	E1	0.685	0.690	0.695	17.40	17.53	17.65
Overall Pack. Length	D1	0.685	0.690	0.695	17.40	17.53	17.65
Molded Pack. Width	E‡	0.650	0.653	0.656	16.51	16.59	16.66
Molded Pack. Length	D‡	0.650	0.653	0.656	16.51	16.59	16.66
Footprint Width	E2	0.610	0.620	0.630	15.49	15.75	16.00
Footprint Length	D2	0.610	0.620	0.630	15.49	15.75	16.00
Pins along Width	n1		11			11	
Lead Thickness	с	0.008	0.010	0.012	0.20	0.25	0.30
Upper Lead Width	B1 [†]	0.026	0.029	0.032	0.66	0.74	0.81
Lower Lead Width	В	0.015	0.018	0.021	0.38	0.46	0.53
Upper Lead Length	L	0.050	0.058	0.065	1.27	1.46	1.65
Shoulder Inside Radius	R1	0.003	0.005	0.010	0.08	0.13	0.25
J-Bend Inside Radius	R2	0.015	0.025	0.035	0.38	0.64	0.89
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

Controlling Parameter.

[†] Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E." JEDEC equivalent:MO-047 AC

PIC16C77X

NOTES: