

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c774-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C77X

NOTES:

FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
SMP	CKE	D/A	Р	S	R/W	UA	BF	R =Readable bit
bit7							bit0	W =Writable bit U =Unimplemented bit, read as '0' - n =Value at POR reset
oit 7:	<u>SPI Ma</u>	ample bi ster Mod	<u>e</u>	end of data	a output time			
	0 = Inpi <u>SPI Sla</u>	ut data sa <u>ve Mode</u>	impled at i	middle of c	lata output ti ed in slave r	me		
	1= Slev	rate cor		ed for star	dard speed	•	<hz 1="" and="" i<="" td=""><td>MHz)</td></hz>	MHz)
oit 6:	CKP =	<u>0</u>	-	ect (Figure	8-6, Figure 8	3-8, and Fig	ure 8-9)	
	0 = Dat <u>CKP =</u> 1 = Dat	a transmi <u>1</u> a transmi	tted on fal tted on fal	ling edge o ling edge o ling edge o	of SCK of SCK			
oit 5:	1 = Indi	cates tha	t the last b		/) ed or transm ed or transm			
oit 4:	1 = Indi	de only. cates tha		t has been	en the MSS detected las			SSPEN is cleared) ET)
oit 3:	1 = Indi	de only. cates tha		it has beer	en the MSS			SSPEN is cleared) EET)
oit 2:	This bit address	holds the match te holds the holds t	e R/W bit the next	informatio	mode only) on following top bit, or no		lress matc	h. This bit is only valid from th
	0 = Wri <u>In I²C n</u> 1 = Trai 0 = Trai	te <u>naster mo</u> nsmit is ir nsmit is n	n progress ot in progr	ess.		KEN will in	diagta if th	e MSSP is in IDLE mode
oit 1:	UA : Up 1 = Indi	date Add cates tha	ress (10-b t the user	it I ² C mod	e only) Ipdate the ac			
oit O:	<u>Receive</u> 1 = Rec 0 = Rec <u>Transm</u>	eive com eive not it (l ² C mo	<u>d I²C mod</u> plete, SSI complete, <u>ode only)</u>	PBUF is fu SSPBUF i				

8.1.5 SLAVE MODE

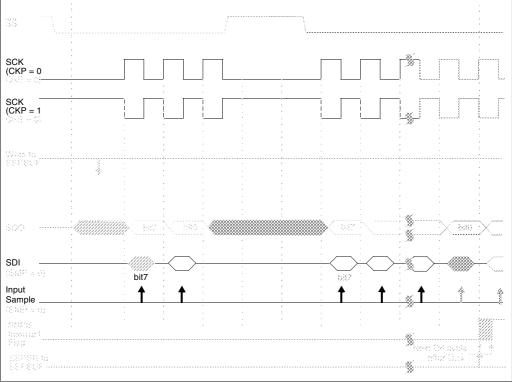
In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched the interrupt flag bit SSPIF (PIR1<3>) is set.

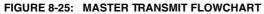
While in slave mode the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

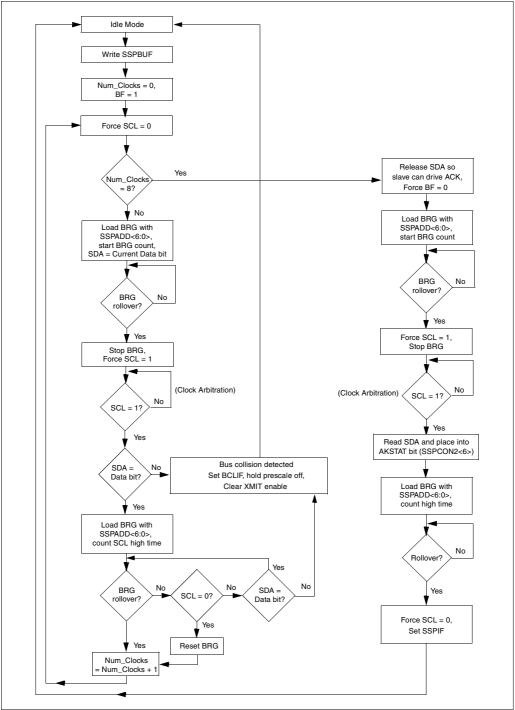
While in sleep mode, the slave can transmit/receive data. When a byte is received the device will wake-up from sleep.

8.1.6 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100). The pin must not be driven low for the \overline{SS} pin to function as an input. TRISA<5> must be set. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the


SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/ pull-down resistors may be desirable, depending on the application.


Note:	When the SPI module is in Slave Mode with \overline{SS} pin control enabled, (SSP- CON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.
Note:	If the SPI is used in Slave Mode with $CKE = '1'$, then \overline{SS} pin control must be enabled.


When the SPI module resets, the bit counter is forced to 0. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

8.2.12 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note:	The SSP Module must be in an IDLE
	STATE before the RCEN bit is set, or the
	RCEN bit will be disregarded.

The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag is set, the SSPIF is set, and the baud rate generator is suspended from counting, holding SCL low. The SSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag is automatically cleared. The user can then send an acknowledge bit at the end of reception, by setting the acknowledge sequence enable bit, AKEN (SSPCON2<4>).

8.2.12.10 BF STATUS FLAG

In receive operation, BF is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when SSPBUF is read.

8.2.12.11 SSPOV STATUS FLAG

In receive operation, SSPOV is set when 8 bits are received into the SSPSR, and the BF flag is already set from a previous reception.

8.2.12.12 WCOL STATUS FLAG

If the user writes the SSPBUF when a receive is already in progress (i.e. SSPSR is still shifting in a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

9.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI). The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- · Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>), and bits TRISC<7:6>, have to be set in order to configure pins RC6/TX/CK and RC7/ RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

The USART module also has a multi-processor communication capability using 9-bit address detection.

FIGURE 9-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

R/W-0 CSRC	R/W-0 TX9	R/W-0 TXEN	R/W-0 SYNC	U-0	R/W-0 BRGH	R-1 TRMT	R/W-0 TX9D	R = Readable bit
bit7	173	TALN	31110		DROIT		bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
oit 7:	CSRC: Clo	ck Source	Select bit					
	Asynchrone Don't care	ous mode						
	Synchrono 1 = Master 0 = Slave n	mode (Clo	•			IG)		
oit 6:	TX9 : 9-bit 1 1 = Selects 0 = Selects	9-bit trans	smission					
oit 5:	TXEN : Tran 1 = Transm 0 = Transm Note: SRE	it enabled it disabled		EN in SY	NC mode.			
oit 4:	SYNC: USA 1 = Synchro 0 = Asynchro	onous mod	le					
oit 3:	Unimplem	ented: Rea	ad as '0'					
oit 2:	BRGH: Hig	h Baud Ra	ate Select b	it				
	Asynchrono 1 = High sp	beed						
	0 = Low sp							
	Synchrono Unused in t							
oit 1:	TRMT : Tran 1 = TSR er 0 = TSR fu	npty	Register St	atus bit				
oit 0:	TX9D : 9th							

1)
1

BAUD RATE (K)	Fosc = 2 KBAUD	0 MHz % ERROR	SPBRG value (decimal)	16 MHz KBAUD	% ERROF	SPBRG value decimal		%	b Va	PBRG alue cimal)	7.16 MHz KBAUD E	%	SPBRG value decimal)		
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	5 +0.	16	64	9.520	-0.83	46		
19.2	19.230	+0.16	64	19.230	+0.16	51	18.93	9 -1.3	36	32	19.454	+1.32	22		
38.4	37.878	-1.36	32	38.461	+0.16	25	39.06	2 +1	.7	15	37.286	-2.90	11		
57.6	56.818	-1.36	21	58.823	+2.12	16	56.81	8 -1.3	36	10	55.930	-2.90	7		
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.	51	4	111.860	-2.90	3		
250	250	0	4	250	0	3	NA	-		-	NA	-	-		
625	625	0	1	NA	-	-	625	0		0	NA	-	-		
1250	1250	0	0	NA	-	-	NA	-		-	NA	-	-		
DALID	Fosc = 5	000 1411-													
BAUD RATE		%	SPBRG value	4 MHz	%	SPBRG value	8.579 MH	%	SPBRG value		%	SPBRG value		%	SPBRG value
	KBAUD	%	SPBRG value			SPBRG		%	value		%				value
RATE		%	SPBRG value			SPBRG value (decimal) ł		%	value		% UD ERROF	value		%	value
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD		SPBRG value (decimal) ł	KBAUD	% ERROR	value (decimal) KBA	% UD ERROF 28 -6.99	value (decimal)) KBAUD	%	value
RATE (K) 9.6	KBAUD 9.6	% ERROR 0	SPBRG value (decimal) 32	KBAUD NA	ERROR -	SPBRG value (decimal) F 207	KBAUD 9.727	% ERROR +1.32	value (decimal 22) KBA	% UD ERROF 28 -6.99 33 +8.51	value (decimal) 6) KBAUD	%	value
RATE (K) 9.6 19.2	KBAUD 9.6 18.645	% ERROR 0 -2.94	SPBRG value (decimal) 32 16	KBAUD NA 1.202	ERROR - +0.17	SPBRG value (decimal) F - 207 103	KBAUD 9.727 18.643	% ERROR +1.32 -2.90	value (decimal 22 11) KBA 8.92 20.8	% UD ERROF 28 -6.99 33 +8.51 25 -18.61	value (decimal) 6 2) KBAUD NA NA	ERROR - -	value (decimal) - -
RATE (K) 9.6 19.2 38.4 57.6 115.2	KBAUD 9.6 18.645 39.6 52.8 105.6	% ERROR 0 -2.94 +3.12	SPBRG value (decimal) 32 16 7	KBAUD NA 1.202 2.403 9.615 19.231	- +0.17 +0.13	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860	% ERROR +1.32 -2.90 -2.90 -2.90 -2.90	value (decimal 22 11 5) KBA 8.92 20.8 31.2 62. NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A -	value (decimal) 6 2 1) KBAUD NA NA NA NA NA	* ERROR - - -	value (decimal) - -
RATE (K) 9.6 19.2 38.4 57.6 115.2 250	KBAUD 9.6 18.645 39.6 52.8 105.6 NA	% ERROR 0 -2.94 +3.12 -8.33	SPBRG value (decimal) 32 16 7 5	KBAUD NA 1.202 2.403 9.615 19.231 NA	+0.17 +0.13 +0.16	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860 223.721	% ERROR +1.32 -2.90 -2.90 -2.90	value (decimal 22 11 5 3) KBA 8.92 20.8 31.2 62. NA NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A - A -	value (decimal) 6 2 1 0) KBAUD NA NA NA NA NA NA	* ERROR - - - -	value (decimal) - - - -
RATE (K) 9.6 19.2 38.4 57.6 115.2	KBAUD 9.6 18.645 39.6 52.8 105.6	% ERROR 0 -2.94 +3.12 -8.33 -8.33	SPBRG value (decimal) 32 16 7 5 2	KBAUD NA 1.202 2.403 9.615 19.231	+0.17 +0.13 +0.16 +0.16	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860	% ERROR +1.32 -2.90 -2.90 -2.90 -2.90	value (decimal) 22 11 5 3 1) KBA 8.92 20.8 31.2 62. NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A - A - A - A -	value R (decimal) 6 2 1 0 -) KBAUD NA NA NA NA NA	% ERROR - - - - - - -	value (decimal) - - - - - -

9.2 USART Asynchronous Mode

In this mode, the USART uses standard nonreturn-tozero (NRZ) format (one start bit, eight or nine data bits and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

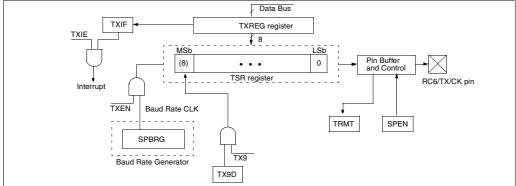
Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

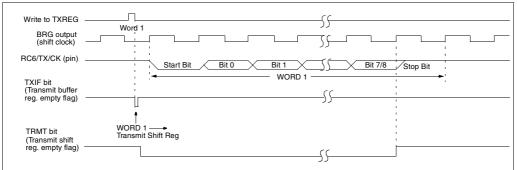
- Baud Rate Generator
- Sampling Circuit
- · Asynchronous Transmitter
- Asynchronous Receiver

9.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 9-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register


(occurs in one TcY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

- Note 1: The TSR register is not mapped in data memory so it is not available to the user.
- Note 2: Flag bit TXIF is set when enable bit TXEN is set.


Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH. (Section 9.1)
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

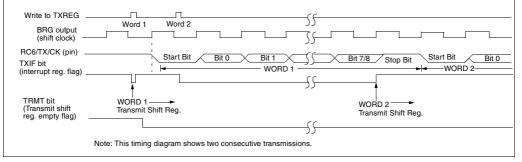


FIGURE 9-4: ASYNCHRONOUS TRANSMISSION

FIGURE 9-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 9-6 REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	ansmit F	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	tor Regi		0000 0000	0000 0000				

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

9.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner i.e. transmission and reception do not occur at the same time. When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA<4>). In addition enable bit SPEN (RCSTA<7>) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA<7>).

9.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 9-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer register TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one Tcycle), the TXREG is empty and interrupt bit, TXIF (PIR1<4>) is set. The interrupt can be

enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 9.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Gener	ator Reg	jister					0000 0000	0000 0000

TABLE 9-8 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

TABLE 9-10 REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Gener	ator Reg	ister					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Transmission. Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

TABLE 9-11 REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

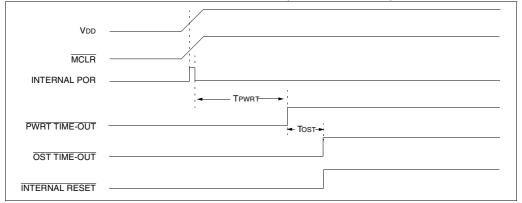
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive I	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Gener	ator Reg	ister		•	•		0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Slave Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

TADLE 12-0			IZATION CONDITIONS FOR ALL REGISTERS (COIL.U)											
Register	Dev	ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt									
TRISA	773	774	1 1111	1 1111	u uuuu									
THIOA	773	774	11 1111	11 1111	uu uuuu									
TRISB	773	774	1111 1111	1111 1111	uuuu uuuu									
TRISC	773	774	1111 1111	1111 1111	uuuu uuuu									
TRISD	773	774	1111 1111	1111 1111	uuuu uuuu									
TRISE	773	774	0000 -111	0000 -111	uuuu -uuu									
PIE1	773	774	r000 0000	r000 0000	ruuu uuuu									
	773	774	0000 0000	0000 0000	uuuu uuuu									
PIE2	773	774	00	00	u uu									
PCON	773	774	dd	uu	uu									
PR2	773	774	1111 1111	1111 1111	1111 1111									
SSPADD	773	774	0000 0000	0000 0000	uuuu uuuu									
SSPSTAT	773	774	0000 0000	0000 0000	uuuu uuuu									
TXSTA	773	774	0000 -010	0000 -010	uuuu -uuu									
SPBRG	773	774	0000 0000	0000 0000	uuuu uuuu									
REFCON	773	774	0000	0000	uuuu									
LVDCON	773	774	00 0101	00 0101	uu uuuu									
ADRESL	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu									
ADCON1	773	774	0000 000	0000 0000	uuuu uuuu									

TABLE 12-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS	(Cont.'d)
------------	---	-----------


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for reset value for specific condition.

FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 12-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT(4)	Tost(2)		\;	\	
INT pin			1 i	1	
INTF flag	<u>لې او </u>		Interrupt Latency		
(INTCOŇ<1>)			(Note 2)	1	1
GIE bit (INTCON<7>)	Processor in		·	1	
(SLEEP		· ·	I I	1
INSTRUCTION FLOW			1 I 1 I	I I	I I
PC X PC X PC+1	PC+2	PC+2	χ PC + 2	(0004h	(0005h
Instruction { Inst(PC) = SLEEP Inst(PC + 1)		Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP oscillator mode assumed.	-				

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

12.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

12.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

12.16 In-Circuit Serial Programming

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, (DS30277).

13.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1 OPCODE FIELD DESCRIPTIONS

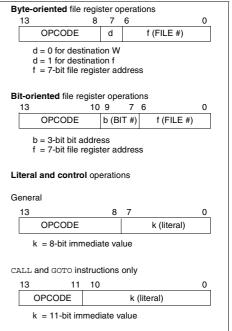
Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- · Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 13-2 lists the instructions recognized by the MPASM assembler.

Figure 13-1 shows the general formats that the instructions can have.


Note:	To maintain upward compatibility with
	future PIC16CXXX products, do not use
	the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

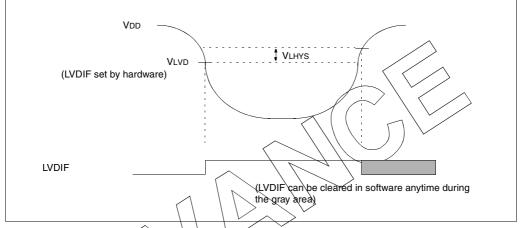

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PICmicro™ Mid-Range Reference Manual, (DS33023).

FIGURE 15-1: LOW-VOLTAGE DETECT CHARACTERISTICS

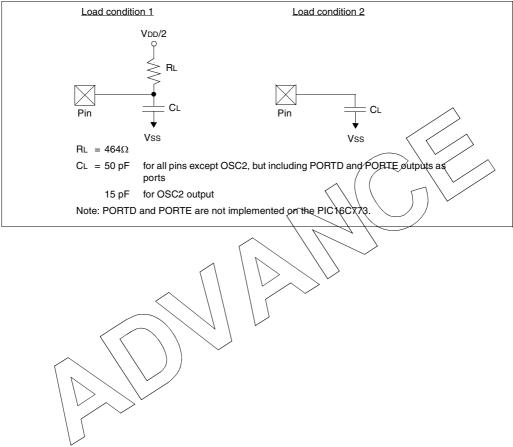
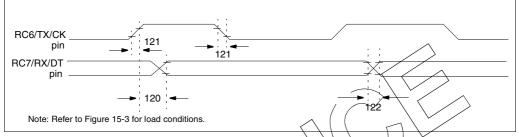


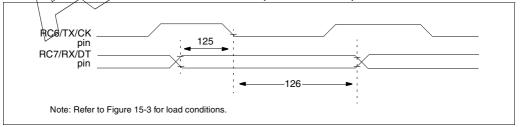
TABLE 1	5-3 ELECTRIC	CAL CHARACT	ERISTICS:	LVD				
DC CHAI	RACTERISTICS	Standard Operating temporating voltage	erature -4 0	40°C ` °C	\leq TA \leq TA \leq TA \leq	+85°C +70°C	for industi for comme	rial and
Param No.	Charact	eristic	Symbol	Min	Тур†	Max	Units	Conditions
D420	LVD Voltage	LVV = 0100		2.5	2.58	2.66	V	
		LVV = 0101		2.7	2.78	2.86	V	
		LVV = 0110		2.8	2.89	2.98	V	
L L		LVV = 0111		3.0	3.1	3.2	V	
		LVV = 1000		3.3	3.41	3.52	V	
		LVV = 1001		3.5	3.61	3.72	V	
		LVV = 1010		3.6	3.72	3.84	V	
		LVV = 1011		3.8	3.92	4.04	V	
		LVV = 1100		4.0	4.13	4.26	V	
		LVV = 1101		4.2	4.33	4.46	V	
		LVV = 1110		4.5	4.64	4.78	V	
D421	Supply Current		ΔILVD	—	10	20	μΑ	
D422*	LVD Voltage Drift Temperature coefficient		TCVout	_	15	50	ppm/°C	
D423*	LVD Voltage Drift v	vith respect to	$\Delta VLVD/$	—	—	50	μV/V	
	VDD Regulation		$\Delta V DD$					
D424*	Low-voltage Detec	t Hysteresis	VLHYS	TBD	—	100	mV	


* These parameters are characterized but not tested.

Note 1: Production tested at Tamb = 25°C. Specifications over temp limits ensured by characterization.

FIGURE 15-3: LOAD CONDITIONS

FIGURE 15-14: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING


TABLE 15-15 USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Sym	Characteristic		Min_	Typt	Max	Units	Conditions
120*	TckH2dtV	SYNC XMIT (MASTER & SLAVE)	PIC16C774/773	_	_	80	ns	
		Clock high to data out valid	PIC16LC774/773	—	—	100	ns	
121*	Tckrf	Clock out rise time and fall time	PIC16C774/773	_	—	45	ns	
		(Master Mode)	PIC16 LC 774/773	—	—	50	ns	
122*	Tdtrf	Data out rise time and fall time	PIC16 C 774/773	—	—	45	ns	
			PIC16 LC 774/773	—	—	50	ns	

* These parameters are characterized but not tested.

+: Data in "Typ" column is at \$V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 15-16 USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125*	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data setup before $CK \downarrow$ (DT setup time)	15	_		ns	
126*	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15		_	ns	

* These parameters are characterized but not tested.

†: Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.5 K04-073 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES		MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р		0.026			0.65	
Number of Pins	n		28			28	
Overall Pack. Height	А	0.068	0.073	0.078	1.73	1.86	1.99
Shoulder Height	A1	0.026	0.036	0.046	0.66	0.91	1.17
Standoff	A2	0.002	0.005	0.008	0.05	0.13	0.21
Molded Package Length	D‡	0.396	0.402	0.407	10.07	10.20	10.33
Molded Package Width	E‡	0.205	0.208	0.212	5.20	5.29	5.38
Outside Dimension	E1	0.301	0.306	0.311	7.65	7.78	7.90
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25
Foot Length	L	0.015	0.020	0.025	0.38	0.51	0.64
Foot Angle	ф	0	4	8	0	4	8
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25
Lead Thickness	с	0.005	0.007	0.009	0.13	0.18	0.22
Lower Lead Width	Bţ	0.010	0.012	0.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

PIC16C77X

NOTES:

PIC16C77X

Е

Errata	4
External Power-on Reset Circuit	132
F	
Firmware Instructions	143
Flowcharts	
Acknowledge	
Master Receiver	
Master Transmit	80
Restart Condition	77
Start Condition	75
Stop Condition	
FSR Register	13, 14, 15
Fuzzy Logic Dev. System (fuzzyTECH®-MP)	147

G

GCE	. 56
General Call Address Sequence	. 69
General Call Address Support	. 69
General Call Enable bit, GCE	. 56

I

I/O Ports
l ² C63
I ² C Master Mode Receiver Flowchart
I ² C Master Mode Reception82
I ² C Master Mode Restart Condition76
I ² C Mode Selection63
I ² C Module
Acknowledge Flowchart86
Acknowledge Sequence timing85
Addressing64
Baud Rate Generator73
Block Diagram71
BRG Block Diagram73
BRG Reset due to SDA Collision
BRG Timing73
Bus Arbitration
Bus Collision90
Acknowledge90
Restart Condition
Restart Condition Timing (Case1)
Restart Condition Timing (Case2)
Start Condition91
Start Condition Timing91, 92
Stop Condition
Stop Condition Timing (Case1)94
Stop Condition Timing (Case2)94
Transmit Timing90
Bus Collision timing90
Clock Arbitration89
Clock Arbitration Timing (Master Transmit)
Conditions to not give ACK Pulse64
General Call Address Support69
Master Mode71
Master Mode 7-bit Reception timing
Master Mode Operation72
Master Mode Start Condition74
Master Mode Transmission79
Master Mode Transmit Sequence72
Master Transmit Flowchart80
Multi-Master Communication90
Multi-master Mode72
Operation63
Repeat Start Condition timing76

Restart Condition Flowchart	
Slave Mode	
Slave Reception	
Slave Transmission	
SSPBUF	
Start Condition Flowchart	
Stop Condition Flowchart	
Stop Condition Receive or Transmit timing Stop Condition timing	0/ 07
Waveforms for 7-bit Reception	
Waveforms for 7-bit Transmission	
I ² C Module Address Register, SSPADD	
I ² C Slave Mode	
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator	
ID Locations	
In-Circuit Serial Programming (ICSP)	
INDF	
INDF Register	
Indirect Addressing	
FSR Register	
Instruction Format	143
Instruction Set	143
Summary Table	
INTCON	
INTCON Register	
GIE Bit	
INTE Bit	
INTF Bit	
PEIE Bit	
RBIE Bit	
RBIF Bit	
TOIE Bit	
T0IF Bit	
Inter-Integrated Circuit (I ² C)	53
internal sampling switch (Rss) impedence	123
Interrupt Sources	. 127, 137
Block Diagram	137
Capture Complete (CCP)	48
Compare Complete (CCP)	
Interrupt on Change (RB7:RB4)	
RB0/INT Pin, External	. 7, 8, 138
TMR0 Overflow	
TMR1 Overflow	41, 43
TMR2 to PR2 Match	
TMR2 to PR2 Match (PWM)	45, 50
USART Receive/Transmit Complete	
Interrupts, Context Saving During	138
Interrupts, Enable Bits	
A/D Converter Enable (ADIE Bit)	
CCP1 Enable (CCP1IE Bit)	19, 48
CCP2 Enable (CCP2IE Bit)	
Global Interrupt Enable (GIE Bit)	18, 137
Interrupt on Change (RB7:RB4) Enable	
(RBIE Bit)	
Peripheral Interrupt Enable (PEIE Bit)	18
PSP Read/Write Enable (PSPIE Bit)	19
RB0/INT Enable (INTE Bit)	
SSP Enable (SSPIE Bit)	
TMR0 Overflow Enable (T0IE Bit)	10
TMR1 Overflow Enable (TMR1IE Bit)	
	19
TMR2 to PR2 Match Enable (TMR2IE Bit)	19 19
TMR2 to PR2 Match Enable (TMR2IE Bit) USART Receive Enable (RCIE Bit) USART Transmit Enable (TXIE Bit)	19 19 19