

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c774t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

FIGURE 3-2: BLOCK DIAGRAM OF RA1:RA0 AND RA5 PINS

TABLE 3-1 PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input0
RA1/AN1	bit1	TTL	Input/output or analog input1
RA2/AN2/VREF-/VRL	bit2	TTL	Input/output or analog input2 or VREF- input or internal reference voltage low
RA3/AN3/VREF+/VRH	bit3	TTL	Input/output or analog input or VREF+ input or output of internal reference voltage high
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type
RA5/AN4 ⁽¹⁾	bit5	TTL	Input/output or analog input

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: RA5 is reserved on the 28-pin devices, maintain this bit clear.

TABLE 3-2 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
05h	PORTA ⁽¹⁾	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA ⁽¹⁾	—		PORTA Data Direction Register						11 1111	11 1111
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: PORTA<5>, TRISA<5> are reserved on the 28-pin devices, maintain these bits clear.

FIGURE 3-15: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 3-11 REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	Port dat	ta latch w	hen writte	en: Port pins v	vhen read	l			xxxx xxxx	uuuu uuuu
09h	PORTE	—	—	—	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE I	Data Direc	tion Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Parallel Slave Port.

5.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- · Reset from CCP module trigger

Timer1 has a control register, shown in Figure 5-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 5-3 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

5.1 <u>Timer1 Operation</u>

Timer1 can operate in one of these modes:

- As a timer
- As a synchronous counter
- · As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In timer mode, Timer1 increments every instruction cycle. In counter mode, it increments on every rising edge of the external clock input.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer1 also has an internal "reset input". This reset can be generated by the CCP module (Section 7.0).

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	R = Readable bit
bit7							bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset
bit 7-6:	Unimple	mented: F	Read as '0	I				
bit 5-4:	T1CKPS 11 = 1:8 10 = 1:4 01 = 1:2 00 = 1:1	1:T1CKPS Prescale v Prescale v Prescale v Prescale v	50 : Timer1 /alue /alue /alue /alue	Input Cloc	ck Prescale	e Select bit	S	
bit 3:	T1OSCE 1 = Oscill 0 = Oscill Note: The	N: Timer1 lator is ena lator is shu e oscillator	Oscillator abled ut off r inverter a	Enable Co and feedba	ontrol bit ck resistor	are turned	I off to elimi	nate power drain
bit 2:	T1SYNC	: Timer1 E	xternal Cl	ock Input S	Synchroniza	ation Cont	rol bit	
	$\frac{\text{TMR1CS}}{1 = \text{Do not}}$ $0 = \text{Syncl}$	b = 1 ot synchro hronize ex	nize exter ternal cloo	nal clock in k input	put			
	This bit is	<u>s = 0</u> s ianored. '	Timer1 us	es the inte	rnal clock v	when TMR	1CS = 0.	
bit 1:	TMR1CS 1 = Exter 0 = Interr	: Timer1 C nal clock f nal clock (F	Clock Sour rom pin R Fosc/4)	ce Select t C0/T1OSC	oit 0/T1CKI (or	n the rising	g edge)	
bit 0:	TMR1ON 1 = Enab 0 = Stops	I: Timer1 (les Timer1 s Timer1	On bit					

FIGURE 5-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

8.1.5 SLAVE MODE

In slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched the interrupt flag bit SSPIF (PIR1<3>) is set.

While in slave mode the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in sleep mode, the slave can transmit/receive data. When a byte is received the device will wake-up from sleep.

8.1.6 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a synchronous slave mode. The SPI must be in slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100). The pin must not be driven low for the \overline{SS} pin to function as an input. TRISA<5> must be set. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the

SDO pin is no longer driven, even if in the middle of a transmitted byte, and becomes a floating output. External pull-up/ pull-down resistors may be desirable, depending on the application.

Note:	When the SPI module is in Slave Mode with \overline{SS} pin control enabled, (SSP- CON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.
Note:	If the SPI is used in Slave Mode with $CKE = '1'$, then \overline{SS} pin control must be enabled.

When the SPI module resets, the bit counter is forced to 0. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 8-15: I²C SLAVE-RECEIVER (10-BIT ADDRESS)

- The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user generates a STOP condition by setting the STOP enable bit PEN in SSPCON2.
- I) Interrupt is generated once the STOP condition is complete.

8.2.8 BAUD RATE GENERATOR

In l^2 C master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 8-18). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TCY) on the Q2 and Q4 clock. In I²C master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 8-19).

FIGURE 8-18: BAUD RATE GENERATOR BLOCK DIAGRAM

8.2.11 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or either half of a 10-bit address is accomplished by simply writing a value to SSPBUF register. This action will set the buffer full flag (BF) and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time spec). SCL is held low for one baud rate generator roll over count (T_{BRG}). Data should be valid before SCL is released high (see Data setup time spec). When the SCL pin is released high, it is held that way for T_{BRG}, the data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA allowing the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time, if an address match occurs or if data was received properly. The status of ACK is read into the AKDT on the falling edge of the ninth clock. If the master receives an acknowledge, the acknowledge status bit (AKSTAT) is cleared. If not, the bit is set. After the ninth clock the SSPIF is set, and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF leaving SCL low and SDA unchanged (Figure 8-26).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock the master will de-assert the SDA pin allowing the slave to respond with an acknowledge. On the falling edge of the ninth clock the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the AKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared, and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

8.2.11.7 BF STATUS FLAG

In transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

8.2.11.8 WCOL STATUS FLAG

If the user writes the SSPBUF when a transmit is already in progress (i.e. SSPSR is still shifting out a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

8.2.11.9 AKSTAT STATUS FLAG

In transmit mode, the AKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an acknowledge $(\overline{ACK} = 0)$, and is set when the slave does not acknowledge ($\overline{ACK} = 1$). A slave sends an acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

8.2.18 MULTI -MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I²C port to its IDLE state. (Figure 8-34).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are de-asserted, and the SSPBUF can be written to. When the user services the bus collision interrupt service routine, and if the l^2C bus is free, the user can resume communication by asserting a START condition.

If a START, Repeated Start, STOP, or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision interrupt service routine, and if the l^2 C bus is free, the user can resume communication by asserting a START condition.

The Master will continue to monitor the SDA and SCL pins, and if a STOP condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when bus collision occurred.

In multi-master mode, the interrupt generation on the detection of start and stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is idle and the S and P bits are cleared.

FIGURE 8-34: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

8.2.18.17 BUS COLLISION DURING A STOP CONDITION

Bus collision occurs during a STOP condition if:

- After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allow to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0'. If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 8-40).

FIGURE 8-40: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 8-41: BUS COLLISION DURING A STOP CONDITION (CASE 2)

9.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set then CREN takes precedence.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 9.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive I	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Gener	ator Reg		0000 0000	0000 0000				

TABLE 9-9 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

FIGURE 9-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

C7/RX/DT pin	bit0	, bit1	bit2	,bit3	bit4	, bit5	bit6	bit7	1
C6/TX/CK pin									1 1 1
Write to		1 1 1	1 1 1	1 T L	 	1 1 1 1	1 T T	1 1 1 1	1 1 1
SBEN bit	1	1 1 1	1 1 1	1 1 1		1	t t t		1
CREN bit	1	1 1 1	1 1	t t		, ,	t t	1 1	
RCIF bit (interrupt)	1 1 1	1 1 1	1 1 1	1 1 1		1	1 1 1	ſ	
Read BXREG	1	1 1 1		1 1		, , ,	1 1 1		

FIGURE 12-1: CONFIGURATION WORD

CP1	CP0	BORV1	BORV0	CP1	CP0	-	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13	12	11	10	9	8	7	6	5	4	3	2	1	bit0	Address	200711
bit 13 bit 9-8 bit 5-4	bit 13-12: CP1:CP0: Code Protection bits ⁽²⁾ bit 9-8: 11 = Program memory code protection off bit 5-4: 10 = 0800h-0FFFh code protected 01 = 0400h-0FFFh code protected 00 = 0000h-0FFFh code protected bit 11-10: BORV1:BORV0: Brown-out Reset Voltage bits ⁽³⁾														
DICT	10. 1 1 (1 = VBC $0 = VBC$ $01 = VBC$ $00 = VBC$	OR set to OR set to OR set to OR set to	2.5V 2.7V 4.2V 4.5V	in out i			3							
bit 7:	ι	Jnimple	menteo	l, Rea	d as '1'										
bit 6:	E 1 0	BODEN: = Brow = Brow	Brown- n-out R n-out R	out Re eset e eset d	eset En nabled isabled	able bi	t (1)								
bit 3:	F 1 (PWRTE : = PWR = PWR	Power- T disab T enab	up Tin led led	ner Ena	able bit	(1)								
bit 2:	ן 1 0	VDTE : V = WDT) = WDT	Vatchdo enable disable	og Tim d ed	er Enal	ole bit									
bit 1-0): F 1 1 0 0	FOSC1: 1 = RC 0 = HS 1 = XT o 0 = LP o	OSCO : oscillato oscillato oscillato	Oscill or or or or	ator Se	election	bits								
Note	1: E E 2: A 3: T s	Enabling Ensure th All of the These ar setting m	Brown- ne Powe CP1:C e the m ay resu	out Re er-up T P0 pai inimur Ilt in ar	eset au Timer is rs have n trip p n inadve	tomatic enable to be oints fo ertant i	ally enab ed anytim given the or the BO nterrupt.	oles the le Brov same R, see	e Powe wn-out value Table	er-up Tim t Reset is to enable 15-4 for	ner (PWF enabled e the coo the trip p	RT) regard I. le protect point toler	dless of th tion scher rances. S	ne value of b ne listed. selection of a	it PWRTE.

12.2 Oscillator Configurations

12.2.1 OSCILLATOR TYPES

The PIC16C77X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-2). The PIC16C77X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications.

A difference from the other mid-range devices may be noted in that the device can be driven from an external clock only when configured in HS mode (Figure 12-3).

12.10 Interrupts

The PIC16C77X family has up to 14 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

FIGURE 12-11: INTERRUPT LOGIC

15.4 DC Characteristics: VREF

TABLE 15-2 ELECTRICAL CHARACTERISTICS: VREF

		Standard Op	erating Co	onditions	s (unless	otherwi	ise stated)		
	ACTEDISTICS	Operating ter	nperature	-40°C	; `≤ TA <u>≤</u>	≤ +85°C 1	for industr	ial and		
DC CHAN	ACTENISTICS			0°C	$\leq TA \leq$	≤ +70°C 1	for comme	ercial		
Operating voltage VDD range as described in DC spec Section 15.1 and S										
Param No.	Characte	ristic	Symbol	Min	Тур†	Max	Units	Conditions		
D400	Output Voltage		VRL	2.0	2.048	2.1	V	$VDD \ge 2.5V$		
			VRH	4.0	4.096	4.2	V	VDØ ≥ 4.5V		
D401A	VRL Quiescent Su	pply Current	ΔIV_{RL}		70	TBD	μA	No load on VRL.		
D401B	VRH Quiescent Su	upply Current	$\Delta IVRH$	Ι	70	TBD	#A	No load on VRH.		
D402	Ouput Voltage Drif	ť	TCVOUT	Ι	15*	50* /	ppm/°C/	Note 1		
D404	External Load Sou	irce	IVREFSO			5*	(mA			
D405	External Load Sink	<	IVREFSI	-	-	<- <u>5</u> *	∖mA			
D406	Load Regulation			—	\checkmark	†βD⊁ /		Isource = 0 mA to		
			$\Delta VOUT/$		$\langle \rangle$	\searrow	mV/mA	5 mA		
			∆IOUT	<u> </u>	11	TBD≭	VIIN	Isink = 0 mA to		
			5	\sim		$\langle \ \rangle$	$\left \right\rangle$	5 mA		
D407	Line Regulation		∆Vout/ \	~ /	$\langle \rangle$	E0*	~			
				\square		V YU	μν/ν			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Production tested at TAMB $= 25^{\circ}$ C. Specifications over temp limits guaranteed by characterization.

NOTES:

17.6 K04-016 40-Lead Plastic Dual In-line (P) - 600 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES*		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
PCB Row Spacing			0.600			15.24		
Number of Pins	n		40			40		
Pitch	р		0.100			2.54		
Lower Lead Width	В	0.016	0.018	0.020	0.41	0.46	0.51	
Upper Lead Width	B1 [†]	0.045	0.050	0.055	1.14	1.27	1.40	
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25	
Lead Thickness	с	0.009	0.010	0.011	0.23	0.25	0.28	
Top to Seating Plane	А	0.110	0.160	0.160	2.79	4.06	4.06	
Top of Lead to Seating Plane	A1	0.073	0.093	0.113	1.85	2.36	2.87	
Base to Seating Plane	A2	0.020	0.020	0.040	0.51	0.51	1.02	
Tip to Seating Plane	L	0.125	0.130	0.135	3.18	3.30	3.43	
Package Length	D‡	2.013	2.018	2.023	51.13	51.26	51.38	
Molded Package Width	E‡	0.530	0.535	0.540	13.46	13.59	13.72	
Radius to Radius Width	E1	0.545	0.565	0.585	13.84	14.35	14.86	
Overall Row Spacing	eB	0.630	0.610	0.670	16.00	15.49	17.02	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter.

[†] Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

Interrupts, Flag Bits	
A/D Converter Flag (ADIF Bit)	
CCP1 Flag (CCP1IF Bit)	20, 48, 49
CCP2 Flag (CCP2IF Bit)	
Interrupt on Change (RB7:RB4) Flag	
(RBIF Bit)	18, 30, 138
PSP Read/Write Flag (PSPIF Bit)	
RB0/INT Flag (INTF Bit)	
SSP Flag (SSPIF Bit)	
TMR0 Overflow Flag (T0IF Bit)	18, 138
TMR1 Overflow Flag (TMR1IF Bit)	
TMR2 to PR2 Match Flag (TMR2IF Bit)	
USART Receive Flag (RCIF Bit)	
USART Transmit Flag (TXIE Bit)	

Κ

KeeLoq® Evaluation and Programming Tools148

Μ

Master Clear (MCLR)
MCLR Reset, Normal Operation
MCLR Reset, SLEEP 131, 133, 134
Memory Organization
Data Memory11
Program Memory11
MPLAB Integrated Development Environment Software . 147
Multi-Master Communication90
Multi-Master Mode72

0

OPCODE Field Descriptions	
OPTION_REG Register	
INTEDG Bit	
PS2:PS0 Bits	
PSA Bit	
RBPU Bit	
T0CS Bit	
T0SE Bit	
OSC1/CLKIN Pin	
OSC2/CLKOUT Pin	
Oscillator Configuration	
HS	
LP	
RC	
XT	
Oscillator, Timer1	
Oscillator, WDT	

Ρ

Ρ	
Packaging	
Paging, Program Memory	11, 24
Parallel Slave Port (PSP)	9, 34, 37
Block Diagram	
RE0/RD/AN5 Pin	
RE1/WR/AN6 Pin	
RE2/CS/AN7 Pin	
Read Waveforms	
Read/Write Enable (PSPIE Bit)	
Read/Write Flag (PSPIF Bit)	
Select (PSPMODE Bit)	34, 35, 37
Write Waveforms	
PCL Register	
PCLATH Register	13, 14, 15

PCON Register	23, 133
BOR Bit	
POR Bit	
PICDEM-1 Low-Cost PICmicro Demo Board	146
PICDEM-2 Low-Cost PIC16CXX Demo Board	146
PICDEM-3 Low-Cost PIC16CXXX Demo Board	146
PICSTART® Plus Entry Level Development System	145
PIE1 Register	19
ADIE Bit	19
CCP1IE Bit	19
PSPIE Bit	19
RCIE Bit	19
SSPIE Bit	19
TMR1IE Bit	19
TMR2IE Bit	19
TXIE Bit	19
PIE2 Register	
CCP2IE Bit	
Pinout Descriptions	
PIC16C63A/PIC16C73B	7
PIC16C65B/PIC16C74B	
PIR1 Register	
ADIF Bit	
CCP1IF Bit	
PSPIF Bit	
RCIF Bit	
SSPIE Bit	20
TMR1IF Bit	
TMR2IF Bit	
TXIF Bit	
PIB2 Register	
CCP2IF Bit	
Pointer, FSB	
POB See Power-on Reset	
PORTA	7.8.15
Analog Port Pins	
Initialization	
PORTA Register	27
BA3 BA0 and BA5 Port Pins	28
BA4/T0CKI Pin	7 8 28
BA5/SS/AN4 Pin	8
TRISA Begister	
PORTA Begister	13 126
PORTR	7 8 15
Initialization	29
PORTR Begister	29
Pull-un Enable (BBPLI Bit)	
BB0/INT Edge Select (INTEDG Bit)	17
BB0/INT Pin External	7 8 138
BB3:BB0 Port Pins	29
BB7:BB4 Interrunt on Change	128
BB7:BB4 Interrupt on Change Enable (BBIE Bit	100
	, 10,
BB7:BB4 Interrupt on Change Elag (BBIE Bit)	18 30
	. 10, 50,
PP7·PP4 Port Pipe	20
TDISP Degister	
	10 106
	7 0 15
Plack Diagram	1, 9, 15
Diver Diayram	
DOPTO Pagiatar	
	7, 9
nu i/ i i uji/uurz rifi	7 ^
PC2/CCP1 Pin	7, 9
RC2/CCP1 Pin	7, 9 7, 9 7 0