

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc773-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Key Features PICmicro™ Mid-Range Reference Manual (DS33023)	PIC16C773	PIC16C774
Operating Frequency	DC - 20 MHz	DC - 20 MHz
Resets (and Delays)	POR, BOR, MCLR, WDT (PWRT, OST)	POR, BOR, MCLR, WDT (PWRT, OST)
Program Memory (14-bit words)	4K	4K
Data Memory (bytes)	256	256
Interrupts	13	14
I/O Ports	Ports A,B,C	Ports A,B,C,D,E
Timers	3	3
Capture/Compare/PWM modules	2	2
Serial Communications	MSSP, USART	MSSP, USART
Parallel Communications	—	PSP
12-bit Analog-to-Digital Module	6 input channels	10 input channels
Instruction Set	35 Instructions	35 Instructions

1.0 DEVICE OVERVIEW

This document contains device-specific information. Additional information may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

There a two devices (PIC16C773 and PIC16C774) covered by this datasheet. The PIC16C773 devices come in 28-pin packages and the PIC16C774 devices come in 40-pin packages. The 28-pin devices do not have a Parallel Slave Port implemented.

The following two figures are device block diagrams sorted by pin number; 28-pin for Figure 1-1 and 40-pin for Figure 1-2. The 28-pin and 40-pin pinouts are listed in Table 1-1 and Table 1-2, respectively.

TABLE 1-2	PIC16C774 PINOUT DESCRIPTION	(Cont.'d)	1
		(00111.0)	£.,

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	l/O/P Type	Buffer Type	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/ output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
						PORTD is a bi-directional I/O port or parallel slave port
DD0/D0D0	10			1/0	ot (3)	when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	1/0	ST/TTL ⁽³⁾	
RD1/P3P1	20	22	39	1/0	ST/TTL(3)	
RD2/PSP3	22	20	40	1/0	ST/TTL ⁽³⁾	
BD4/PSP4	27	30	2	1/0	ST/TTL (3)	
BD5/PSP5	28	31	3	1/0	ST/TTL (3)	
RD6/PSP6	29	32	4	1/O	ST/TTL ⁽³⁾	
RD7/PSP7	30	33	5	I/O	ST/TTL ⁽³⁾	
			-			PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
AVss	12	13	29	Р		Ground reference for A/D converter
AVDD	11	12	28	Р		Positive supply for A/D converter
Vss	31	34	6	Р	_	Ground reference for logic and I/O pins.
Vdd	32	35	7	Р	-	Positive supply for logic and I/O pins.
NC	-	1,17,28, 40	12,13, 33,34		—	These pins are not internally connected. These pins should be left unconnected.
Legend: I = input 0) = outp	ut	I/O) = input	/output	P = power
-	- = Not	used	TT	I = TTI	input	ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PICmicro[®] microcontrollers. Each block (Program Memory and Data Memory) has its own bus so that concurrent access can occur.

Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization

The PIC16C77X PICmicros have a 13-bit program counter capable of addressing an $8K \times 14$ program memory space. Each device has $4K \times 14$ words of program memory. Accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1 RP0	(STATUS<6:5>)
$= 00 \rightarrow Bank0$ $= 01 \rightarrow Bank1$ $= 10 \rightarrow Bank2$	
$= 11 \rightarrow Bank3$	

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some "high use" special function registers from one bank may be mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR.

FIGURE 2-2: REGISTER FILE MAP

	ddress	A	ddress		Address	A
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG
PCL	02h	PCL	82h	PCL	102h	PCL
STATUS	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
PORTC	07h	TRISC	87h		107h	
PORTD (1)	08h	TRISD (1)	88h		108h	
PORTE (1)	09h	TRISE (1)	89h		109h	
PCLATH	0Ah	PCLATH	8Ah	PCI ATH	10Ah	PCI ATH
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	0Ch	PIE1	8Ch		10Ch	
PIR2	0Dh	PIE2	8Dh		10Dh	
TMR1L	0Eh	PCON	8Eh		10Eh	
TMR1H	0Fh	10011	8Fh		10Fh	
T1CON	10h		90h	•	110h	
TMR2	11h	SSPCON2	91h		111h	
T2CON	12h	PB2	92h		112h	
SSPBUE	13h		ash		113h	
SSPCON	14h	SOFADD	0/h		114h	
CCPB1I	15h	001 01AI	95h		115h	
CCPB1H	16h		96h		116h	
CCP1CON	17h		9011 97h		117h	
DOGTA	18h	TYOTA	08h		118h	
TYPEG	19h	SPREC	aah		119h	
PCREG	1Ah	SFBRG	QΔh		11Ah	
CCPR2	1Bh	PEECON	ORh		11Bh	
CCPR2H	1Ch		9Ch		11Ch	
CCR2CON	1Dh	LUDOON			11Dh	
	1Fh		QEh		11Fh	
	1Fh		QEh		11Fh	
ADCONU	20h		40b		120h	
			AUN			
General		General		General		
Purpose	l	Purpose		Purpose		
negister		Register 80 Bytes		Register		
96 Bytes		00 Dytes	EFh	ou bytes	6Fh	
	l	accesses	F0h	accesses	70h	accesses
	754	70h-7Fh	FF4	70h - 7Fh	1754	70h - 7Fh
Bank 0	/ - 11	Bank 1	FFN	Bank 2	17-11	Bank 3
mplemented on Pl	C16C773	3.				

TARI F 2-1	PIC16C77X SPECIAL FUNCTI	ION REGISTER SUMMARY	(Cont'd)
			100111.07

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (2)
Bank 2											
100h ⁽⁴⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	nemory (not a	a physical reg	gister)	0000 0000	0000 0000
101h	TMR0	Timer0 mod	xxxx xxxx	uuuu uuuu							
102h ⁽⁴⁾	PCL	Program Co	ounter's (PC)		0000 0000	0000 0000					
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	z	DC	С	0001 1xxx	000q quuu
104h ⁽⁴⁾	FSR	Indirect data	a memory ad	dress pointer						xxxx xxxx	uuuu uuuu
105h	—	Unimpleme	nted							_	_
106h	PORTB	PORTB Dat	ta Latch whe	n written: PO	RTB pins wher	n read				xxxx 11xx	uuuu 11uu
107h	—	Unimpleme	nted							_	—
108h	—	Unimpleme	nted							—	—
109h	—	Unimpleme	nted		n					—	—
10Ah ^(1,4)	PCLATH	—	—	—	Write Buffer fo	or the upper	5 bits of the I	Program Cou	inter	0 0000	0 0000
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
10Ch- 10Fh	-	Unimpleme	nted		-	-					
Bank 3										-	
180h ⁽⁴⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	nemory (not a	a physical reg	gister)	0000 0000	0000 0000
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h ⁽⁴⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h ⁽⁴⁾	FSR	Indirect data	a memory ad	dress pointer						xxxx xxxx	uuuu uuuu
185h	—	Unimpleme	nted							-	_
186h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
187h	—	Unimpleme	nted							_	—
188h	_	Unimpleme	nted							_	—
189h	—	Unimpleme	nted	,	1					—	—
18Ah ^(1,4)	PCLATH	—	—	—	Write Buffer fo	or the upper	5 bits of the I	Program Cou	inter	0 0000	0 0000
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
18Ch- 18Fh	-	Unimpleme	nted							-	-

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as '0'.
 Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.
 2: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.
 3: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.
 4: These registers can be addressed from any bank.
 5: These registers/bits are not implemented on the 28-pin devices read as '0'.

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 2-6: PIE1 REGISTER (ADDRESS 8Ch)

B/W-0	B/W-0	B/W-0	B/W-0	B/W-0	B/W-0	B/W-0	B/W-0							
PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	R = Readable bit						
bit7	•						bitO	W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset						
bit 7:	PSPIE ⁽¹⁾ : 1 = Enabl 0 = Disab	Parallel S es the PS les the PS	lave Port P read/wri P read/wr	Read/Writ te interrup ite interru	e Interrupt ot pt	Enable bit								
bit 6:	6: ADIE : A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt													
bit 5:	RCIE: US 1 = Enabl 0 = Disab	ART Rece es the US les the US	eive Interru ART recei SART rece	upt Enable ve interrup ive interru	e bit ot pt									
bit 4:	TXIE : US 1 = Enabl 0 = Disab	ART Trans es the US les the US	smit Interru ART trans SART trans	upt Enable mit interru smit interru	e bit ipt upt									
bit 3:	SSPIE : S 1 = Enabl 0 = Disab	ynchronou es the SS les the SS	is Serial P P interrup P interrup	ort Interru t t	pt Enable b	it								
bit 2:	CCP1IE : 1 = Enabl 0 = Disab	CCP1 Inte es the CC les the CC	errupt Enal P1 interru 2P1 interru	ble bit pt ıpt										
bit 1:	TMR2IE: 1 = Enabl 0 = Disab	TMR2 to F es the TM les the TM	PR2 Match R2 to PR2 IR2 to PR	n Interrupt 2 match in 2 match ir	Enable bit terrupt iterrupt									
bit 0:	TMR1IE: 1 = Enabl 0 = Disab	TMR1 Ove es the TM les the TM	erflow Inte R1 overflo IR1 overflo	rrupt Enal w interrup w interrup	ole bit ot ot									
Note 1:	PSPIE is	reserved	on the 28-	pin device	s, always m	aintain thi	s bit clear.							

Note:

Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

PIC16C77X

2.2.2.7 PIR2 REGISTER

Γ

This register contains the CCP2, SSP Bus Collision, and Low-voltage detect interrupt flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

FIGURE 2-9: PIR2 REGISTER (ADDRESS 0Dh)

R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0	
LVDIF	—	_	—	BCLIF	—	_	CCP2IF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit.
								read as '0'
								- n = Value at POR reset
bit 7:	LVDIF: Lo	w-voltage	Detect In	iterrupt Fla	g bit			
	1 = The s 0 = The s	upply volta upply volta	age has fa age is gre	allen below ater than th	the specified	ed LVD vo d LVD volta	ltage (must age	be cleared in software)
bit 6-4:	Unimpler	mented: F	Read as '0	ı				
bit 3:	BCLIF: Bu	us Collisio	n Interrup	t Flag bit				
	1 = A bus	collision h	nas occuri	red while th	ne SSP mo	dule config	gured in I ² C	Master was transmitting
	(must be	cleared in	software)					
	0 = NO DU	IS CONSION	occurrea					
bit 2-1:	Unimpler	nented: F	lead as '0	1				
bit 0:	CCP2IF: (CCP2 Inte	rrupt Flag) bit				
	Conturo	lodo						
	1 = A TMI	<u>/ioue</u> R1 registe	r capture	occurred (r	must he cle	ared in so	(ftware)	
	0 = No Th	/R1 regist	er capture	e occurred			,ittiaio)	
		Ũ	•					
	<u>Compare</u>	Mode						
	1 = A TMI	R1 registe	r compare	e match oc	curred (mu	st be clea	red in softw	are)
	0 = NO TN	ART regist	er compa	re match o	ccurrea			
	PWM Mod	de						
	Unused							

3.4 PORTD and TRISD Registers

This section is applicable to the 40/44-pin devices only.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 3-10: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

TABLE 3-7 PORTD FUNCTIONS

Name	Bit#	Buffer Type	Function
RD0/PSP0	bit0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit0
RD1/PSP1	bit1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit1
RD2/PSP2	bit2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit2
RD3/PSP3	bit3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit3
RD4/PSP4	bit4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit4
RD5/PSP5	bit5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit5
RD6/PSP6	bit6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit6
RD7/PSP7	bit7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit7

Legend: ST = Schmitt Trigger input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port Mode.

TABLE 3-8 SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	PORT	D Data	Directio	on Register					1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Dat	a Direction B	its	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

8.1 SPI Mode

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)

8.1.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- · Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase
- (middle or end of data output time)Clock edge
- (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)

Figure 8-4 shows the block diagram of the MSSP module when in SPI mode.

FIGURE 8-4: MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device. MSb first. The SSPBUF holds the data that was written to the SSPSR. until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and the interrupt flag bit SSPIF (PIR1<3>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSP-BUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates when the SSP-BUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the MSSP Interrupt is used to

- The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user generates a STOP condition by setting the STOP enable bit PEN in SSPCON2.
- I) Interrupt is generated once the STOP condition is complete.

8.2.8 BAUD RATE GENERATOR

In l^2 C master mode, the reload value for the BRG is located in the lower 7 bits of the SSPADD register (Figure 8-18). When the BRG is loaded with this value, the BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TCY) on the Q2 and Q4 clock. In I²C master mode, the BRG is reloaded automatically. If Clock Arbitration is taking place for instance, the BRG will be reloaded when the SCL pin is sampled high (Figure 8-19).

FIGURE 8-18: BAUD RATE GENERATOR BLOCK DIAGRAM

8.2.11 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or either half of a 10-bit address is accomplished by simply writing a value to SSPBUF register. This action will set the buffer full flag (BF) and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time spec). SCL is held low for one baud rate generator roll over count (T_{BRG}). Data should be valid before SCL is released high (see Data setup time spec). When the SCL pin is released high, it is held that way for T_{BRG}, the data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA allowing the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time, if an address match occurs or if data was received properly. The status of ACK is read into the AKDT on the falling edge of the ninth clock. If the master receives an acknowledge, the acknowledge status bit (AKSTAT) is cleared. If not, the bit is set. After the ninth clock the SSPIF is set, and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF leaving SCL low and SDA unchanged (Figure 8-26).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock the master will de-assert the SDA pin allowing the slave to respond with an acknowledge. On the falling edge of the ninth clock the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the AKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared, and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

8.2.11.7 BF STATUS FLAG

In transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

8.2.11.8 WCOL STATUS FLAG

If the user writes the SSPBUF when a transmit is already in progress (i.e. SSPSR is still shifting out a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

8.2.11.9 AKSTAT STATUS FLAG

In transmit mode, the AKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an acknowledge $(\overline{ACK} = 0)$, and is set when the slave does not acknowledge ($\overline{ACK} = 1$). A slave sends an acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

9.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 9-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 9-1. From this, the error in baud rate can be determined.

Example 9-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 9-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

9600 = 1600000 / (64 (X + 1))X = $\lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

Error = (Calculated Baud Rate - Desired Baud Rate) Desired Baud Rate

= (9615 - 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

9.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 9-1BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = FOSC/(4(X+1))	NA

X = value in SPBRG (0 to 255)

TABLE 9-2 REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	SPBRG	Baud R	ate Ge	nerator F	0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

9.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set then CREN takes precedence.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. (Section 9.1)
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.

- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	USART Receive Register								0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Gener	0000 0000	0000 0000						

TABLE 9-9 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for Synchronous Master Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

FIGURE 9-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

C7/RX/DT pin	bit0	, bit1	bit2	,bit3	bit4	, bit5	bit6	bit7	1
C6/TX/CK pin									1 1 1
Write to		1 1 1	1 1 1	1 T L	 	1 1 1 1	1 T T	1 1 1	1 1 1
SBEN bit	1	1 1 1	1 1 1	1 1 1	1	1	1 1 1		1
CREN bit	1	1 1 1	1 1	t t		, ,	t	1	
RCIF bit (interrupt)	1 1 1	1 1 1	1 1 1	1 1 1		1	1 1 1	[
Read BXREG	1	1 1 1		1 1		, 1 1	1 1 1	1 1 1	́́

PIC16C77X

NOTES:

15.1 DC Characteristics: PIC16C77X (Commercial, Industrial)

DC CHA	RACTERISTICS	Standa Operati	ard Ope ing tem	e rating peratu	y Cond ire -4 0°	$\begin{array}{ll} \mbox{itions (unless otherwise stated)} \\ 0^{\circ}C &\leq TA \leq +85^{\circ}C \mbox{ for industrial and} \\ C &\leq TA \leq +70^{\circ}C \mbox{ for commercial} \end{array}$		
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions	
D001 D001A	Supply Voltage	VDD	4.0 4.5	_	5.5 5.5	V V	XT, RC and LP osc configuration HS osc configuration	
D002*	RAM Data Retention Voltage (Note 1)	VDR	—	1.5	-	V		
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	_	Vss	_	V	See section on Power on Reset for details	
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05		-	V/ms	See section on Power-on Reset for details. PWRT enabled	
D010	Supply Current (Note 2)	IDD	_	2.7	5	mA	XT, RC osc configuration FOSC = 4 MHz, VDD = 5.5V (Note 4)	
D013		٢		1315	30	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V	
D020 D020A	Power-down Current (Note 3) <	IPD	17	1.5 1.5	16 19	μ Α μΑ	VDD = 4.0V, -0°C to +70°C VDD = 4.0V, -40°C to +85°C	
	Module Differential Cur- rent (Note 5)		11		8			
D021	Watchdog Timer			6.0	20	μA	VDD = 4.0V	
D023*	Brown-out Reset Current (Note,5)		TBD	200	-	μA	BOR enabled, VDD = 5.0V	
D023B*	Bahdgap voltage generator	ΔIBG ⁶	-	40μΑ	TBD	μA		
D025*	Timer1 oscillator	∆IT1osc	-	5	9	μA	VDD = 4.0V	
D026*	A/D Converter	Δ IAD	—	300	-	μA	VDD = 5.5V, A/D on, not converting	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: The ∆ current is the additional current consumed when the peripheral is enabled. This current should be added to the base (IPD or IDD) current.
- 6: The bandgap voltate reference provides 1.22V to the VRL, VRH, LVD and BOR circuits. When calculating current consumption use the following formula: Δ IVRL + Δ IVRH + Δ ILVD + Δ IBOR + Δ IBG. Any of the Δ IVRL, Δ IVRH, Δ ILVD or Δ IBOR can be 0.

FIGURE 15-2: BROWN-OUT RESET CHARACTERISTICS

TABLE 15-4 ELECTRICAL CHARACTERISTICS: BOR

	Standard Opera	ating Conditions (unless otherwise stated)										
	Operating tempe	\Rightarrow rature -40° C \leq TA \leq +85°C for industrial and										
DC CHAR	ACTERISTICS	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial										
	Operating voltage	e VDb range as described in DC spec Section 15.1 and										
	Section 15.2											
Param	Characteristic	Symbol	Min	Тур	Max	Units	Conditions					
110.												
D005	BOR Voltage BORV1:0 = 11]	2.5	2.58	2.66							
	BQRV1:0 = 10-	VBOB	2.7	2.78	2.86	v						
	BORV1:0 = 01		4.2	4.33	4.46							
	BOBV1:0 = 00		4.5	4.64	4.78							
D006*	BOR Voltage Drift Temperature coef-	TCVOUT	_	15	50	ppm/°C						
	ficient											
D006A*	BOR Voltage Drift with respect to	$\Delta VBOR/$	—	—	50	μV/V						
	Vod Regulation	$\Delta V DD$										
D007	Brown-out Hysteresis	VBHYS	TBD	—	100	mV						
D022A	Supply Current	Δ IBOR	_	10	20	μA						

* These parameters are characterized but not tested.

Note 1: Production tested at TAMB = 25°C. Specifications over temp limits ensured by characterization.

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events