

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc773t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1	PIC16C773 PINOUT DESCRIPTION

Pin Name	DIP, SSOP, SOIC Pin#	l/O/P Type	Buffer Type	Description									
OSC1/CLKIN	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.									
OSC2/CLKOUT	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.									
MCLR/Vpp	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is active low reset to the device.									
				PORTA is a bi-directional I/O port.									
RA0/AN0	2	I/O	TTL	RA0 can also be analog input0									
RA1/AN1	3	I/O	TTL	RA1 can also be analog input1									
RA2/AN2/VREF-/VRL	4	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage input or internal voltage reference low									
RA3/AN3/VREF+/VRH	A3/AN3/VREF+/VRH 5 I		TTL	RA3 can also be analog input3 or positive analog reference voltage input or internal voltage reference high									
RA4/T0CKI	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.									
				PORTB is a bi-directional I/O port. PORTB can be software pro- grammed for internal weak pull-up on all inputs.									
RB0/INT	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.									
RB1/SS	22	I/O	TTL/ST ⁽¹⁾	RB1 can also be the SSP slave select									
RB2/AN8	23	I/O	TTL	RB2 can also be analog input8									
RB3/AN9/LVDIN	24	I/O	TTL	RB3 can also be analog input9 or the low voltage detect input reference									
RB4	25	I/O	TTL	Interrupt on change pin.									
RB5	26	I/O	TTL	Interrupt on change pin.									
RB6	27	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming clock.									
RB7	28	I/O	TTL/ST(2)	Interrupt on change pin. Serial programming data.									
				PORTC is a bi-directional I/O port.									
RC0/T1OSO/T1CKI	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input									
RC1/T1OSI/CCP2	12	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input Compare2 output/PWM2 output.									
RC2/CCP1	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.									
RC3/SCK/SCL	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.									
RC4/SDI/SDA	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I ² C mode).									
RC5/SDO	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).									
RC6/TX/CK	17	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.									
RC7/RX/DT	18	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.									
AVss	8	Р		Ground reference for A/D converter									
AVDD	7	Р		Positive supply for A/D converter									
Vss	19	Р	-	Ground reference for logic and I/O pins.									
Vdd	20	Р	-	Positive supply for logic and I/O pins.									
) = output – = Not u	sed	I/O = input TTL = TTL	input ST = Schmitt Trigger input									

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	13	14	30	Ι	ST/CMOS ⁽⁴⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	14	15	31	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	2	18	l/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19	I/O	TTL	RA0 can also be analog input0
RA1/AN1	3	4	20	I/O	TTL	RA1 can also be analog input1
RA2/AN2/VREF-/VRL	4	5	21	I/O	TTL	RA2 can also be analog input2 or negative analog reference voltage input or internal voltage reference low
RA3/AN3/VREF+/VRH	5	6	22	I/O	TTL	RA3 can also be analog input3 or positive analog reference voltage input or internal voltage reference high
RA4/T0CKI	6	7	23	I/O	ST	RA4 can also be the clock input to the Timer0 timer/ counter. Output is open drain type.
RA5/AN4	7	8	24	I/O	TTL	RA5 can also be analog input4
						PORTB is a bi-directional I/O port. PORTB can be soft- ware programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1/SS	34	37	9	I/O	TTL/ST ⁽¹⁾	RB1 can also be the SSP slave select
RB2/AN8	35	38	10	I/O	TTL	RB2 can also be analog input8
RB3/AN9/LVDIN	36	39	11	I/O	TTL	RB3 can also be analog input9 or input reference for low voltage detect
RB4	37	41	14	I/O	TTL	Interrupt on change pin.
RB5	38	42	15	I/O	TTL	Interrupt on change pin.
RB6	39	43	16	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	40	44	17	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.

TABLE 1-2 PIC16C774 PINOUT DESCRIPTION

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

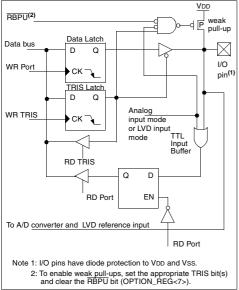
PIC16C77X

NOTES:

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

FIGURE 2-6: PIE1 REGISTER (ADDRESS 8Ch)


DAMA	DAMA	DAM 0	DAMA	DAMA	DAMA	DAMA	DAMA							
R/W-0 PSPIE ⁽¹⁾	R/W-0 ADIE	R/W-0 RCIE	R/W-0 TXIE	R/W-0 SSPIE	R/W-0 CCP1IE	R/W-0 TMR2IE	R/W-0 TMR1IE	B	= Readable bit					
bit7	7.012			00.12			bitO	W U	= Writable bit = Unimplemented bit, read as '0' = Value at POR reset					
bit 7:	1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt													
bit 6:	1 = Enables the A/D interrupt 0 = Disables the A/D interrupt													
bit 5:	RCIE : USART Receive Interrupt Enable bit 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt													
bit 4:	1 = Enab	ART Trans les the US bles the US	ART trans	smit interr	upt									
bit 3:	1 = Enab	ynchronou les the SS bles the SS	P interrup	t	upt Enable I	oit								
bit 2:	1 = Enab	CCP1 Inte les the CC les the CC	P1 interru	ıpt										
bit 1:	1 = Enab	TMR2 to I les the TM bles the TM	IR2 to PR	2 match ir										
bit 0:	1 = Enab	TMR1 Ov les the TM bles the TM	IR1 overfle	ow interru	pt									
Note 1:	PSPIE is	reserved	on the 28-	pin device	es, always r	naintain thi	s bit clear.							

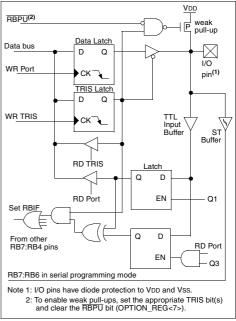
Note:

Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

The RB3 pin is multiplexed with analog channel 9 and the low voltage detect input (RB3/AN9/LVDIN)

FIGURE 3-7: BLOCK DIAGRAM OF RB3/AN9/LVDIN PIN

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).


This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1/SS	bit1	TTL/ST ⁽³⁾	Input/output pin or SSP slave select. Internal software programmable weak pull-up.
RB2/AN8	bit2	TTL	Input/output pin or analog input8. Internal software programmable weak pull-up.
RB3/AN9/LVDIN	bit3	TTL	Input/output pin or analog input9 or Low-voltage detect input. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

TABLE 3-3 PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when used as the SSP slave select.

TABLE 3-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx 11xx	uuuu 11uu
86h, 186h	TRISB	PORTE	B Data Dire	ction Reg	gister					1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

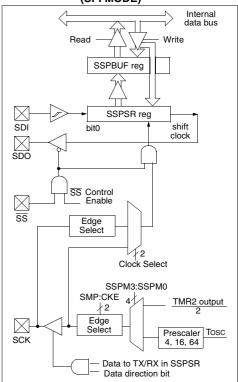
8.1 SPI Mode

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)


8.1.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

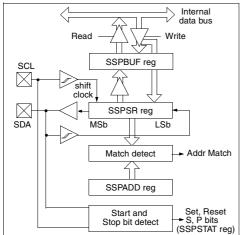
- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase
- (middle or end of data output time)Clock edge
- (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select Mode (Slave mode only)

Figure 8-4 shows the block diagram of the MSSP module when in SPI mode.

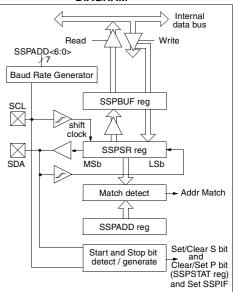
FIGURE 8-4: MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device. MSb first. The SSPBUF holds the data that was written to the SSPSR. until the received data is ready. Once the 8-bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit BF (SSPSTAT<0>) and the interrupt flag bit SSPIF (PIR1<3>) are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSP-BUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates when the SSP-BUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the MSSP Interrupt is used to


8.2 MSSP I²C Operation

The MSSP module in I²C mode fully implements all master and slave functions (including general call support) and provides interrupts on start and stop bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.


Refer to Application Note AN578, "Use of the SSP Module in the I²C Multi-Master Environment."

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of the pin that is independent of device frequency.

FIGURE 8-11: I²C MASTER MODE BLOCK DIAGRAM

Two pins are used for data transfer. These are the SCL pin, which is the clock, and the SDA pin, which is the data. The SDA and SCL pins that are automatically configured when the l^2C mode is enabled. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

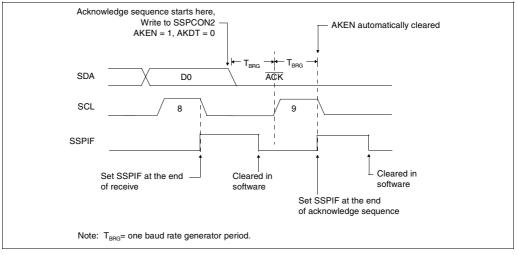
The MSSP module has six registers for ${\rm I}^2 C$ operation. They are the:

- SSP Control Register (SSPCON)
- SSP Control Register2 (SSPCON2)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I²C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I²C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Master mode, clock = OSC/4 (SSPADD +1)

Before selecting any I^2C mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate TRIS bits. Selecting an I^2C mode, by setting the SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in I^2C mode.


8.2.13 ACKNOWLEDGE SEQUENCE TIMING

An acknowledge sequence is enabled by setting the acknowledge sequence enable bit, AKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the acknowledge data bit is presented on the SDA pin. If the user wishes to generate an acknowledge, then the AKDT bit should be cleared. If not, the user should set the AKDT bit before starting an acknowledge sequence. The baud rate generator then counts for one rollover period (T_{BRG}), and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud

rate generator counts for T_{BRG} . The SCL pin is then pulled low. Following this, the AKEN bit is automatically cleared, the baud rate generator is turned off, and the SSP module then goes into IDLE mode. (Figure 8-29)

8.2.13.13 WCOL STATUS FLAG

If the user writes the SSPBUF when an acknowledege sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 8-29: ACKNOWLEDGE SEQUENCE WAVEFORM

9.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In asynchronous mode bit BRGH (TXSTA<2>) also controls the baud rate. In synchronous mode bit BRGH is ignored. Table 9-1 shows the formula for computation of the baud rate for different USART modes which only apply in master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 9-1. From this, the error in baud rate can be determined.

Example 9-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EXAMPLE 9-1: CALCULATING BAUD RATE ERROR

Desired Baud rate = Fosc / (64 (X + 1))

9600 = 1600000 / (64 (X + 1))X = $\lfloor 25.042 \rfloor = 25$

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

Error = (Calculated Baud Rate - Desired Baud Rate) Desired Baud Rate

= (9615 - 9600) / 9600

= 0.16%

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the Fosc/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

9.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 9-1BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate= Fosc/(16(X+1))
1	(Synchronous) Baud Rate = FOSC/(4(X+1))	NA

X = value in SPBRG (0 to 255)

TABLE 9-2 REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	SPBRG	Baud R	ate Gei	nerator F	0000 0000	0000 0000					

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used by the BRG.

TADLE 12-0		malization conditions for all hedistens (cont.d)												
Register	Dev	ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt									
TRISA	773	774	1 1111	1 1111	u uuuu									
THIOA	773	774	11 1111	11 1111	uu uuuu									
TRISB	773	774	1111 1111	1111 1111	uuuu uuuu									
TRISC	773	774	1111 1111	1111 1111	uuuu uuuu									
TRISD	773	774	1111 1111	1111 1111	uuuu uuuu									
TRISE	773	774	0000 -111	0000 -111	uuuu -uuu									
PIE1	773	774	r000 0000	r000 0000	ruuu uuuu									
	773	774	0000 0000	0000 0000	uuuu uuuu									
PIE2	773	774	00	00	u uu									
PCON	773	774	dd	uu	uu									
PR2	773	774	1111 1111	1111 1111	1111 1111									
SSPADD	773	774	0000 0000	0000 0000	uuuu uuuu									
SSPSTAT	773	774	0000 0000	0000 0000	uuuu uuuu									
TXSTA	773	774	0000 -010	0000 -010	uuuu -uuu									
SPBRG	773	774	0000 0000	0000 0000	uuuu uuuu									
REFCON	773	774	0000	0000	uuuu									
LVDCON	773	774	00 0101	00 0101	uu uuuu									
ADRESL	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu									
ADCON1	773	774	0000 000	0000 0000	uuuu uuuu									

TABLE 12-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS	(Cont.'d)
------------	---	-----------

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for reset value for specific condition.

FIGURE 12-7: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

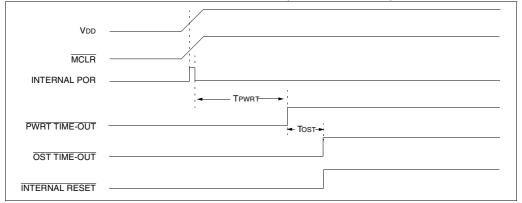
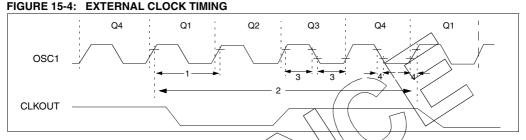


TABLE 14-1 DEVELOPMENT TOOLS FROM MICROCHIP

TABLE	14-1 DE	VELO	PMENT T	OOL	SFROM	MICH	OCHIP				,					,
HCS200 HCS300 HCS301								>	~						>	>
24CXX 25CXX 93CXX						>		>		>						
PIC17C7XX	>		>	∕			>	>								
PIC17C4X	>		>	~	>		>	>				``	>			
PIC16C9XX	`	`	`		>		>	>						>		
PIC16C8X	>	>	>		>		>	>				``	>			
PIC16C7XX	``	`	`		>		>	>					`			
PIC16C6X	>	>	>		>		>	>					`			
PIC16CXXX	>	>	>		>		>	>				`	~			
PIC16C5X	>	>	>		>		>	>			>	``	>			
PIC14000	>		>		>		>	>				>				
PIC12C5XX	>		>		>		>	>			>					
	MPLAB [™] -ICE	ICEPIC TM Low-Cost In-Circuit Emulator	MPLAB™ Integrated Development Environment	MPLAB™ C17* Compiler	<i>fuzzy</i> TECH®-MP Explorer/Edition Fuzzy Logic Dev. Tool	Total Endurance™ Software Model	PICSTART®Plus Low-Cost Universal Dev. Kit	PRO MATE® II Universal Programmer	KEELOQ [®] Programmer	SEEVAL [®] Designers Kit	SIMICE	PICDEM-14A	PICDEM-1	PICDEM-3	KEELoq [®] Evaluation Kit	KεεLoα Transponder Kit
	tor Products	eluma	s	ooT ə	Softwar		siers	ւօգւթաս	d			spi	soa	owe	Ð	

		Standa	rd Opera	ting Co	onditions	(unles	s otherwise stated)		
		Operating temperature			-40°C ≤ TA		$\Delta \leq +85^{\circ}$ C for industrial and		
DC CHA	RACTERISTICS				0°C	≤ Ta	≤ +70°C for commercial		
		Operati	ng voltage	ed in DC spec Section 15.1 and					
		Section	15.2.				~		
Param	Characteristic	Sym	Min	Typ†	Max	Units	Conditions		
No.									
	Output High Voltage								
D090	I/O ports (Note 3)	Voн	VDD - 0.7	· —	—	V	$10_{H} = -3.0 \text{ mA}, \text{ VDD} = 4.5 \text{ V},$		
						\int	-40°C to +85°C		
D092	OSC2/CLKOUT (RC osc config)		VDD - 0.7	· _	\sim	(v	IOH = -1.3 mA, VDP = 4.5V,		
					$\langle \rangle \rangle$	\backslash	-40°C to +85°C		
D150*	Open-Drain High Voltage	Vod	—	\sim	8.5	X	RA4 pin		
	Capacitive Loading Specs on		<		1</td <td></td> <td></td>				
	Output Pins		~	1 /		\setminus $-$			
D100	OSC2 pin	Cos¢2	\sim	Ξź,	15	рF	In XT, HS and LP modes when		
			\backslash		$\left \right\rangle$	ſ	external clock is used to drive		
		$\langle \rangle$	$ \rangle$	\nearrow '	$\langle \rangle$		OSC1.		
D101	All I/O pins and OSC2 (in RC \	Cio \		$\land \rightarrow$	5 0	pF			
D102	mode) SCL, SDA in / 2Ĉ mode ∖	∖Св		\leq	400	pF			
*	These parameters are characterized	red but	not tested		•		·		

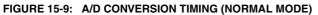

 I nese parameters are characterized but not tested.
 Data in "Typ" column is at SV, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

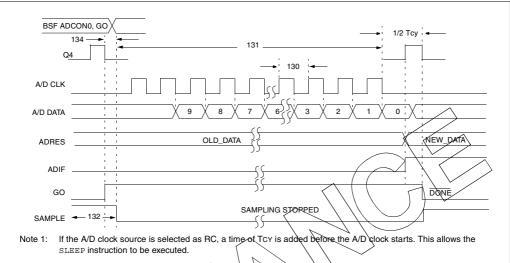
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels

represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3) Negative current is defined as current sourced by the pin.

The game current is defined as current sourced by the pin.

15.5.2 TIMING DIAGRAMS AND SPECIFICATIONS


TABLE 15-5 EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter	Sym	Characteristic	Min	Typt	Max	Units	Conditions
No.	•,		<u> </u>		\sim	••••••	
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC.	\succ	4	MHz	HS osc mode (-04)
		\land	DC	×	20	MHz	HS osc mode (-20)
		\sim	DC	_	200	kHz	LP osc mode
		Oscillator, Frequency	DC	_	4	MHz	RC osc mode
	$\langle \langle \rangle$	(Note 1)	0.1	—	4	MHz	XT osc mode
		$\land \land \land \checkmark$	4	_	20	MHz	HS osc mode
\sim	\setminus		5	—	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	_	ns	XT and RC osc mode
	$\langle \ \rangle$	(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
	$< \sim$		5	—	_	μs	LP osc mode
		Oscillator Period	250	—	_	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			50	—	250	ns	HS osc mode (-20)
			5	—	_	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	TCY = 4/FOSC
3*	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5		—	μs	LP oscillator
			15		_	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—	_	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			—		15	ns	HS oscillator

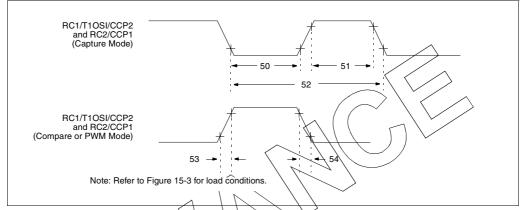
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

TADI E 1E 10	A/D CONVERSION F	
IADLE 13-10		KEQUIREMENTS.

Parameter	Sym	Characteristic	Min	Typt	Max	Units	Conditions
No.	Sym	Cildiacteristic		Турт	Max	Units	Conditions
130*	TAD	AVD clock period	1.6		—	μs	Tosc based, $V\text{REF} \geq 2.5V$
			3.0	—	—	μS	Tosc based, VREF full range
130*	TAD	A/D Internal RC oscillator period	3.0	6.0	9.0	μs	ADCS1:ADCS0 = 11 (RC mode) At VDD = 2.5V
			2.0	4.0	6.0	μs	At VDD = 5.0V
131*	ТСМИ	Conversion time (not including acquisition time) (Note 1)		13Tad	_	Tad	Set GO bit to new data in A/D result register
132*	TACQ	Acquisition Time	Note 2	11.5	—	μs	
			5*	_	_	μS	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start	_	Tosc/2	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

FIGURE 15-12: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-13 CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter No.	Sym	Characteristic		/ /		Min	Тур†	Мах	Units	Conditions
50*	Tcç⊾∕	CCP1 and CCP2	No Pres	caler		0.5TCY + 20	_	_	ns	
		input low time	$\square \square$		PIC16 C 77X	10	_	-	ns	
		$\land \land)$	With Pre	escaler	PIC16 LC 77X	20	—		ns	
51*	TCCH	CCP1 and CCP2	No Pres	caler		0.5TCY + 20	—		ns	
	>)	input high time			PIC16 C 77X	10	—		ns	
	\frown	\checkmark	With Prescaler		PIC16 LC 77X	20	_	-	ns	
52*	TccP	CCP1 and CCP2 ir	nput peric	bd		<u>3Tcy + 40</u> N		Ι	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 o	utput fall	time	PIC16 C 77X	_	10	25	ns	
					PIC16 LC 77X	—	25	45	ns	
54*	TccF	CCP1 and CCP2 o	nd CCP2 output fall time		PIC16 C 77X	—	10	25	ns	
					PIC16 LC 77X	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.5 K04-073 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units			INCHES		М	MILLIMETERS*			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX		
Pitch	р		0.026			0.65			
Number of Pins	n		28			28			
Overall Pack. Height	А	0.068	0.073	0.078	1.73	1.86	1.99		
Shoulder Height	A1	0.026	0.036	0.046	0.66	0.91	1.17		
Standoff	A2	0.002	0.005	0.008	0.05	0.13	0.21		
Molded Package Length	D‡	0.396	0.402	0.407	10.07	10.20	10.33		
Molded Package Width	E‡	0.205	0.208	0.212	5.20	5.29	5.38		
Outside Dimension	E1	0.301	0.306	0.311	7.65	7.78	7.90		
Shoulder Radius	R1	0.005	0.005	0.010	0.13	0.13	0.25		
Gull Wing Radius	R2	0.005	0.005	0.010	0.13	0.13	0.25		
Foot Length	L	0.015	0.020	0.025	0.38	0.51	0.64		
Foot Angle	ф	0	4	8	0	4	8		
Radius Centerline	L1	0.000	0.005	0.010	0.00	0.13	0.25		
Lead Thickness	с	0.005	0.007	0.009	0.13	0.18	0.22		
Lower Lead Width	Bţ	0.010	0.012	0.015	0.25	0.32	0.38		
Mold Draft Angle Top	α	0	5	10	0	5	10		
Mold Draft Angle Bottom	β	0	5	10	0	5	10		

* Controlling Parameter.

[†] Dimension "B" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."

BIT/REGISTER CROSS-REFERENCE LIST

10001 10000	
ADCS1:ADCS0	
ADIE	
ADIF	
ADON	
BF	
BOR	
BRGH	
С	
CCP1IE	
CCP1IF	
CCP1M3:CCP1M0	
CCP1X:CCP1Y	
CCP2IE	
CCP2IF	
CCP2M3:CCP2M0	
CCP2X:CCP2Y	
CHS2:CHS0	
CKE	SSPSTAT<6>
СКР	SSPCON<4>
CREN	RCSTA<4>
CSRC	TXSTA<7>
D/A	SSPSTAT<5>
DC	STATUS<1>
FERR	RCSTA<2>
GIE	INTCON<7>
GO/DONE	
IBF	
IBOV	
INTE	
INTEDG	
INTF	
IRP	
OBF	
OERB	
P	
PCFG2:PCFG0	
PD	
PEIE	
POR	
PS2:PS0	_
PSA	
PSPIE	
PSPIF	
PSPMODE	
R/W	
RBIE	
RBIF	
RBPU	_
RCIE	
RCIF	
RP1:RP0	
RX9	
RX9D	
S	
SMP	
SPEN	
SREN	
SSPEN	
SSPIE	
SSPIF	
SSPM3:SSPM0	SSPCON<3:0>
SSPOV	
SYNC	TXSTA<4>

T0CS	
TOIE	INTCON<5>
TOIF	INTCON<2>
T0SE	OPTION_REG<4>
T1CKPS1:T1CKPS0	T1CON<5:4>
T1OSCEN	T1CON<3>
T1SYNC	T1CON<2>
T2CKPS1:T2CKPS0	T2CON<1:0>
TMR1CS	T1CON<1>
TMR1IE	PIE1<0>
TMR1IF	PIR1<0>
TMR1ON	T1CON<0>
TMR2IE	PIE1<1>
TMR2IF	PIR1<1>
TMR2ON	T2CON<2>
TO	STATUS<4>
TOUTPS3:TOUTPS0	T2CON<6:3>
TRMT	TXSTA<1>
ТХ9	TXSTA<6>
TX9D	TXSTA<0>
TXEN	TXSTA<5>
TXIE	PIE1<4>
TXIF	PIR1<4>
UA	SSPSTAT<1>
WCOL	SSPCON<7>
Z	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	2: Technical Publications Manager	Total Pages Sent
RE:	E: Reader Response	
From	om: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
• •	oplication (optional):	
Wou	ould you like a reply?YN	
Dev	evice: PIC16C77X Literature Number: DS30	275B
Que	uestions:	
4	What are the best features of this document?	
1.	what are the best leatures of this document?	
2.	How does this document meet your hardware and software	development needs?
3.	Do you find the organization of this data sheet easy to follow	v? If not, why?
4.	What additions to the data sheet do you think would enhance	ce the structure and subject?
		<i></i>
5.	What deletions from the data sheet could be made without a	affecting the overall usefulness?
6	Is there any incorrect or misleading information (what and w	(here)?
0.		
7.	How would you improve this document?	
8.	How would you improve our software, systems, and silicon	products?

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoo, KEELoo logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1999-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769263

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELC0® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.