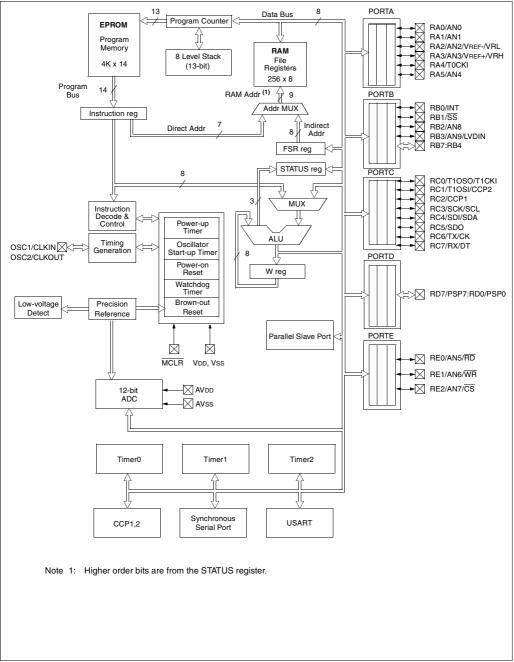


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc774-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2 P	PIC16C774 PINOUT DESCRIPTION	(Cont.'d)
-------------	------------------------------	-----------

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32	I/O	ST	RC0 can also be the Timer1 oscillator output or a Timer1 clock input.
RC1/T1OSI/CCP2	16	18	35	I/O	ST	RC1 can also be the Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	17	19	36	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	18	20	37	I/O	ST	RC3 can also be the synchronous serial clock input/ output for both SPI and I ² C modes.
RC4/SDI/SDA	23	25	42	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O ($I^{2}C$ mode).
RC5/SDO	24	26	43	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK	25	27	44	I/O	ST	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	26	29	1	I/O	ST	RC7 can also be the USART Asynchronous Receive or Synchronous Data.
						PORTD is a bi-directional I/O port or parallel slave port
						when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38	I/O	ST/TTL ⁽³⁾	
RD1/PSP1	20	22	39	I/O	ST/TTL ⁽³⁾	
RD2/PSP2	21	23	40	I/O	ST/TTL ⁽³⁾ ST/TTL ⁽³⁾	
RD3/PSP3 RD4/PSP4	22 27	24 30	41 2	1/O 1/O	ST/TTL ⁽³⁾	
RD5/PSP5	27	30	2	1/O	ST/TTL ⁽³⁾	
RD6/PSP6	20 29	32	4	1/O	ST/TTL ⁽³⁾	
RD7/PSP7	29 30	32	4 5	1/O	ST/TTL ⁽³⁾	
	30		5	1/0	31/112	PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25	I/O	ST/TTL ⁽³⁾	RE0 can also be read control for the parallel slave port, or analog input5.
RE1/WR/AN6	9	10	26	I/O	ST/TTL ⁽³⁾	RE1 can also be write control for the parallel slave port, or analog input6.
RE2/CS/AN7	10	11	27	I/O	ST/TTL ⁽³⁾	RE2 can also be select control for the parallel slave port, or analog input7.
AVss	12	13	29	Р		Ground reference for A/D converter
AVDD	11	12	28	Р		Positive supply for A/D converter
Vss	31	34	6	Р	_	Ground reference for logic and I/O pins.
VDD	32	35	7	P	_	Positive supply for logic and I/O pins.
NC	-	1,17,28, 40	12,13, 33,34		-	These pins are not internally connected. These pins should be left unconnected.
Legend: I = input	O = outp	ut	I/C) = input	/output	P = power
	— = Not	used	TT	L = TTL	. input	ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured for the multiplexed function.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

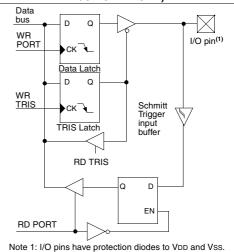
3.5 PORTE and TRISE Register

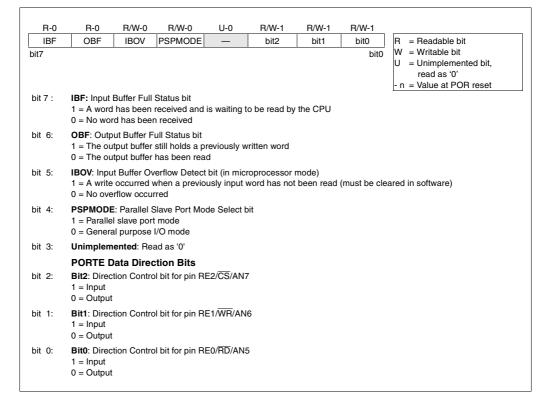
This section is applicable to the 40/44-pin devices only.

PORTE has three pins RE0/RD/AN5, RE1/ \overline{WR} /AN6 and RE2/ \overline{CS} /AN7, which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). Ensure ADCON1 is configured for digital I/O. In this mode the input buffers are TTL.

Figure 3-12 shows the TRISE register, which also controls the parallel slave port operation.


PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.


TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset these pins are configured as analog inputs.

FIGURE 3-12: TRISE REGISTER (ADDRESS 89h)

PIC16C77X

TABLE 3-9 PORTE FUNCTIONS

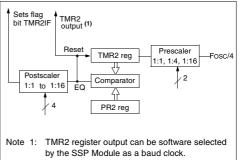
Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bitO	ST/TTL ⁽¹⁾	Input/output port pin or read control input in parallel slave port mode or analog input: RD 1 = Not a read operation 0 = Read operation. Reads PORTD register (if chip selected)
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in parallel slave port mode or analog input: WR 1 = Not a write operation 0 = Write operation. Writes PORTD register (if chip selected)
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in parallel slave port mode or analog input: CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port Mode.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
09h	PORTE	—		_	—	—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE D	Data Direct	ion Bits	0000 -111	0000 -111
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.


6.2 <u>Timer2 Interrupt</u>

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

6.3 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 6-2: TIMER2 BLOCK DIAGRAM

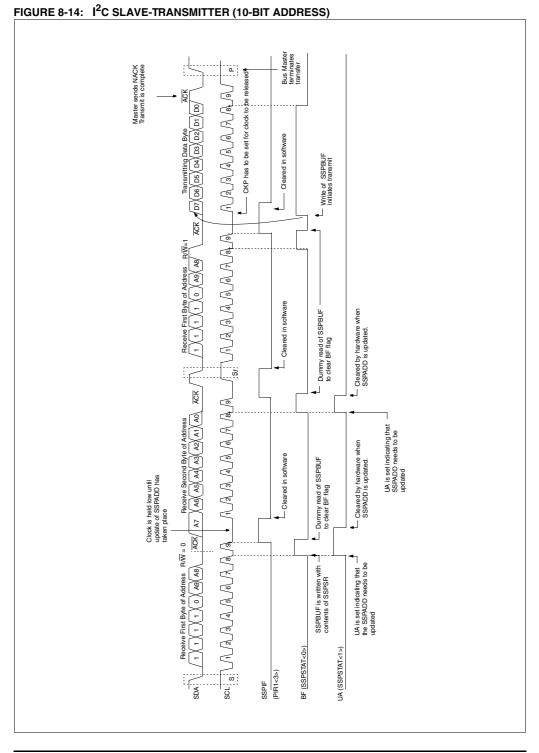


TABLE 6-1 REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: These bits are reserved on the 28-pin, always maintain these bits clear.

8.2.6 MULTI-MASTER OPERATION

In multi-master mode, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle with both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored, for abitration, to see if the signal level is the expected output level. This check is performed in hardware, with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

8.2.7 I²C MASTER OPERATION SUPPORT

Master Mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON and by setting the SSPEN bit. Once master mode is enabled, the user has six options.

- Assert a start condition on SDA and SCL.
- Assert a Repeated Start condition on SDA and SCL.
- Write to the SSPBUF register initiating transmission of data/address.
- Generate a stop condition on SDA and SCL.
- Configure the I²C port to receive data.
- Generate an Acknowledge condition at the end of a received byte of data.
- Note: The MSSP Module, when configured in I²C Master Mode, does not allow queueing of events. For instance: The user is not allowed to initiate a start condition, and immediately write the SSPBUF register to initiate transmission before the START condition is complete. In this case the SSPBUF will not be written to, and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

8.2.7.4 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the l^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/\overline{W}) bit. In this case, the R/\overline{W} bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

In Master receive mode the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/ \overline{W} bit. In this case the R/ \overline{W} bit will be logic '1'. Thus the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions indicate the beginning and end of transmission.

The baud rate generator used for SPI mode operation is now used to set the SCL clock frequency for either 100 kHz, 400 kHz, or 1 MHz I^2C operation. The baud rate generator reload value is contained in the lower 7 bits of the SSPADD register. The baud rate generator will automatically begin counting on a write to the SSP-BUF. Once the given operation is complete (i.e. transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state

A typical transmit sequence would go as follows:

- a) The user generates a Start Condition by setting the START enable bit (SEN) in SSPCON2.
- SSPIF is set. The module will wait the required start time before any other operation takes place.
- c) The user loads the SSPBUF with address to transmit.
- d) Address is shifted out the SDA pin until all 8 bits are transmitted.
- e) The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) The user loads the SSPBUF with eight bits of data.
- h) DATA is shifted out the SDA pin until all 8 bits are transmitted.

8.2.11 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or either half of a 10-bit address is accomplished by simply writing a value to SSPBUF register. This action will set the buffer full flag (BF) and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time spec). SCL is held low for one baud rate generator roll over count (T_{BRG}). Data should be valid before SCL is released high (see Data setup time spec). When the SCL pin is released high, it is held that way for T_{BRG}, the data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA allowing the slave device being addressed to respond with an ACK bit during the ninth bit time, if an address match occurs or if data was received properly. The status of ACK is read into the AKDT on the falling edge of the ninth clock. If the master receives an acknowledge, the acknowledge status bit (AKSTAT) is cleared. If not, the bit is set. After the ninth clock the SSPIF is set, and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF leaving SCL low and SDA unchanged (Figure 8-26).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock the master will de-assert the SDA pin allowing the slave to respond with an acknowledge. On the falling edge of the ninth clock the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the AKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared, and the baud rate generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

8.2.11.7 BF STATUS FLAG

In transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

8.2.11.8 WCOL STATUS FLAG

If the user writes the SSPBUF when a transmit is already in progress (i.e. SSPSR is still shifting out a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

8.2.11.9 AKSTAT STATUS FLAG

In transmit mode, the AKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an acknowledge $(\overline{ACK} = 0)$, and is set when the slave does not acknowledge $(\overline{ACK} = 1)$. A slave sends an acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

8.2.18 MULTI -MASTER COMMUNICATION, BUS COLLISION, AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I²C port to its IDLE state. (Figure 8-34).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are de-asserted, and the SSPBUF can be written to. When the user services the bus collision interrupt service routine, and if the l^2C bus is free, the user can resume communication by asserting a START condition.

If a START, Repeated Start, STOP, or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are de-asserted, and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision interrupt service routine, and if the l^2 C bus is free, the user can resume communication by asserting a START condition.

The Master will continue to monitor the SDA and SCL pins, and if a STOP condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when bus collision occurred.

In multi-master mode, the interrupt generation on the detection of start and stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is idle and the S and P bits are cleared.

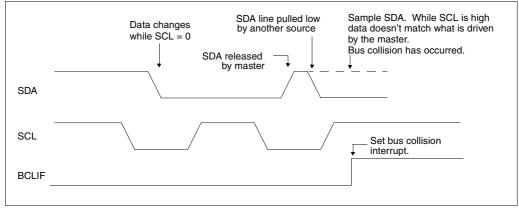
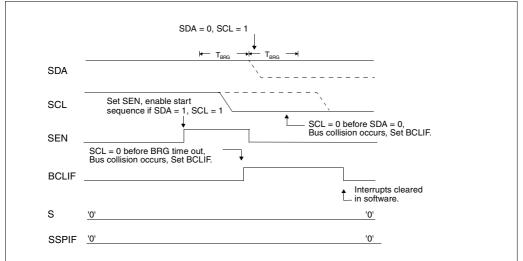
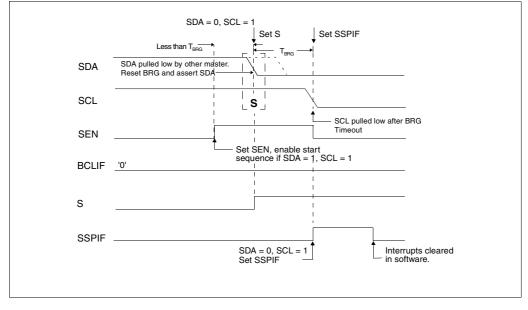




FIGURE 8-34: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

FIGURE 8-37: BRG RESET DUE TO SDA COLLISION DURING START CONDITION

BAUD RATE	Fosc = 2	20 MHz %	SPBRG value		0/	SPBF valu		10 MHz		%	SPB vali	SRG	7.15909 1	ИНz %	SPBRG value		
(K)	KBAUD	ERROR) KBAUD	ERRO			KBAUD			(deci		KBAUD	ERROR	(decimal)		
0.3	NA		-	NA	-	-		NA		-	-		NA		-		
1.2	NA	-	-	NA	-	-		NA		-	-		NA	-	-		
2.4	NA	-	-	NA	-	-		NA		-	-		NA	-	-		
9.6	NA	-	-	NA	-	-		9.766	+1	.73	25	55	9.622	+0.23	185		
19.2	19.53	+1.73	255	19.23	+0.16			19.23		.16	12		19.24	+0.23	92		
76.8	76.92	+0.16	64	76.92				75.76		.36	3		77.82	+1.32	22		
96	96.15	+0.16	51	95.24				96.15		.16	25	-	94.20	-1.88	18		
300	294.1	-1.96	16	307.69				312.5		.17	7		298.3	-0.57	5		
500	500	0	9	500	0	7		500		0	4		NA	-	-		
HIGH	5000	-	0	4000	-	0		2500		-	0		1789.8	-	0		
LOW	19.53	-	255	15.625	-	255	5	9.766		-	25	55	6.991	-	255		
	Fosc =	5.0688 MH	۱z ،	4 MHz			3.57	'9545 M	Hz		1	MHz			32.768 k	Hz	
BAUD			SPBRG			SPBRG				SPBF	RG			SPBR	à		SPBRG
RATE	KBAUD	%		KBAUD	%	value		AUD	%	valu		KBAU		value	KBAUD	%	value
(K)		ERROR	(decimal)		ERROR	decimal)		E	RROR	(decin	nal)		ERRC	R (decima	u)	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	Ν	JA	-	-		NA	-	-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	Ν	A	-	-		1.20	2 +0.1	5 207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	Ν	A	-	-		2.40	4 +0.1	5 103	NA	-	-
9.6	9.6	0	131	9.615	+0.16	103	9.	622 -	+0.23	92		9.61	5 +0.1	6 25	NA	-	-
19.2	19.2	0	65	19.231	+0.16	51			0.83	46		19.24			NA	-	-
76.8	79.2	+3.13	15	76.923	+0.16	12			2.90	11		83.3	4 +8.5	12	NA	-	-
96	97.48	+1.54	12	1000	+4.17	9			+3.57	8	1	NA	-	-	NA	-	-
300	316.8	+5.60	3	NA	-	-			0.57	2		NA	-	-	NA	-	-
500	NA	-	-	NA	-	-		JA	-	-		NA	-	-	NA	-	-
HIGH	1267	-	0	100	-	0		4.9	-	0	1	250		0	8.192	-	0
LOW	4.950	-	255	3.906	-	255	3.	496	-	255	5	0.976	6 -	255	0.032	-	255

TABLE 9-4 BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 2		SPBRG	16 MHz		SPBF	RG	0 MHz			PBRG	7.15909 M		SPBRG		
RATE (K)	KBAUD	% ERROR	value (decimal	KBAUE	% ERRO	valu R (decim		KBAUD	% ERRC		alue	KBAUD	% ERROR	value (decimal)		
	-	Ennon	(uconnui)			i (ucom					connun)		Ennon	(aconnai)		
0.3	NA	-	-	NA	-	-		NA	-		-	NA	-	-		
1.2	1.221	+1.73	255	1.202				1.202	+0.1		129	1.203	+0.23	92		
2.4	2.404	+0.16	129	2.404			;	2.404	+0.1		64	2.380	-0.83	46		
9.6	9.469	-1.36	32	9.615	+0.16			9.766	+1.7		15	9.322	-2.90	11		
19.2	19.53	+1.73	15	19.23	+0.16			19.53	+1.7		7	18.64	-2.90	5		
76.8	78.13	+1.73	3	83.33	+8.51	2		78.13	+1.7	3	1	NA	-	-		
96	104.2	+8.51	2	NA	-	-		NA	-		-	NA	-	-		
300	312.5	+4.17	0	NA	-	-		NA	-		-	NA	-	-		
500	NA	-	-	NA	-	-		NA	-		-	NA	-	-		
HIGH	312.5	-	0	250	-	0		156.3	-		0	111.9	-	0		
LOW	1.221	-	255	0.977	-	255	;	0.6104	-	:	255	0.437	-	255		
	Fosc = !	5.0688 MH	lz 4	1 MHz			3.579	9545 MH	z		1 MHz			32.768 k	Hz	
BAUD			SPBRG			SPBRG				SPBRG			SPBRG			SPBRG
BAUD		%	value		%	value		0		value		%	value		%	value
(K)	KBAUD		(decimal)	KBAUD			ква				KBAU) KBAUD		
	0.31	+3.13	, ,	0.3005	-0.17	207	0.30			185	0.300		51	0.256		
0.3 1.2	1.2	+3.13	255 65	1.202	-0.17 +1.67	207 51	1.19		.23 83	46	1.202		12	0.256 NA	-14.67	1
						-									-	-
2.4	2.4	0	32	2.404	+1.67	25	2.43			22	2.232		6	NA	-	-
9.6	9.9	+3.13	7	NA	-	-	9.32		90	5	NA	-	-	NA	-	-
19.2	19.8	+3.13	3	NA	-	-	18.6		90	2	NA	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA		-	-	NA	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA		-	-	NA	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA		-	-	NA	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA		-	-	NA	-	-	NA	-	-
HIGH	79.2	-		62.500	-	0	55.9		-	0	15.63		0	0.512	-	0
LOW	0.3094	-	255	3.906	-	255	0.21	85	-	255	0.061	0 -	255	0.0020	-	255

1)
1

BAUD RATE (K)	Fosc = 2 KBAUD	0 MHz % ERROR	SPBRG value (decimal)	16 MHz KBAUD	% ERROF	SPBRG value decimal		%	b Va	PBRG alue cimal)	7.16 MHz KBAUD E	%	SPBRG value decimal)		
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	5 +0.	16	64	9.520	-0.83	46		
19.2	19.230	+0.16	64	19.230	+0.16	51	18.93	9 -1.3	36	32	19.454	+1.32	22		
38.4	37.878	-1.36	32	38.461	+0.16	25	39.06	2 +1	.7	15	37.286	-2.90	11		
57.6	56.818	-1.36	21	58.823	+2.12	16	56.81	8 -1.3	36	10	55.930	-2.90	7		
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.	51	4	111.860	-2.90	3		
250	250	0	4	250	0	3	NA	-		-	NA	-	-		
625	625	0	1	NA	-	-	625	0		0	NA	-	-		
1250	1250	0	0	NA	-	-	NA	-		-	NA	-	-		
DALID	Fosc = 5	000 1411-													
BAUD RATE		%	SPBRG value	4 MHz	%	SPBRG value	8.579 MH	%	SPBRG value		%	SPBRG value		%	SPBRG value
	KBAUD	%	SPBRG value			SPBRG		%	value		%				value
RATE		%	SPBRG value			SPBRG value (decimal) ł		%	value		% UD ERROF	value		%	value
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD		SPBRG value (decimal) ł	KBAUD	% ERROR	value (decimal) KBA	% UD ERROF 28 -6.99	value (decimal)) KBAUD	%	value
RATE (K) 9.6	KBAUD 9.6	% ERROR 0	SPBRG value (decimal) 32	KBAUD NA	ERROR -	SPBRG value (decimal) H	KBAUD 9.727	% ERROR +1.32	value (decimal 22) KBA	% UD ERROF 28 -6.99 33 +8.51	value (decimal) 6) KBAUD	%	value
RATE (K) 9.6 19.2	KBAUD 9.6 18.645	% ERROR 0 -2.94	SPBRG value (decimal) 32 16	KBAUD NA 1.202	ERROR - +0.17	SPBRG value (decimal) F - 207 103	KBAUD 9.727 18.643	% ERROR +1.32 -2.90	value (decimal) 22 11) KBA 8.92 20.8	% UD ERROF 28 -6.99 33 +8.51 25 -18.61	value (decimal) 6 2) KBAUD NA NA	ERROR - -	value (decimal) - -
RATE (K) 9.6 19.2 38.4 57.6 115.2	KBAUD 9.6 18.645 39.6 52.8 105.6	% ERROR 0 -2.94 +3.12	SPBRG value (decimal) 32 16 7	KBAUD NA 1.202 2.403 9.615 19.231	ERROR - +0.17 +0.13	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860	% ERROR +1.32 -2.90 -2.90 -2.90 -2.90	value (decimal 22 11 5) KBA 8.92 20.8 31.2 62. NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A -	value (decimal) 6 2 1) KBAUD NA NA NA NA NA	* ERROR - - -	value (decimal) - -
RATE (K) 9.6 19.2 38.4 57.6 115.2 250	KBAUD 9.6 18.645 39.6 52.8 105.6 NA	% ERROR 0 -2.94 +3.12 -8.33	SPBRG value (decimal) 32 16 7 5	KBAUD NA 1.202 2.403 9.615 19.231 NA	+0.17 +0.13 +0.16	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860 223.721	% ERROR +1.32 -2.90 -2.90 -2.90	value (decimal 22 11 5 3) KBA 8.92 20.8 31.2 62. NA NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A - A -	value (decimal) 6 2 1 0) KBAUD NA NA NA NA NA NA	* ERROR - - - -	value (decimal) - - - -
RATE (K) 9.6 19.2 38.4 57.6 115.2	KBAUD 9.6 18.645 39.6 52.8 105.6	% ERROR 0 -2.94 +3.12 -8.33 -8.33	SPBRG value (decimal) 32 16 7 5 2	KBAUD NA 1.202 2.403 9.615 19.231	+0.17 +0.13 +0.16 +0.16	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860	% ERROR +1.32 -2.90 -2.90 -2.90 -2.90	value (decimal) 22 11 5 3 1) KBA 8.92 20.8 31.2 62. NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A - A - A - A -	value R (decimal) 6 2 1 0 -) KBAUD NA NA NA NA NA	% ERROR - - - - - - -	value (decimal) - - - - - -

9.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 9-6. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at FOSC.

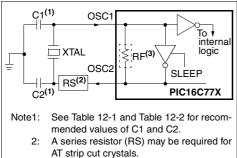
The USART module has a special provision for multiprocessor communication. When the RX9 bit is set in the RCSTA register, 9-bits are received and the ninth bit is placed in the RX9D status bit of the RSTA register. The port can be programmed such that when the stop bit is received, the serial port interrupt will only be activated if the RX9D bit = 1. This feature is enabled by setting the ADDEN bit RCSTA<3> in the RCSTA register. This feature can be used in a multi-processor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by the RX9D bit being a '1' (instead of a '0' for a data byte). If the ADDEN bit is set in the slave's RCSTA register, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave can examine the received byte to see if it is addressed. The addressed slave will then clear its ADDEN bit and prepare to receive data bytes from the master.

When ADDEN is set, all data bytes are ignored. Following the STOP bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost.

The ADDEN bit will only take effect when the receiver is configured in 9-bit mode.

The receiver block diagram is shown in Figure 9-6.


Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

9.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

Steps to follow when setting up an Asynchronous Reception with Address Detect Enabled:

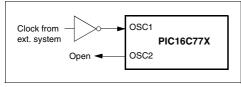

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH.
- Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- · If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- · Set ADDEN to enable address detect.
- Enable the reception by setting enable bit CREN.
- Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register, to determine if the device is being addressed.
- If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer, and interrupt the CPU.

FIGURE 12-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

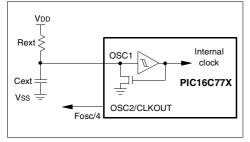
FIGURE 12-3: EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

TABLE 12-1 CERAMIC RESONATORS

Ranges Te	ested:										
Mode	Freq OSC1 OSC2										
XT	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF									
4.0 MHz 15 - 68 pF 15 - 68 pF HS 8.0 MHz 10 - 68 pF 10 - 68 pF 16.0 MHz 10 - 22 pF 10 - 22 pF											
	es at bottom of p	or design guidar bage.	nce only. See								
455 kHz	Panasonic E	FO-A455K04B	± 0.3%								
2.0 MHz	Murata Erie	CSA2.00MG	$\pm 0.5\%$								
4.0 MHz	Murata Erie	CSA4.00MG	$\pm 0.5\%$								
8.0 MHz	Murata Erie (CSA8.00MT	± 0.5%								
16.0 MHz	Murata Erie	CSA16.00MX	$\pm 0.5\%$								
All reso	onators used did	d not have built-in	capacitors.								

TABLE 12-2 CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR


Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
XT	200 kHz	47-68 pF	47-68 pF			
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15-33 pF	15-33 pF			
	20 MHz	15-33 pF	15-33 pF			
These values are for design guidance only. See notes at bottom of page.						
Crystals Used						
32 kHz	Epson C-00	± 20 PPM				
200 kHz	STD XTL 2	± 20 PPM				
1 MHz	ECS ECS-	± 50 PPM				
4 MHz	ECS ECS-4	± 50 PPM				
8 MHz	EPSON CA	± 30 PPM				
20 MHz	EPSON CA-301 20.000M-C ± 30 PPM					


Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 12-1).

- Higher capacitance increases the stability of oscillator but also increases the start-up time.
- Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

12.2.3 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. These factors and the variation due to tolerances of external R and C components used need to be taken into account for each application. Figure 12-4 shows how the R/C combination is connected to the PIC16C77X.

FIGURE 12-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
CLKOUT(4) \	Tost(2)		\	\ [_]	\/
INT pin			1 1 1 1	1	
INTF flag	<u>ل</u>		Interrupt Latency		
(INTCOŇ<1>)			(Note 2)	1	1
GIE bit (INTCON<7>)	Processor in			1	
(SLEEP		· ·	i I	1
INSTRUCTION FLOW			1 I 1 I	i I	1
PC X PC X PC+1	PC+2	PC+2	χ PC + 2	(0004h	(0005h
Instruction fetched Inst(PC) = SLEEP Inst(PC + 1)		Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP oscillator mode assumed.					

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

12.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices.

12.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

12.16 In-Circuit Serial Programming

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, (DS30277).

PIC16C77X

NOTES:

15.2	DC Characteristics:PIC16LC77X-04 ((Commercial	. Industrial)	

DC CHA	RACTERISTICS			ard Ope ing tem			tions (unless otherwise stated) $0^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and $C \leq TA \leq +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Max	Units	Conditions
D001	Supply Voltage	Vdd	2.5	_	5.5	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Voltage (Note 1)	Vdr		1.5	—	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	_	Vss		V \	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	Ĺ	V/ms	See section on Power-on Reset for details. PWRT enabled
D010 D010A	Supply Current (Note 2)	IDB		2.0	3.8 48	mA μA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4) LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT dis- abled
D020 D020A	Power-down Current (Note 3)	IPD		0.9 0.9	5 5	μΑ μΑ	VDD = 3.0V, 0°C to +70°C VDD = 3.0V, -40°C to +85°C
	Module Differential Cur- rent (note5)						
D021	Watehdog Timer	Δ IWDT	—	6	20	μA	VDD = 3.0V
D023*	Brown-out Reset Current (Note 5)	Δ IBOR	TBD	200	—	μA	BOR enabled, VDD = 5.0V
D025*	Timer1 oscillator	∆I⊤1osc	—	1.5	3	μA	VDD = 3.0V
D026*	A/D Converter	ΔIAD	—	300	—	μA	VDD = 5.5V, A/D on, not converting

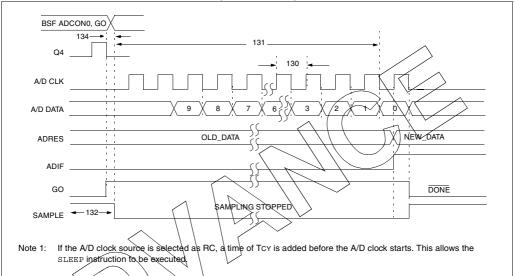
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


 $\frac{OSC1}{MCLR}$ = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD $\frac{MCLR}{MCLR}$ = VDD; WDT enabled/disabled as specified.

3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.

4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

5: The ∆ current is the additional current consumed when the peripheral is enabled. This current should be added to the base (IPD or IDD) current.

FIGURE 15-10: A/D CONVERSION TIMING (SLEEP MODE)

TABLE 15-11 A/D CONVERSION REQUIREMENTS

Parameter	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
No.	\searrow						
130	TAD	A/D clock period	1.6	—		μS	$V_{REF} \ge 2.5V$
		Ť	TBD	—	_	μs	VREF full range
130*	TAD	A/D Internal RC					ADCS1:ADCS0 = 11 (RC mode)
V		oscillator period	3.0	6.0	9.0	μs	At VDD = 3.0V
			2.0	4.0	6.0	μS	At VDD = 5.0V
131*	TCNV	Conversion time (not	_	13Tad		—	
		including acquisition time)(Note 1)					
132*	TACQ	Acquisition Time	Note 2	11.5	_	μs	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e 1mV @ 4.096V) from the last sam pled voltage (as stated on CHOLD)
134*	Tgo	Q4 to A/D clock start	_	Tosc/2 + Tcy	_	_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tei: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820