

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc774t-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C77X

NOTES:

2.2.2.2 OPTION_REG REGISTER

The OPTION_REG register is a readable and writable register which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0, and the weak pull-ups on PORTB.

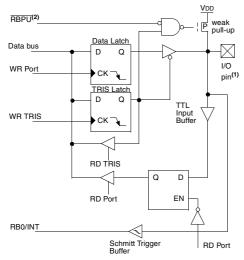
Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

FIGURE 2-4: OPTION_REG REGISTER (ADDRESS 81h, 181h)

RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	R = Readable bit
t7				1.0/1	. 02		bit0	W = Writable bit
							5.10	U = Unimplemented bit,
								read as '0'
								 n = Value at POR reset
oit 7:	RBPU: PC	RTB Pull-	up Enabl	e bit				
	1 = PORTI	B pull-ups	are disal	oled				
	0 = PORTI	B pull-ups	are enab	led by inc	lividual port	latch valu	es	
oit 6:		· ·			·			
л о.	INTEDG: I 1 = Interru				nin			
	0 = Interru	pt on tailing	g eage o	TRB0/IN	pin			
oit 5:	TOCS: TM	R0 Clock S	Source S	elect bit				
	1 = Transit	ion on RA4	4/T0CKI	pin				
	0 = Interna	al instructio	on cycle o	clock (CLł	(OUT)			
oit 4:	TOSE: TM	R0 Source	Edge Se	elect bit				
					on RA4/T0	CKI pin		
					on RA4/T0			
bit 3:	PSA: Pres		0					
JIL 3.	1 = Presca							
	0 = Presca		,		modulo			
					module			
oit 2-0:	PS2:PS0:	Prescaler	Rate Sel	ect bits				
	Bit Value	TMR0 Ra	te WD	r Rate				
	000	1:2	1 :	1				
	001	1:4	1 :					
	010	1:8	1:					
	011	1:16	1:					
	100	1:32		16				
	101 110	1:64		32 64				
	TTO	1:128	· .	64 128				
	111							

3.2 PORTB and the TRISB Register

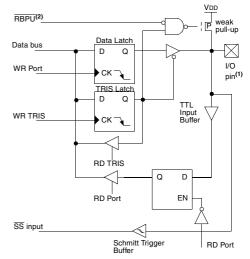
PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, i.e., put the contents of the output latch on the selected pin.


EXAMPLE 3-1: INITIALIZING PORTB

BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

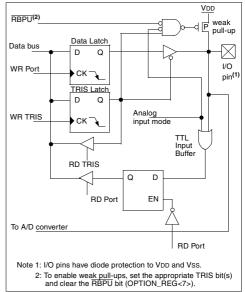
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overrightarrow{\text{RBPU}}$ (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

The RB0 pin is multiplexed with the external interrupt (RB0/INT).


FIGURE 3-4: BLOCK DIAGRAM OF RB0 PIN

Note 1: I/O pins have diode protection to VDD and VSS. 2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).

The RB1 pin is multiplexed with the SSP module slave select (RB1/SS).


FIGURE 3-5: BLOCK DIAGRAM OF RB1/SS PIN

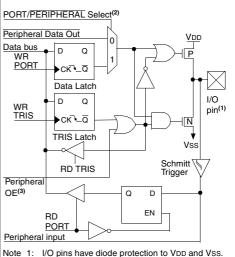
Note 1: I/O pins have diode protection to VDD and Vss. 2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).

The RB2 pin is multiplexed with analog channel 8 (RB2/AN8).

FIGURE 3-6: BLOCK DIAGRAM OF RB2/AN8 PIN

3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output, i.e., put the contents of the output latch on the selected pin.


PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

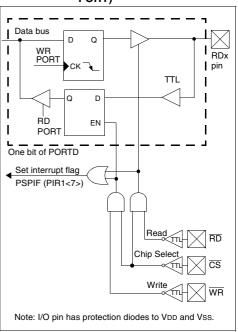
EXAMPLE 3-1: INITIALIZING PORTC

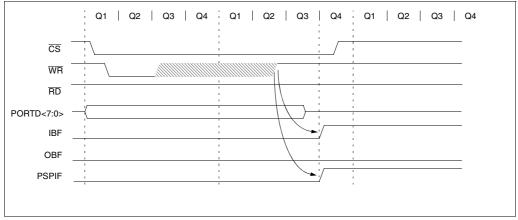
BCF CLRF	STATUS, PORTC	RPO	;;	Select Bank 0 Initialize PORTC by clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISC		;	Set RC<3:0> as inputs
			;	RC<5:4> as outputs
			;	RC<7:6> as inputs

FIGURE 3-9: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

- Port/Peripheral select signal selects between port data and peripheral output.
 - 3: Peripheral OE (output enable) is only activated if peripheral select is active.

3.6 Parallel Slave Port

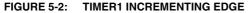

The Parallel Slave Port is implemented on the 40/44-pin devices only.


PORTD operates as an 8-bit wide Parallel Slave Port, or microprocessor port when control bit PSPMODE (TRISE<4>) is set. In slave mode it is asynchronously readable and writable by the external world through $\overline{\text{RD}}$ control input pin RE0/ $\overline{\text{RD}}$ and $\overline{\text{WR}}$ control input pin RE1/ $\overline{\text{WR}}$.

It can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set). The configuration bits, PCFG3:PCFG0 (ADCON1<3:0>) must be configured to make pins RE2:RE0 as digital I/O.

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low.

FIGURE 3-13: PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)



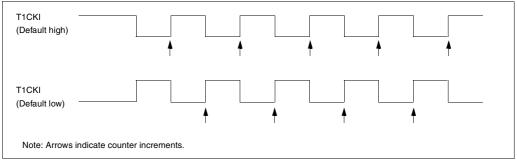
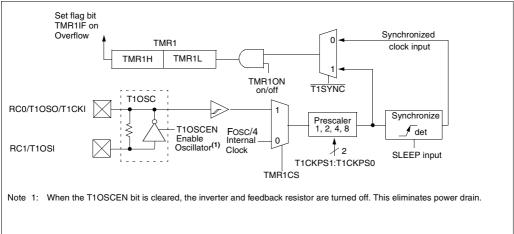


FIGURE 3-14: PARALLEL SLAVE PORT WRITE WAVEFORMS


5.1.1 TIMER1 COUNTER OPERATION

In this mode, Timer1 is being incremented via an external source. Increments occur on a rising edge. After Timer1 is enabled in counter mode, the module must first have a falling edge before the counter begins to increment.

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE(S)

Each CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 7-1 shows the timer resources of the CCP module modes.

The operation of CCP1 is identical to that of CCP2, with the exception of the special trigger. Therefore, operation of a CCP module in the following sections is described with respect to CCP1.

Table 7-2 shows the interaction of the CCP modules.

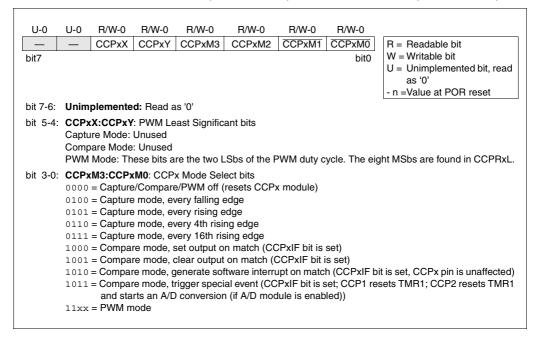
CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

CCP2 Module

Capture/Compare/PWM Register2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. All are readable and writable.

Additional information on the CCP module is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

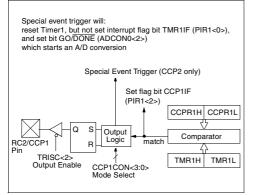

TABLE 7-1 CCP MODE - TIMER RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency, and update rate (TMR2 interrupt).
PWM	Capture	None
PWM	Compare	None

TABLE 7-2 INTERACTION OF TWO CCP MODULES

FIGURE 7-1: CCP1CON REGISTER (ADDRESS 17h) / CCP2CON REGISTER (ADDRESS 1Dh)


7.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 7-3: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

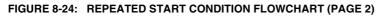
When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

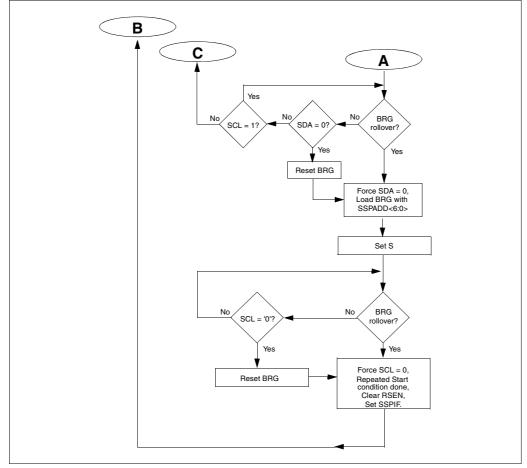
7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP2 resets the TMR1 register pair, and starts an A/D conversion (if the A/D module is enabled).


Note: The special event trigger from the CCP2 module will not set interrupt flag bit TMR1IF (PIR1<0>).


TABLE 7-3 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on:)R,)R	allo	e on other sets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC Da	ata Dire	ction Regis	ster					1111	1111	1111	1111
0Eh	TMR1L	Holding reg	gister fo	or the Least	Significant	Byte of the	16-bit TMF	1 register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the 1	6-bit TMR	1register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00	0000	uu	uuuu
15h	CCPR1L	Capture/Co	ompare	PWM regi	ster1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Co	ompare	PWM regi	ster1 (MSB))				xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin, always maintain these bits clear.

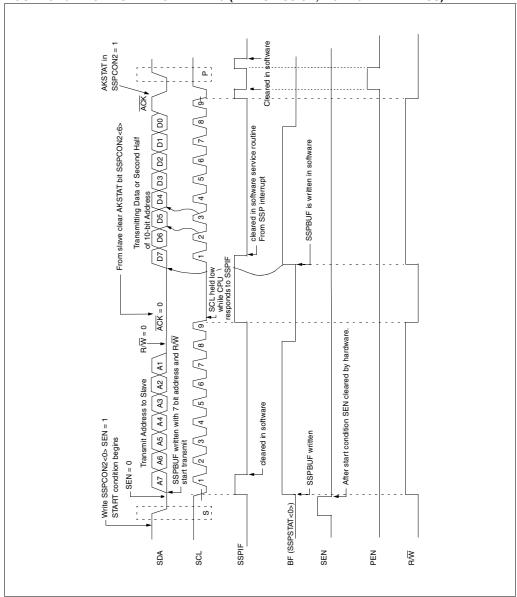


FIGURE 8-26: I²C MASTER MODE TIMING (TRANSMISSION, 7 OR 10-BIT ADDRESS)

8.2.12 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the receive enable bit, RCEN (SSPCON2<3>).

Note:	The SSP Module must be in an IDLE
	STATE before the RCEN bit is set, or the
	RCEN bit will be disregarded.

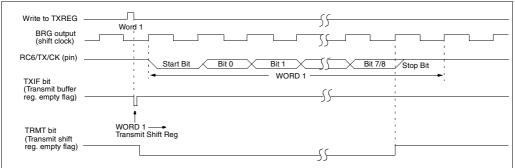
The baud rate generator begins counting, and on each rollover, the state of the SCL pin changes (high to low/ low to high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag is set, the SSPIF is set, and the baud rate generator is suspended from counting, holding SCL low. The SSP is now in IDLE state, awaiting the next command. When the buffer is read by the CPU, the BF flag is automatically cleared. The user can then send an acknowledge bit at the end of reception, by setting the acknowledge sequence enable bit, AKEN (SSPCON2<4>).

8.2.12.10 BF STATUS FLAG

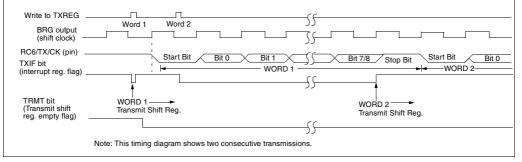
In receive operation, BF is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when SSPBUF is read.

8.2.12.11 SSPOV STATUS FLAG

In receive operation, SSPOV is set when 8 bits are received into the SSPSR, and the BF flag is already set from a previous reception.


8.2.12.12 WCOL STATUS FLAG

If the user writes the SSPBUF when a receive is already in progress (i.e. SSPSR is still shifting in a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


1)
1

BAUD RATE (K)	Fosc = 2 KBAUD	0 MHz % ERROR	SPBRG value (decimal)	16 MHz KBAUD	% ERROF	SPBRG value decimal		%	b Va	PBRG alue cimal)	7.16 MHz KBAUD E	%	SPBRG value decimal)		
9.6	9.615	+0.16	129	9.615	+0.16	103	9.615	5 +0.	16	64	9.520	-0.83	46		
19.2	19.230	+0.16	64	19.230	+0.16	51	18.93	9 -1.3	36	32	19.454	+1.32	22		
38.4	37.878	-1.36	32	38.461	+0.16	25	39.06	2 +1	.7	15	37.286	-2.90	11		
57.6	56.818	-1.36	21	58.823	+2.12	16	56.81	8 -1.3	36	10	55.930	-2.90	7		
115.2	113.636	-1.36	10	111.111	-3.55	8	125	+8.	51	4	111.860	-2.90	3		
250	250	0	4	250	0	3	NA	-		-	NA	-	-		
625	625	0	1	NA	-	-	625	0		0	NA	-	-		
1250	1250	0	0	NA	-	-	NA	-		-	NA	-	-		
DALID	Fosc = 5	000 1411-													
BAUD RATE		%	SPBRG value	4 MHz	%	SPBRG value	8.579 MH	%	SPBRG value		%	SPBRG value		%	SPBRG value
	KBAUD	%	SPBRG value			SPBRG		%	value		%				value
RATE		%	SPBRG value			SPBRG value (decimal) ł		%	value		% UD ERROF	value		%	value
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD		SPBRG value (decimal) ł	KBAUD	% ERROR	value (decimal) KBA	% UD ERROF 28 -6.99	value (decimal)) KBAUD	%	value
RATE (K) 9.6	KBAUD 9.6	% ERROR 0	SPBRG value (decimal) 32	KBAUD NA	ERROR -	SPBRG value (decimal) H	KBAUD 9.727	% ERROR +1.32	value (decimal 22) KBA	% UD ERROF 28 -6.99 33 +8.51	value (decimal) 6) KBAUD	%	value
RATE (K) 9.6 19.2	KBAUD 9.6 18.645	% ERROR 0 -2.94	SPBRG value (decimal) 32 16	KBAUD NA 1.202	ERROR - +0.17	SPBRG value (decimal) F - 207 103	KBAUD 9.727 18.643	% ERROR +1.32 -2.90	value (decimal 22 11) KBA 8.92 20.8	% UD ERROF 28 -6.99 33 +8.51 25 -18.61	value (decimal) 6 2) KBAUD NA NA	ERROR - -	value (decimal) - -
RATE (K) 9.6 19.2 38.4 57.6 115.2	KBAUD 9.6 18.645 39.6 52.8 105.6	% ERROR 0 -2.94 +3.12	SPBRG value (decimal) 32 16 7	KBAUD NA 1.202 2.403 9.615 19.231	- +0.17 +0.13	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860	% ERROR +1.32 -2.90 -2.90 -2.90 -2.90	value (decimal 22 11 5) KBA 8.92 20.8 31.2 62. NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A -	value (decimal) 6 2 1) KBAUD NA NA NA NA NA	* ERROR - - -	value (decimal) - -
RATE (K) 9.6 19.2 38.4 57.6 115.2 250	KBAUD 9.6 18.645 39.6 52.8 105.6 NA	% ERROR 0 -2.94 +3.12 -8.33	SPBRG value (decimal) 32 16 7 5	KBAUD NA 1.202 2.403 9.615 19.231 NA	+0.17 +0.13 +0.16	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860 223.721	% ERROR +1.32 -2.90 -2.90 -2.90	value (decimal 22 11 5 3) KBA 8.92 20.8 31.2 62. NA NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A - A -	value (decimal) 6 2 1 0) KBAUD NA NA NA NA NA NA	* ERROR - - - -	value (decimal) - - - -
RATE (K) 9.6 19.2 38.4 57.6 115.2	KBAUD 9.6 18.645 39.6 52.8 105.6	% ERROR 0 -2.94 +3.12 -8.33 -8.33	SPBRG value (decimal) 32 16 7 5 2	KBAUD NA 1.202 2.403 9.615 19.231	+0.17 +0.13 +0.16 +0.16	SPBRG value (decimal) H 207 103 25 12	KBAUD 9.727 18.643 37.286 55.930 111.860	% ERROR +1.32 -2.90 -2.90 -2.90 -2.90	value (decimal) 22 11 5 3 1) KBA 8.92 20.8 31.2 62. NA	% UD ERROF 28 -6.99 33 +8.51 25 -18.61 5 +8.51 A - A - A - A -	value R (decimal) 6 2 1 0 -) KBAUD NA NA NA NA NA	% ERROR - - - - - - -	value (decimal) - - - - - -

FIGURE 9-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 9-6 REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	ansmit F	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	ator Regi	ster					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

The value that is in the ADRESH and ADRESL registers are not modified for a Power-on Reset. The ADRESH and ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 11.6. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

11.2 Configuring the A/D Module

11.3 Configuring Analog Port Pins

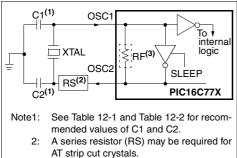
The ADCON1 and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the PORTA or PORTE register, all pins configured as analog input channels will read as cleared (a low level). When reading the PORTB register, all pins configured as analog input channels will read as set (a high level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- Note 2: Analog levels on any pin that is defined as a digital input (including the ANx pins), may cause the input buffer to consume current that is out of the devices specification.

11.3.1 CONFIGURING THE REFERENCE VOLTAGES

The VCFG bits in the ADCON1 register configure the A/D module reference inputs. The reference high input can come from an internal reference (VRH) or (VRL), an external reference (VREF+), or AVDD. The low reference input can come from an internal reference (VRL), an external reference (VREF-), or AVSS. If an external reference is chosen for the reference high or reference low inputs, the port pin that multiplexes the incoming external references is configured as an analog input, regardless of the values contained in the A/D port configuration bits (PCFG3:PCFG0).


After the A/D module has been configured as desired. and the analog input channels have their corresponding TRIS bits selected for port inputs, the selected channel must be acquired before conversion is started. The A/D conversion cycle can be initiated by setting the GO/DONE bit. The A/D conversion begins, and lasts for 13TAD. The following steps should be followed for performing an A/D conversion:

- 1. Configure the A/D module
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if required)
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (3TAD)
- 4. Start conversion
 - Set GO/DONE bit (ADCON0)
- 5. Wait 13TAD until A/D conversion is complete, by either:
 - Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH and ADRESL), clear ADIF if required.
- 7. For next conversion, go to step 1, step 2 or step 3 as required.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRESH and ADRESL registers **WILL** be updated with the partially completed A/D conversion value. That is, the ADRESH and ADRESL registers **WILL** contain the value of the current incomplete conversion.

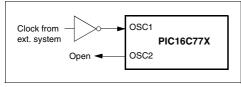

Note: Do not set the ADON bit and the GO/DONE bit in the same instruction. Doing so will cause the GO/DONE bit to be automatically cleared.

FIGURE 12-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 12-3: EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

TABLE 12-1 CERAMIC RESONATORS

Ranges Tested:						
Mode	Freq	OSC2				
XT	455 kHz 2.0 MHz 4.0 MHz	68 - 100 pF 15 - 68 pF 15 - 68 pF				
HS 8.0 MHz 10 - 68 pF 10 - 68 pF 16.0 MHz 10 - 22 pF 10 - 22 pF						
These values are for design guidance only. See notes at bottom of page. Resonators Used:						
455 kHz Panasonic EFO-A455K04B ± 0.3%						
2.0 MHz	Murata Erie CSA2.00MG ± 0.5%					
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Hz Murata Erie CSA16.00MX ± 0.5%					
All resonators used did not have built-in capacitors.						

TABLE 12-2 CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2				
LP	32 kHz	33 pF	33 pF				
	200 kHz	15 pF	15 pF				
XT	200 kHz	47-68 pF	47-68 pF				
	1 MHz	15 pF	15 pF				
	4 MHz	15 pF	15 pF				
HS	4 MHz	15 pF	15 pF				
	8 MHz	15-33 pF	15-33 pF				
	20 MHz	20 MHz 15-33 pF					
These values are for design guidance only. See notes at bottom of page.							
Crystals Used							
32 kHz	Epson C-00	± 20 PPM					
200 kHz	STD XTL 2	± 20 PPM					
1 MHz	ECS ECS-	± 50 PPM					
4 MHz	ECS ECS-4	± 50 PPM					
8 MHz	EPSON CA	± 30 PPM					
20 MHz	EPSON CA-301 20.000M-C ± 30 PP						

Note 1: Recommended values of C1 and C2 are identical to the ranges tested (Table 12-1).

- Higher capacitance increases the stability of oscillator but also increases the start-up time.
- Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
- 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification.

TABLE 12-6 INITIALIZATION CONDITIONS FOR ALL REGISTERS								
Register	Dev	ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt			
W	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
INDF	773	774	N/A	N/A	N/A			
TMR0	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
PCL	773	774	0000h	0000h	PC + 1 (2)			
STATUS	773	774	0001 1xxx	000q quuu (3)	uuuq quuu (3)			
FSR	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
PORTA	773	774	0x 0000	0u 0000	uu uuuu			
PORTB	773	774	xxxx 11xx	uuuu 11uu	uuuu uuuu			
PORTC	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
PORTD	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
PORTE	773	774	000	000	uuu			
PCLATH	773	774	0 0000	0 0000	u uuuu			
INTCON	773	774	0000 000x	0000 000u	uuuu uuuu (1)			
PIR1	773	774	r000 0000	r000 0000	ruuu uuuu (1)			
	773	774	0000 0000	0000 0000	uuuu uuuu (1)			
PIR2	773	774	00	00	u uu (1)			
TMR1L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
TMR1H	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
T1CON	773	774	00 0000	uu uuuu	uu uuuu			
TMR2	773	774	0000 0000	00 0000 0000 0000				
T2CON	773	774	-000 0000	-000 0000	-uuu uuuu			
SSPBUF	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
SSPCON	773	774	0000 0000	0000 0000	uuuu uuuu			
CCPR1L	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
CCPR1H	773	774	XXXX XXXX	uuuu uuuu	uuuu uuuu			
CCP1CON	773	774	00 0000	00 0000	uu uuuu			
RCSTA	773	774	0000 000x	0000 000x	uuuu uuuu			
TXREG	773	774	0000 0000	0000 0000	uuuu uuuu			
RCREG	773	774	0000 0000	0000 0000	uuuu uuuu			
CCPR2L	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCPR2H	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCP2CON	773	774	00 0000	00 0000	uu uuuu			
ADRESH	773	774	xxxx xxxx	uuuu uuuu	uuuu uuuu			
ADCON0	773	774	0000 0000	0000 0000	uuuu uuuu			
OPTION_REG	773	774	1111 1111	1111 1111	uuuu uuuu			

TABLE 12-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for reset value for specific condition.

12.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a ${\tt SLEEP}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the $\overline{\text{PD}}$ bit (STATUS<3>) is cleared, the $\overline{\text{TO}}$ (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

12.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write.
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP capture mode interrupt.
- 4. Special event trigger (Timer1 in asynchronous mode using an external clock).
- 5. SSP (Start/Stop) bit detect interrupt.
- 6. SSP transmit or receive in slave mode (SPI/I²C).
- 7. USART RX or TX (synchronous slave mode).
- 8. A/D conversion (when A/D clock source is RC).
- 9. Low-voltage detect.

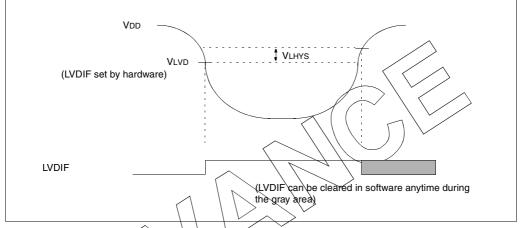
Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the substruction after the substruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

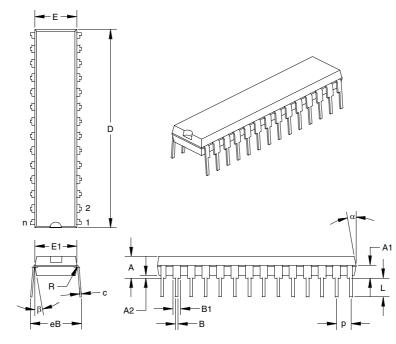

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

PIC16C77X

NOTES:

FIGURE 15-1: LOW-VOLTAGE DETECT CHARACTERISTICS


TABLE 1	5-3 ELECTRIC	CAL CHARACT	ERISTICS:	LVD				
DC CHAI	RACTERISTICS	Standard Operating temporating voltage	erature -4 0	40°C ` °C	\leq TA \leq TA \leq TA \leq	+85°C +70°C	for industi for comme	rial and
Param No.	Charact	eristic	Symbol	Min	Тур†	Max	Units	Conditions
D420	LVD Voltage	LVV = 0100		2.5	2.58	2.66	V	
		LVV = 0101		2.7	2.78	2.86	V	
		LVV = 0110		2.8	2.89	2.98	V	
L L		LVV = 0111		3.0	3.1	3.2	V	
		LVV = 1000		3.3	3.41	3.52	V	
		LVV = 1001		3.5	3.61	3.72	V	
		LVV = 1010		3.6	3.72	3.84	V	
		LVV = 1011		3.8	3.92	4.04	V	
		LVV = 1100		4.0	4.13	4.26	V	
		LVV = 1101		4.2	4.33	4.46	V	
		LVV = 1110		4.5	4.64	4.78	V	
D421	Supply Current		Δ ILVD	—	10	20	μΑ	
D422*	LVD Voltage Drift Temperature coefficient		TCVout	_	15	50	ppm/°C	
D423*	423* LVD Voltage Drift with respect to		$\Delta VLVD/$	—	—	50	μV/V	
	VDD Regulation							
D424*	Low-voltage Detec	t Hysteresis	VLHYS	TBD	—	100	mV	

* These parameters are characterized but not tested.

Note 1: Production tested at Tamb = 25°C. Specifications over temp limits ensured by characterization.

17.2 K04-070 28-Lead Skinny Plastic Dual In-line (SP) – 300 mil

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
PCB Row Spacing			0.300			7.62		
Number of Pins	n		28			28		
Pitch	р		0.100			2.54		
Lower Lead Width	В	0.016	0.019	0.022	0.41	0.48	0.56	
Upper Lead Width	B1 [†]	0.040	0.053	0.065	1.02	1.33	1.65	
Shoulder Radius	R	0.000	0.005	0.010	0.00	0.13	0.25	
Lead Thickness	с	0.008	0.010	0.012	0.20	0.25	0.30	
Top to Seating Plane	A	0.140	0.150	0.160	3.56	3.81	4.06	
Top of Lead to Seating Plane	A1	0.070	0.090	0.110	1.78	2.29	2.79	
Base to Seating Plane	A2	0.015	0.020	0.025	0.38	0.51	0.64	
Tip to Seating Plane	L	0.125	0.130	0.135	3.18	3.30	3.43	
Package Length	D‡	1.345	1.365	1.385	34.16	34.67	35.18	
Molded Package Width	E‡	0.280	0.288	0.295	7.11	7.30	7.49	
Radius to Radius Width	E1	0.270	0.283	0.295	6.86	7.18	7.49	
Overall Row Spacing	eB	0.320	0.350	0.380	8.13	8.89	9.65	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter.

[†] Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E."