

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc774t-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-2: REGISTER FILE MAP

	ddress	A	ddress		Address	A
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG
PCL	02h	PCL	82h	PCL	102h	PCL
STATUS	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
PORTC	07h	TRISC	87h		107h	
PORTD (1)	08h	TRISD (1)	88h		108h	
PORTE (1)	09h	TRISE (1)	89h		109h	
PCLATH	0Ah	PCLATH	8Ah	PCI ATH	10Ah	PCI ATH
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	0Ch	PIE1	8Ch		10Ch	
PIR2	0Dh	PIE2	8Dh		10Dh	
TMR1L	0Eh	PCON	8Eh		10Eh	
TMR1H	0Fh	10011	8Fh		10Fh	
T1CON	10h		90h	•	110h	
TMR2	11h	SSPCON2	91h		111h	
T2CON	12h	PB2	92h		112h	
SSPBUE	13h		ash		113h	
SSPCON	14h	SSPADD	0/h		114h	
CCPB1I	15h	001 01AI	95h		115h	
CCPB1H	16h		96h		116h	
CCP1CON	17h		9011 97h		117h	
DCSTA	18h	TYOTA	08h		118h	
TYPEG	19h	SPREC	aah		119h	
PCREG	1Ah	SFBRG	QΔh		11Ah	
CCPR2	1Bh	PEECON	ORh		11Bh	
CCPR2H	1Ch		9Ch		11Ch	
CCR2CON	1Dh	LUDOON			11Dh	
	1Fh		QEh		11Fh	
	1Fh		QEh		11Fh	
ADCONU	20h		40b		120h	
			AUN			
General		General		General		
Purpose	l	Purpose		Purpose		
negister		Register 80 Bytes		Register		
96 Bytes		00 Dytes	EFh	ou bytes	6Fh	
	l	accesses	F0h	accesses	70h	accesses
	754	70h-7Fh	FF4	70h - 7Fh	1754	70h - 7Fh
Bank 0	/ - 11	Bank 1	FFN	Bank 2	17-11	Bank 3
mplemented on Pl	C16C773	3.				

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Figure 2-3, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

Note 1: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

FIGURE 2-3: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	С	R = Readable bit
bit7							bit0	W = Writable bit
								read as '0'
								- n = Value at POR reset
bit 7:	IRP : Regist 1 = Bank 2 0 = Bank 0	ster Bank 2, 3 (100h 0, 1 (00h -	Select bit - 1FFh) FFh)	(used for ir	ndirect addr	essing)		
bit 6-5:	RP1:RP0 : 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	Register 3 (180h - 2 (100h - 1 (80h - F 3 0 (00h - 7 3 is 128 by	Bank Sele 1FFh) 17Fh) FFh) 7Fh) ⁄tes	ect bits (use	ed for direct	addressing	g)	
bit 4:	TO : Time- 1 = After p 0 = A WD	out bit ower-up, T time-out	CLRWDT ir occurred	struction,	or sleep ir	struction		
bit 3:	PD : Power 1 = After p 0 = By exe	r-down bit oower-up c ecution of t	or by the C the SLEEF	LRWDT ins	truction n			
bit 2:	Z : Zero bit 1 = The re 0 = The re	sult of an sult of an	arithmetic arithmetic	or logic of or logic of	peration is z	ero not zero		
bit 1:	DC : Digit of 1 = A carry 0 = No car	carry/borro y-out from rry-out froi	bw bit (ADI the 4th lo m the 4th l	OWF, ADDLW w order bit low order b	w, SUBLW, S t of the resu bit of the res	UBWF instr It occurred	uctions) (fo	r $\overline{\text{borrow}}$ the polarity is reversed)
bit 0:	C: Carry/b 1 = A carr 0 = No car Note: For second op the source	orrow bit (y-out from rry-out from borrow the berand. Fo e register.	(ADDWF, AI the most m the mos e polarity is r rotate (R	DDLW, SUB significant t significar s reversed RF, RLF) ir	LW, SUBWF bit of the rent bit of the A subtract astructions,	instruction esult occurr result occu ion is exect this bit is lo	ns) red rred uted by ado baded with o	ling the two's complement of the either the high or low order bit of

3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, i.e., put the contents of the output latch on the selected pin.

EXAMPLE 3-1: INITIALIZING PORTB

BCF	STATUS,	RP0	;	
CLRF	PORTB		;	Initialize PORTB by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0xCF		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISB		;	Set RB<3:0> as inputs
			;	RB<5:4> as outputs
			;	RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overrightarrow{\text{RBPU}}$ (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

The RB0 pin is multiplexed with the external interrupt (RB0/INT).

FIGURE 3-4: BLOCK DIAGRAM OF RB0 PIN

Note 1: I/O pins have diode protection to VDD and VSS. 2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).

The RB1 pin is multiplexed with the SSP module slave select (RB1/SS).

FIGURE 3-5: BLOCK DIAGRAM OF RB1/SS PIN

Note 1: I/O pins have diode protection to VDD and Vss. 2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).

The RB2 pin is multiplexed with analog channel 8 (RB2/AN8).

FIGURE 3-6: BLOCK DIAGRAM OF RB2/AN8 PIN

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1/SS	bit1	TTL/ST ⁽³⁾	Input/output pin or SSP slave select. Internal software programmable weak pull-up.
RB2/AN8	bit2	TTL	Input/output pin or analog input8. Internal software programmable weak pull-up.
RB3/AN9/LVDIN	bit3	TTL	Input/output pin or analog input9 or Low-voltage detect input. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST(2)	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

TABLE 3-3 PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

3: This buffer is a Schmitt Trigger input when used as the SSP slave select.

TABLE 3-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	e on:)R,)R	Value other	on all resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx	11xx	uuuu	11uu
86h, 186h	TRISB	PORTE	B Data Dire	ction Reg	gister					1111	1111	1111	1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111	1111	1111	1111
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	0000	0000	0000	0000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

6.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- · Readable and writable (Both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register, shown in Figure 6-1. Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 6-2 is a simplified block diagram of the Timer2 module.

Additional information on timer modules is available in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

6.1 <u>Timer2 Operation</u>

Timer2 can be used as the PWM time-base for PWM mode of the CCP module.

The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- · a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, Watchdog Timer reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

FIGURE 6-1: T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	R = Readable bit
bit7							bit0	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	Unimplem	ented: Rea	d as '0'					
bit 6-3:	TOUTPS3: 0000 = 1:1 0001 = 1:2 • • 1111 = 1:1	TOUTPS0: Postscale Postscale 6 Postscale	Timer2 Ou	tput Postsca	ale Select bi	ts		
bit 2:	TMR2ON : 1 = Timer2 0 = Timer2	Timer2 On I is on is off	bit					
bit 1-0:	T2CKPS1: 00 = Presc 01 = Presc 1x = Presc	T2CKPS0: caler is 1 caler is 4 caler is 16	Timer2 Clo	ock Prescale	Select bits			

FIGURE 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

B/W-0	R/W-0	B-0	B-0	B-0	B-0	B-0	B-0								
SMP	CKE	D/A	Р	S	R/W	UA	BF	R =Readable bit							
bit7							bit0	W =Writable bit							
								as '0'							
								- n =Value at POR reset							
bit 7:	SMP: S SPI Ma	Sample bi ster Mod	t e												
	1 = Inp	ut data sa	ampled at e	end of data	a output time										
	0 = Inpi SPI Sla	ut data sa ve Mode	ampled at r	niddle of d	ata output ti	me									
	SMP m	ust be cle													
	In I ² C master or slave mode: 1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)														
	1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 0= Slew rate control enabled for high speed mode (400 kHz)														
bit 6:	CKE: S	PI Clock													
	<u>CKP =</u> 1 = Dat	<u>0</u> a transmi	itted on risi	ina edae o	f SCK										
	0 = Dat	a transm	itted on fall	ing edge o	of SCK										
	<u>CKP =</u> 1 = Dat	<u>1</u> a transmi	itted on fall	ina edae a	of SCK										
	0 = Dat	a transmi	itted on ris	ing edge o	f SCK										
bit 5:	D/A : Da	ata/Addre	ss bit (l ² C	mode only	/) od or transm	itted was do	to								
	0 = Indi	cates that	it the last b	yte receive	ed or transm	itted was da	ldress								
bit 4:	P: Stop	bit													
	(I [∠] C mo 1 = Indi	ode only.	This bit is o t a ston bit	cleared wh	en the MSSI	P module is at (this hit is	disabled, St '0' on RESE	SPEN is cleared)							
	0 = Sto	p bit was	not detect	ed last			0 ON NEOL								
bit 3:	S: Start	t bit	This hit is a		an the MCCI	Duna alvila ia	dia a b la di Ci								
	1 = Indi	icates tha	it a start bi	t has been	detected las	e module is st (this bit is	'0' on RESE	ET)							
	0 = Sta	rt bit was	not detect	ed last											
bit 2:	R/W: R	ead/Write	e bit inform	ation (I ² C	mode only)	the last add	lroce match	This hit is only valid from the							
	address	s match to	o the next :	start bit, st	op bit, or not	\overrightarrow{ACK} bit.	iress match								
	$\frac{\ln l^2 C s}{1 - Pool}$	lave mod	le:												
	0 = Wri	te													
	In I ² C n	naster mo	ode:												
	0 = Trai	nsmit is n	ot in progress	ess.											
	Or'ing t	his bit wit	h SEN, RS	SEN, PEN,	RCEN, or A	KEN will in	dicate if the	MSSP is in IDLE mode							
bit 1:	UA : Up 1 – Indi	date Add	ress (10-bi it the user	t I ² C mode	e only) Indate the ac	Idress in the		enister							
	0 = Adc	dress doe	s not need	to be upd	ated										
bit 0:	BF: But	ffer Full S	tatus bit	,											
	$\frac{\text{Receive}}{1 = \text{Rec}}$	<u>e (SPI an</u> ceive com	<u>d I²C mode</u> plete. SSF	<u>es)</u> PBUF is fu	I										
	0 = Rec	ceive not	complete,	SSPBUF i	s empty										
	Transm 1 = Dat	<u>ıt (I^C mo</u> a Transm	<u>ode only)</u> it in proare	ess (does r	not include th	e ACK and	stop bits). S	SPBUF is full							
	0 = Dat	a Transm	it complete	e (does no	t include the	ACK and st	op bits), SS	PBUF is empty							

8.2.2 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the START condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all 0's with R/W = 0

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> is set). Following a start-bit detect, 8-bits are shifted into SSPSR and the address is compared against SSPADD, and is also compared to the general call address, fixed in hardware.

If the general call address matches, the SSPSR is transfered to the SSPBUF, the BF flag is set (eighth bit), and on the falling edge of the ninth bit (\overline{ACK} bit) the SSPIF flag is set.

When the interrupt is serviced. The source for the interrupt can be checked by reading the contents of the SSPBUF to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match, and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when GCEN is set while the slave is configured in 10-bit address mode, then the second half of the address is not necessary, the UA bit will not be set, and the slave will begin receiving data after the acknowledge (Figure 8-16).

FIGURE 8-16: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT MODE)

8.2.10 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2<1>) is programmed high and the I²C module is in the idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0>, and begins counting. The SDA pin is released (brought high) for one baud rate generator count (T_{BRG}). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high the baud rate generator is re-loaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one T_{BRG}. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG while SCL is high. Following this, the RSEN bit in the SSPCON2 register will be automatically cleared, and the baud rate generator is not reloaded, leaving the SDA pin held low. As soon as a start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the baud rate generator has timed-out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
- **Note 2:** A bus collision during the Repeated Start condition occurs if:
- SDA is sampled low when SCL goes from low to high.
- SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

8.2.10.6 WCOL STATUS FLAG

If the user writes the SSPBUF when a Repeated Start sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

FIGURE 8-22: REPEAT START CONDITION WAVEFORM

8.2.13 ACKNOWLEDGE SEQUENCE TIMING

An acknowledge sequence is enabled by setting the acknowledge sequence enable bit, AKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the acknowledge data bit is presented on the SDA pin. If the user wishes to generate an acknowledge, then the AKDT bit should be cleared. If not, the user should set the AKDT bit before starting an acknowledge sequence. The baud rate generator then counts for one rollover period (T_{BRG}), and the SCL pin is de-asserted (pulled high). When the SCL pin is sampled high (clock arbitration), the baud

rate generator counts for T_{BRG} . The SCL pin is then pulled low. Following this, the AKEN bit is automatically cleared, the baud rate generator is turned off, and the SSP module then goes into IDLE mode. (Figure 8-29)

8.2.13.13 WCOL STATUS FLAG

If the user writes the SSPBUF when an acknowledege sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 8-29: ACKNOWLEDGE SEQUENCE WAVEFORM

BAUD	Fosc = 2	20 MHz	SPBRG	16 MHz		SPBF	١G	10 MHz			SPI	BRG	7.15	909 MI	Ηz	SPBRG		
RATE (K)	KBAUD	% ERROR	value (decimal	KBAUD	% ERROF	valu decin	e nal)	KBAUD	ER	% ROR	va (dec	lue simal)	KBA	AUD I	% ERROR	value (decimal)		
0.3	NA	-	-	NA	-	-		NA		-		-	N	IA	-	-		
1.2	NA	-	-	NA	-	-		NA		-		-	N	IA	-	-		
2.4	NA	-	-	NA	-	-		NA		-		-	N	IA	-	-		
9.6	NA	-	-	NA	-	-		9.766	+1	.73	2	55	9.6	622	+0.23	185		
19.2	19.53	+1.73	255	19.23	+0.16	207		19.23	+0	0.16	10	29	19	.24	+0.23	92		
76.8	76.92	+0.16	64	76.92	+0.16	51		75.76	-1	.36	:	32	77	.82	+1.32	22		
96	96.15	+0.16	51	95.24	-0.79	41		96.15	+0	0.16	2	25	94	.20	-1.88	18		
300	294.1	-1.96	16	307.69	+2.56	12		312.5	+4	17		7	29	8.3	-0.57	5		
500	500	0	9	500	0	7		500		0		4	N	IA	-	-		
HIGH	5000	-	0	4000	-	0		2500		-		0	178	39.8	-	0		
LOW	19.53	-	255	15.625	-	255		9.766		-	2	55	6.9	991	-	255		
	Fosc = 5	5.0688 MH	łz ،	4 MHz		:	3.57	79545 MI	Ηz			1 MHz	z			32.768 k	Hz	
BAUD			SPBRG			SPBRG				SPBF	RG				SPBRG			SPBRG
RATE	KBAUD	%	value	KBAUD	%	value	KΒ	AUD	%	valu	e	KBAL	JD	%	value	KBAUD	%	value
(K)		ERROR	(decimal)		ERROR (decimal)		EF	ROR	(decin	nal)		E	ERROF	decima (decima	I)	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	١	A	-	-		NA			-	0.303	+1.14	26
1.2	NA	-	-	NA	-	-	1	A	-	-		1.20	2	+0.16	207	1.170	-2.48	6
2.4	NA	-	-	NA	-	-	1	A	-	-		2.40	4	+0.16	103	NA	-	-
9.6	9.6	0	131	9.615	+0.16	103	9.	622 +	0.23	92		9.61	5	+0.16	25	NA	-	-
19.2	19.2	0	65	19.231	+0.16	51	19	9.04 -	0.83	46		19.2	4	+0.16	12	NA	-	-
76.8	79.2	+3.13	15	76.923	+0.16	12	74	.57 -	2.90	11		83.3	4	+8.51	2	NA	-	-
96	97.48	+1.54	12	1000	+4.17	9	99	9.43 +	3.57	8		NA		-	-	NA	-	-
300	316.8	+5.60	3	NA	-	-	29	98.3 -	0.57	2		NA		-	-	NA	-	-
500	NA	-	-	NA	-	-	١	A	-	-		NA		-	-	NA	-	-
HIGH	1267	-	0	100	-	0	89	94.9	-	0		250)	-	0	8.192	-	0
LOW	4.950	-	255	3.906	-	255	З.	496	-	255	5	0.976	66	-	255	0.032	-	255

TABLE 9-4 BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD	Fosc = 2	20 MHz	SPBRG	16 MH	Z	SPBI	RG ¹	0 MHz			SPBRG	7	15909 M	Hz	SPBRG		
RATE		%	value		%	valu	ie			%	value			%	value		
(K)	KBAUD	ERROR	(decimal) KBAUI	D ERRC	DR (decir	nal) I	KBAUD	ER	ROR (decima	l) k	BAUD	ERROR	(decimal)		
0.3	NA	-	-	NA	-	-		NA		-	-		NA	-	-		
1.2	1.221	+1.73	255	1.202	+0.1	6 20	7	1.202	+0	0.16	129		1.203	+0.23	92		
2.4	2.404	+0.16	129	2.404	+0.1	6 10	3	2.404	+0).16	64		2.380	-0.83	46		
9.6	9.469	-1.36	32	9.615	+0.1	6 25		9.766	+1	.73	15		9.322	-2.90	11		
19.2	19.53	+1.73	15	19.23	+0.1	6 12		19.53	+1	.73	7		18.64	-2.90	5		
76.8	78.13	+1.73	3	83.33	+8.5	1 2		78.13	+1	.73	1		NA	-	-		
96	104.2	+8.51	2	NA	-	-		NA		-	-		NA	-	-		
300	312.5	+4.17	0	NA	-	-		NA		-	-		NA	-	-		
500	NA	-	-	NA	-	-		NA		-	-		NA	-	-		
HIGH	312.5	-	0	250	-	0		156.3		-	0		111.9	-	0		
LOW	1.221	-	255	0.977	-	25	5	0.6104		-	255		0.437	-	255		
	Fosc =	5.0688 MH	۱z ،	4 MHz			3.579	9545 MH	lz		1 Mł	Hz			32.768 k	Hz	
BALID			SPBBG			SPBBG				SPBB	G			SPBBG			SPBBG
BATE		%	value		%	value		c	%	value	ŭ		%	value		%	value
(K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBA	UD ERI	ROR	(decima	al) KBA	AUD	ERROF	decima) KBAUD	ERROR	(decimal)
0.3	0.31	+3.13	255	0.3005	-0.17	207	0.30	01 +0	.23	185	0.3	300	+0.16	51	0.256	-14.67	1
1.2	1.2	0	65	1.202	+1.67	51	1.19	90 -0	.83	46	1.2	202	+0.16	12	NA	-	-
2.4	2.4	0	32	2.404	+1.67	25	2.43	32 +1	.32	22	2.2	232	-6.99	6	NA	-	-
9.6	9.9	+3.13	7	NA	-	-	9.32	22 -2	.90	5	N	А	-	-	NA	-	-
19.2	19.8	+3.13	3	NA	-	-	18.6	64 -2	.90	2	N	А	-	-	NA	-	-
76.8	79.2	+3.13	0	NA	-	-	NA	4	-	-	N	Α	-	-	NA	-	-
96	NA	-	-	NA	-	-	NA	4	-	-	N	А	-	-	NA	-	-
300	NA	-	-	NA	-	-	NA	4	-	-	N	А	-	-	NA	-	-
500	NA	-	-	NA	-	-	NA	4	-	-	N	А	-	-	NA	-	-
HIGH	79.2	-	0	62.500	-	0	55.9	93	-	0	15.	.63	-	0	0.512	-	0
LOW	0.3094	-	255	3.906	-	255	0.21	85	-	255	0.06	610	-	255	0.0020	-	255

FIGURE 9-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 9-6 REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	ansmit F	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	ator Regi	ster					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

PIC16C77X

TABLE 9-7 REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART Re	eceive F	Register						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Genera	ator Regi	ster					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.

Note 1: Bits PSPIE and PSPIF are reserved on the 28-pin devices, always maintain these bits clear.

12.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a ${\tt SLEEP}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the $\overline{\text{PD}}$ bit (STATUS<3>) is cleared, the $\overline{\text{TO}}$ (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

12.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on MCLR pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write.
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP capture mode interrupt.
- 4. Special event trigger (Timer1 in asynchronous mode using an external clock).
- 5. SSP (Start/Stop) bit detect interrupt.
- 6. SSP transmit or receive in slave mode (SPI/I²C).
- 7. USART RX or TX (synchronous slave mode).
- 8. A/D conversion (when A/D clock source is RC).
- 9. Low-voltage detect.

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the substruction after the substruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

15.3 DC Characteristics: PIC16C77X (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated)								
		Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for indus					\leq +85°C for industrial and	
DC CHA	RACTERISTICS				0°C	≤ TA	\leq +70°C for commercial	
		Operating voltage VDD range as described in DC spec Section 15.1 and						
Section 15.2.								
Param	Characteristic	Sym	Min	Тур†	Max	Units	Conditions	
No.								
	Input Low Voltage							
	I/O ports	VIL						
D030	with TTL buffer		Vss	—	0.15VDD	v	For entire VDD range	
D030A			Vss	—	0.8V	v	4.5V ≤ Vbp ≤ €.5V	
D031	with Schmitt Trigger buffer							
	RC3 and RC4		Vss	—	0.3VDD	V /	l ² C compliant	
	All others		Vss	—	0.2VDD		For entire VDD range	
D032	MCLB, OSC1 (in BC mode)		Vss	_	0.200	\sqrt{N}		
D033	OSC1 (in XT HS and LP)		Vss	_		/ W/	Note1	
2000	Input High Voltage		100	\langle		$\langle \cdot \rangle$		
	I/O ports	νін						
	with TTL buffer	viii			$ \setminus \rangle^{-}$		$\left \right\rangle$	
D040			20 N			v	4 5V < V ססע < 5 5V	
		\square	0.25/00	\searrow		↓ v		
00407		$ \rangle \rangle$	+ 0.8V			, v	Tor entire VDD lange	
	with Schmitt Trigger buffer		10.01		\sim			
D041	BC3 and BC4	$\langle \rangle$		\ _	VDD	v	12C compliant	
Don	All others	\sim	0.8000	2 -	VDD	v	For ontire Vpp range	
042		\nearrow		_	Vpp	v	I of entire vob lange	
D042			0.0000		VDD	v	Noto1	
D042A					VDD	v	noter	
D043			0.9000		400	v		
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS	
	Input Leakage Current							
Daca		1						
D060	I/O ports (digital)	IIL	_	_	±Ι	μΑ	VSS ≤ VPIN ≤ VDD, PIN at ni-	
DOCOA		1			1100			
D060A	I/O potes (RAU-RA3, RA5, RB2,	IIL	_	_	±100	nA	VSS ≤ VPIN ≤ VDD, PIN at ni-	
Doct								
D061	MCLR, RA4/TUCKI		_	_	±5	μΑ		
D063	USCI		_	_	±5	μA	VSS \leq VPIN \leq VDD, XI, HS and LP	
	Outrast Laws Malta as						osc configuration	
Daca		N/			0.0	, <i>r</i>		
0800	I/O ports	VOL	-	-	0.6	v	IOL = 8.5 mA, VDD = 4.5 V,	
Daca					0.0	, <i>r</i>		
D083	USC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,	
							-40°C to +85°C	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C77X be driven with external clock in RC mode.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.

FIGURE 15-3: LOAD CONDITIONS

		1		1	V
TARI E 15-10	A/D CONVERSIO	N REOI	IIR	FMFN	ITC.
			י יוא		

Parameter	Sym	Characteristic	Min	tav	Max	Units	Conditions
No.	-		$\overline{ 1 }$				
130*	TAD	AVD clock period	1.6	- 4	—	μS	Tosc based, VREF ≥ 2.5V
			3.0	—	_	μS	Tosc based, VREF full range
130*	TAD	A/D Internal RC oscillator period	3.0	6.0	9.0	μs	ADCS1:ADCS0 = 11 (RC mode) At VDD = 2.5V
			2.0	4.0	6.0	μs	At VDD = 5.0V
131*	TCNY	Conversion time (not including acquisition time) (Note 1)	_	13Tad	_	Tad	Set GO bit to new data in A/D result register
132*	TACQ	Acquisition Time	Note 2	11.5	—	μs	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start	_	Tosc/2	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

FIGURE 15-12: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-13 CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Parameter	Sym	Characteristic			Min	Typ†	Max	Units	Conditions
No.			\sum						
50*	Tcc	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—		ns	
		input low time		PIC16 C 77X	10	—		ns	
	With Prescaler		With Prescaler	PIC16 LC 77X	20	_		ns	
51*	TCCH	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—		ns	
	\geq	input high time		PIC16 C 77X	10	—	_	ns	
		With Prescal		PIC16 LC 77X	20	—	-	ns	
52*	TccP	CCP1 and CCP2 input period			<u>3Tcy + 40</u>	-		ns	N = prescale value
					N				(1,4 or 16)
53*	TccR	CCP1 and CCP2 o	output fall time	PIC16 C 77X	—	10	25	ns	
				PIC16 LC 77X	—	25	45	ns	
54*	TccF	CCP1 and CCP2 o	output fall time	PIC16 C 77X	_	10	25	ns	
				PIC16 LC 77X	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

17.10 K04-048 44-Lead Plastic Leaded Chip Carrier (L) – Square

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			М	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		44			44		
Pitch	р		0.050			1.27		
Overall Pack. Height	А	0.165	0.173	0.180	4.19	4.38	4.57	
Shoulder Height	A1	0.095	0.103	0.110	2.41	2.60	2.79	
Standoff	A2	0.015	0.023	0.030	0.38	0.57	0.76	
Side 1 Chamfer Dim.	A3	0.024	0.029	0.034	0.61	0.74	0.86	
Corner Chamfer (1)	CH1	0.040	0.045	0.050	1.02	1.14	1.27	
Corner Chamfer (other)	CH2	0.000	0.005	0.010	0.00	0.13	0.25	
Overall Pack. Width	E1	0.685	0.690	0.695	17.40	17.53	17.65	
Overall Pack. Length	D1	0.685	0.690	0.695	17.40	17.53	17.65	
Molded Pack. Width	E‡	0.650	0.653	0.656	16.51	16.59	16.66	
Molded Pack. Length	D [‡]	0.650	0.653	0.656	16.51	16.59	16.66	
Footprint Width	E2	0.610	0.620	0.630	15.49	15.75	16.00	
Footprint Length	D2	0.610	0.620	0.630	15.49	15.75	16.00	
Pins along Width	n1		11			11		
Lead Thickness	с	0.008	0.010	0.012	0.20	0.25	0.30	
Upper Lead Width	B1 [†]	0.026	0.029	0.032	0.66	0.74	0.81	
Lower Lead Width	В	0.015	0.018	0.021	0.38	0.46	0.53	
Upper Lead Length	L	0.050	0.058	0.065	1.27	1.46	1.65	
Shoulder Inside Radius	R1	0.003	0.005	0.010	0.08	0.13	0.25	
J-Bend Inside Radius	R2	0.015	0.025	0.035	0.38	0.64	0.89	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	

Controlling Parameter.

[†] Dimension "B1" does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003" (0.076 mm) per side or 0.006" (0.152 mm) more than dimension "B1."

[‡] Dimensions "D" and "E" do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254 mm) per side or 0.020" (0.508 mm) more than dimensions "D" or "E." JEDEC equivalent:MO-047 AC

PIC16C77X

NOTES:

BIT/REGISTER CROSS-REFERENCE LIST

ADCS1:ADCS0	ADCON0<7:6>
ADIE	PIE1<6>
ADIF	PIR1<6>
ADON	ADCON0<0>
BF	SSPSTAT<0>
BOR	PCON<0>
BRGH	TXSTA<2>
C	STATUS<0>
CCP1IE	PIE1<2>
CCP1IF	PIR1<2>
CCP1M3:CCP1M0	CCP1CON<3:0>
CCP1X:CCP1Y	CCP1CON<5:4>
CCP2IE	PIE2<0>
CCP2IF	PIR2<0>
CCP2M3:CCP2M0	CCP2CON<3:0>
CCP2X:CCP2Y	CCP2CON<5:4>
CHS2:CHS0	ADCON0<5:3>
CKE	SSPSTAT<6>
CKP	SSPCON<4>
CREN	RCSTA<4>
CSRC	TXSTA<7>
D/Ā	SSPSTAT<5>
DC	STATUS<1>
FERR	RCSTA<2>
GIE	INTCON<7>
GO/DONE	ADCON0<2>
IBF	TRISE<7>
IBOV	TRISE<5>
INTE	INTCON<4>
INTEDG	OPTION_REG<6>
INTF	INTCON<1>
IRP	STATUS<7>
OBF	TRISE<6>
OERR	RCSTA<1>
Ρ	SSPSTAT<4>
PCFG2:PCFG0	ADCON1<2:0>
PD	STATUS<3>
PEIE	INTCON<6>
POR	PCON<1>
PS2:PS0	OPTION_REG<2:0>
PSA	OPTION_REG<3>
PSPIE	PIE1<7>
PSPIF	PIR1<7>
PSPMODE	TRISE<4>
R/W	SSPSTAT<2>
RBIE	INTCON<3>
RBIF	INTCON<0>
RBPU	OPTION_REG<7>
RCIE	PIE1<5>
RCIF	PIR1<5>
RP1:RP0	STATUS<6:5>
RX9	RCSTA<6>
RX9D	RCSTA<0>
S	SSPSTAT<3>
SMP	SSPSTAT<7>
SPEN	RCSTA<7>
SREN	RCSTA<5>
SSPEN	SSPCON<5>
SSPIE	PIF1<3>
SSPIF	PIR1<3>
SSPIF SSPM3:SSPM0	PIR1<3> SSPCON<3:0>
SSPIF SSPM3:SSPM0 SSPOV	PIR1<3> SSPCON<3:0> SSPCON<6>

T0CS	.OPTION_REG<5>
T0IE	INTCON<5>
T0IF	INTCON<2>
T0SE	OPTION_REG<4>
T1CKPS1:T1CKPS0	T1CON<5:4>
T1OSCEN	T1CON<3>
T1SYNC	T1CON<2>
T2CKPS1:T2CKPS0	T2CON<1:0>
TMR1CS	T1CON<1>
TMR1IE	PIE1<0>
TMR1IF	PIR1<0>
TMR1ON	T1CON<0>
TMR2IE	PIE1<1>
TMR2IF	PIR1<1>
TMR2ON	T2CON<2>
<u>TO</u>	STATUS<4>
TOUTPS3:TOUTPS0	T2CON<6:3>
TRMT	TXSTA<1>
TX9	TXSTA<6>
TX9D	TXSTA<0>
TXEN	TXSTA<5>
TXIE	PIE1<4>
TXIF	PIR1<4>
UA	SSPSTAT<1>
WCOL	.SSPCON<7>
Ζ	STATUS<2>