




#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFl

| Product Status             | Last Time Buy                                                                     |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | C166SV2                                                                           |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 40MHz                                                                             |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, SPI, UART/USART                                |
| Peripherals                | PWM, WDT                                                                          |
| Number of I/O              | 103                                                                               |
| Program Memory Size        | 256KB (256K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | · ·                                                                               |
| RAM Size                   | 12K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 2.35V ~ 2.7V                                                                      |
| Data Converters            | A/D 16x8/10b                                                                      |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | -                                                                                 |
| Package / Case             |                                                                                   |
| Supplier Device Package    |                                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/xc167ci32f40fbbafxqma1 |
|                            |                                                                                   |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# XC167CI-32F 16-Bit Single-Chip Microcontroller with C166SV2 Core

## Microcontrollers



Never stop thinking



| XC167<br>Revisio | n History: V1.1, 2006-08                                                                                                                                                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Previous         | s Version(s):                                                                                                                                                                                                                                                                        |
| V1.0, 20         | 05-06                                                                                                                                                                                                                                                                                |
| Page             | Subjects (major changes since last revision)                                                                                                                                                                                                                                         |
| 13               | Description of the TRST signal modified.                                                                                                                                                                                                                                             |
| 19               | Footnote added about pins XTAL1/XTAL3 belonging to $V_{\rm DDI}$ power domain.                                                                                                                                                                                                       |
| 53               | Instructions Set Summary improved.                                                                                                                                                                                                                                                   |
| 60               | Footnote added about amplitude at XTAL1 pin.                                                                                                                                                                                                                                         |
| 85               | Green package added.                                                                                                                                                                                                                                                                 |
| 85               | Thermal Resistance: $R_{\text{THA}}$ replaced by $R_{\Theta \text{JC}}$ and $R_{\Theta \text{JL}}$ because $R_{\text{THA}}$ strongly depends on the external system (PCB, environment). $P_{\text{DISS}}$ removed, because no static parameter, but derived from thermal resistance. |
|                  | Title at the Cover Page corrected XC167CS to XC167CI.                                                                                                                                                                                                                                |

#### We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com



| Table 2     | Pi          | n Definit      | tions and F                                                                                                                                                                                                                                                                                                                                                                                                        | unctions                                                                                                      |  |  |  |  |
|-------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Sym-<br>bol | Pin<br>Num. | Input<br>Outp. | Function                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               |  |  |  |  |
| P20.12      | 3           | 10             | For details                                                                                                                                                                                                                                                                                                                                                                                                        | , please refer to the description of <b>P20</b> .                                                             |  |  |  |  |
| NMI         | 4           | 1              | Non-Maskable Interrupt Input. A high to low transition at this<br>pin causes the CPU to vector to the NMI trap routine. When<br>the PWRDN (power down) instruction is executed, the NMI<br>pin must be low in order to force the XC167 into power down<br>mode. If NMI is high, when PWRDN is executed, the part will<br>continue to run in normal mode.<br>If not used, pin NMI should be pulled high externally. |                                                                                                               |  |  |  |  |
| P6          |             | IO             | Port 6 is an 8-bit bidirectional I/O port. Each pin can be<br>programmed for input (output driver in high-impedance<br>state) or output (configurable as push/pull or open drain<br>driver). The input threshold of Port 6 is selectable (standard<br>or special).<br>The Port 6 pins also serve for alternate functions:                                                                                          |                                                                                                               |  |  |  |  |
| P6.0        | 7           | 0              | $\frac{110}{CS0}$                                                                                                                                                                                                                                                                                                                                                                                                  | Chip Select 0 Output,                                                                                         |  |  |  |  |
| P6.1        | 8           | 10<br>0        | CC0IO<br>CS1                                                                                                                                                                                                                                                                                                                                                                                                       | CAPCOM1: CC0 Capture Inp./Compare Output<br>Chip Select 1 Output,                                             |  |  |  |  |
| P6.2        | 9           | 10<br>0        | CC1IO<br>CS2                                                                                                                                                                                                                                                                                                                                                                                                       | CAPCOM1: CC1 Capture Inp./Compare Output<br>Chip Select 2 Output,                                             |  |  |  |  |
| 1 0.2       |             | 10             | CC2IO                                                                                                                                                                                                                                                                                                                                                                                                              | CAPCOM1: CC2 Capture Inp./Compare Output                                                                      |  |  |  |  |
| P6.3        | 10          | 0              | CS3                                                                                                                                                                                                                                                                                                                                                                                                                | Chip Select 3 Output,                                                                                         |  |  |  |  |
| P6.4        | 11          | 10<br>0<br>10  | CC3IO<br>CS4<br>CC4IO                                                                                                                                                                                                                                                                                                                                                                                              | CAPCOM1: CC3 Capture Inp./Compare Output<br>Chip Select 4 Output,<br>CAPCOM1: CC4 Capture Inp./Compare Output |  |  |  |  |
| P6.5        | 12          |                | HOLD                                                                                                                                                                                                                                                                                                                                                                                                               | External Master Hold Request Input,                                                                           |  |  |  |  |
|             |             | IO             | CC5IO                                                                                                                                                                                                                                                                                                                                                                                                              | CAPCOM1: CC5 Capture Inp./Compare Output                                                                      |  |  |  |  |
| P6.6        | 13          | I/O            | HLDA                                                                                                                                                                                                                                                                                                                                                                                                               | Hold Acknowledge Output (master mode) or Input (slave mode),                                                  |  |  |  |  |
| P6.7        | 14          | 10<br>0<br>10  | CC6IO<br>BREQ<br>CC7IO                                                                                                                                                                                                                                                                                                                                                                                             | CAPCOM1: CC6 Capture Inp./Compare Output<br>Bus Request Output,<br>CAPCOM1: CC7 Capture Inp./Compare Output   |  |  |  |  |



| Table 2     | Pi          | Pin Definitions and Functions (cont'd) |                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|-------------|-------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Sym-<br>bol | Pin<br>Num. | Input<br>Outp.                         | Function                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| P7          |             | IO                                     | Port 7 is a 4-bit bidirectional I/O port. Each pin can be<br>programmed for input (output driver in high-impedance<br>state) or output (configurable as push/pull or open drain<br>driver). The input threshold of Port 7 is selectable (standard<br>or special). |  |  |  |  |  |  |
|             |             |                                        | Port 7 pins provide inputs/outputs for CAPCOM2 and serial interface lines. <sup>1)</sup>                                                                                                                                                                          |  |  |  |  |  |  |
| P7.4        | 15          | I/O<br>I                               | CC28IO CAPCOM2: CC28 Capture Inp./Compare Outp.,<br>CAN2_RxD CAN Node 2 Receive Data Input,                                                                                                                                                                       |  |  |  |  |  |  |
| P7.5        | 16          | <br> /O                                | EX7IN Fast External Interrupt 7 Input (alternate pin B)<br>CC29IO CAPCOM2: CC29 Capture Inp./Compare Outp.,                                                                                                                                                       |  |  |  |  |  |  |
| 1 7.0       |             | 0                                      | CAN2_TxD CAN Node 2 Transmit Data Output,<br>EX6IN Fast External Interrupt 6 Input (alternate pin B)                                                                                                                                                              |  |  |  |  |  |  |
| P7.6        | 17          | I/O<br>I                               | CC30IO CAPCOM2: CC30 Capture Inp./Compare Outp.,<br>CAN1_RxD CAN Node 1 Receive Data Input,                                                                                                                                                                       |  |  |  |  |  |  |
|             |             | 1                                      | EX7IN Fast External Interrupt 7 Input (alternate pin A)                                                                                                                                                                                                           |  |  |  |  |  |  |
| P7.7        | 18          | I/O<br>O<br>I                          | CC31IOCAPCOM2: CC31 Capture Inp./Compare Outp.,CAN1_TxDCAN Node 1 Transmit Data Output,EX6INFast External Interrupt 6 Input (alternate pin A)                                                                                                                     |  |  |  |  |  |  |



| Table 2     | Pi          | Pin Definitions and Functions (cont'd) |                                                                                                                                                                                                                                                        |                                                                                                                                                                                    |  |  |  |  |  |  |
|-------------|-------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Sym-<br>bol | Pin<br>Num. | Input<br>Outp.                         | Function                                                                                                                                                                                                                                               | Function                                                                                                                                                                           |  |  |  |  |  |  |
| P3          |             | IO                                     | Port 3 is a 15-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 3 is selectable (standard or special). |                                                                                                                                                                                    |  |  |  |  |  |  |
| P3.0        | 59          | <br>0<br>                              | T0IN<br>TxD1<br>EX1IN                                                                                                                                                                                                                                  | ing Port 3 pins also serve for alternate functions:<br>CAPCOM1 Timer T0 Count Input,<br>ASC1 Clock/Data Output (Async./Sync),<br>Fast External Interrupt 1 Input (alternate pin B) |  |  |  |  |  |  |
| P3.1        | 60          | 0<br>I/O<br>I                          | T6OUT<br>RxD1<br>EX1IN                                                                                                                                                                                                                                 | GPT2 Timer T6 Toggle Latch Output,<br>ASC1 Data Input (Async.) or Inp./Outp. (Sync.),<br>Fast External Interrupt 1 Input (alternate pin A)                                         |  |  |  |  |  |  |
| P3.2        | 61          | I                                      | CAPIN                                                                                                                                                                                                                                                  | GPT2 Register CAPREL Capture Input                                                                                                                                                 |  |  |  |  |  |  |
| P3.3        | 62          | 0                                      | T3OUT                                                                                                                                                                                                                                                  | GPT1 Timer T3 Toggle Latch Output                                                                                                                                                  |  |  |  |  |  |  |
| P3.4        | 63          | I                                      | T3EUD                                                                                                                                                                                                                                                  | GPT1 Timer T3 External Up/Down Control Input                                                                                                                                       |  |  |  |  |  |  |
| P3.5        | 64          | I                                      | T4IN                                                                                                                                                                                                                                                   | GPT1 Timer T4 Count/Gate/Reload/Capture Inp                                                                                                                                        |  |  |  |  |  |  |
| P3.6        | 65          | I                                      | T3IN                                                                                                                                                                                                                                                   | GPT1 Timer T3 Count/Gate Input                                                                                                                                                     |  |  |  |  |  |  |
| P3.7        | 66          | I                                      | T2IN                                                                                                                                                                                                                                                   | GPT1 Timer T2 Count/Gate/Reload/Capture Inp                                                                                                                                        |  |  |  |  |  |  |
| P3.8        | 67          | I/O                                    | MRST0                                                                                                                                                                                                                                                  | SSC0 Master-Receive/Slave-Transmit In/Out.                                                                                                                                         |  |  |  |  |  |  |
| P3.9        | 68          | I/O                                    | MTSR0                                                                                                                                                                                                                                                  | SSC0 Master-Transmit/Slave-Receive Out/In.                                                                                                                                         |  |  |  |  |  |  |
| P3.10       | 69          | 0                                      | TxD0                                                                                                                                                                                                                                                   | ASC0 Clock/Data Output (Async./Sync.),                                                                                                                                             |  |  |  |  |  |  |
|             |             | I                                      | EX2IN                                                                                                                                                                                                                                                  | Fast External Interrupt 2 Input (alternate pin B)                                                                                                                                  |  |  |  |  |  |  |
| P3.11       | 70          | I/O<br>I                               | RxD0<br>EX2IN                                                                                                                                                                                                                                          | ASC0 Data Input (Async.) or Inp./Outp. (Sync.),<br>Fast External Interrupt 2 Input (alternate pin A)                                                                               |  |  |  |  |  |  |
| P3.12       | 75          | 0<br>0<br>1                            | BHE<br>WRH<br>EX3IN                                                                                                                                                                                                                                    | External Memory High Byte Enable Signal,<br>External Memory High Byte Write Strobe,<br>Fast External Interrupt 3 Input (alternate pin B)                                           |  |  |  |  |  |  |
| P3.13       | 76          | I/O<br>I                               | SCLK0<br>EX3IN                                                                                                                                                                                                                                         | SSC0 Master Clock Output/Slave Clock Input,<br>Fast External Interrupt 3 Input (alternate pin A)                                                                                   |  |  |  |  |  |  |
| P3.15       | 77          | 0<br>0                                 | CLKOUT<br>FOUT                                                                                                                                                                                                                                         | Master Clock Output,<br>Programmable Frequency Output                                                                                                                              |  |  |  |  |  |  |
| TCK         | 71          | I                                      | Debug Sys                                                                                                                                                                                                                                              | stem: JTAG Clock Input                                                                                                                                                             |  |  |  |  |  |  |
| TDI         | 72          | 1                                      | Debug Sys                                                                                                                                                                                                                                              | stem: JTAG Data In                                                                                                                                                                 |  |  |  |  |  |  |
| TDO         | 73          | 0                                      | Debug Sys                                                                                                                                                                                                                                              | stem: JTAG Data Out                                                                                                                                                                |  |  |  |  |  |  |
| TMS         | 74          | I                                      | Debug Sys                                                                                                                                                                                                                                              | Debug System: JTAG Test Mode Selection                                                                                                                                             |  |  |  |  |  |  |



| 0    | -           |       | tions and Functions (cont'd)                                                |  |  |  |  |  |
|------|-------------|-------|-----------------------------------------------------------------------------|--|--|--|--|--|
| Sym- | Pin<br>Num. | Input | Function                                                                    |  |  |  |  |  |
| bol  | NUM.        | Outp. |                                                                             |  |  |  |  |  |
| P4   |             | IO    | Port 4 is an 8-bit bidirectional I/O port. Each pin can be                  |  |  |  |  |  |
|      |             |       | programmed for input (output driver in high-impedance                       |  |  |  |  |  |
|      |             |       | state) or output (configurable as push/pull or open drain                   |  |  |  |  |  |
|      |             |       | driver). The input threshold of Port 4 is selectable (standard or special). |  |  |  |  |  |
|      |             |       | Port 4 can be used to output the segment address lines, the                 |  |  |  |  |  |
|      |             |       | optional chip select lines, and for serial interface lines: <sup>1)</sup>   |  |  |  |  |  |
| P4.0 | 80          | 0     | A16 Least Significant Segment Address Line                                  |  |  |  |  |  |
| P4.1 | 81          | 0     | A17 Segment Address Line                                                    |  |  |  |  |  |
| P4.2 | 82          | 0     | A18 Segment Address Line                                                    |  |  |  |  |  |
| P4.3 | 83          | 0     | A19 Segment Address Line                                                    |  |  |  |  |  |
| P4.4 | 84          | 0     | A20 Segment Address Line,                                                   |  |  |  |  |  |
|      |             | 1     | CAN2_RxD CAN Node 2 Receive Data Input,                                     |  |  |  |  |  |
|      |             | 1     | EX5IN Fast External Interrupt 5 Input (alternate pin B)                     |  |  |  |  |  |
| P4.5 | 85          | 0     | A21 Segment Address Line,                                                   |  |  |  |  |  |
|      |             | 1     | CAN1_RxD CAN Node 1 Receive Data Input,                                     |  |  |  |  |  |
|      |             | 1     | EX4IN Fast External Interrupt 4 Input (alternate pin B)                     |  |  |  |  |  |
| P4.6 | 86          | 0     | A22 Segment Address Line,                                                   |  |  |  |  |  |
|      |             | 0     | CAN1_TxD CAN Node 1 Transmit Data Output,                                   |  |  |  |  |  |
|      |             | 1     | EX5IN Fast External Interrupt 5 Input (alternate pin A)                     |  |  |  |  |  |
| P4.7 | 87          | 0     | A23 Most Significant Segment Address Line,                                  |  |  |  |  |  |
|      |             | 1     | CAN1_RxD CAN Node 1 Receive Data Input,                                     |  |  |  |  |  |
|      |             | 0     | CAN2_TxD CAN Node 2 Transmit Data Output,                                   |  |  |  |  |  |
|      |             | 1     | EX4IN Fast External Interrupt 4 Input (alternate pin A)                     |  |  |  |  |  |



| Table 2        | Pi   | n Definit  | ions and Fu                                         | unctions (cont'd)                                                                    |  |  |  |  |  |
|----------------|------|------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|
| Sym-           | Pin  | Input      | Function                                            |                                                                                      |  |  |  |  |  |
| bol            | Num. | Outp.      |                                                     |                                                                                      |  |  |  |  |  |
| PORT1          |      | IO         | PORT1 cor                                           | nsists of the two 8-bit bidirectional I/O ports P1L                                  |  |  |  |  |  |
|                |      |            | and P1H. E                                          | ach pin can be programmed for input (output                                          |  |  |  |  |  |
|                |      |            | driver in hig                                       | h-impedance state) or output.                                                        |  |  |  |  |  |
|                |      |            | PORT1 is u                                          | used as the 16-bit address bus (A) in                                                |  |  |  |  |  |
|                |      |            | demultiplex                                         | ed bus modes (also after switching from a                                            |  |  |  |  |  |
|                |      |            | demultiplex                                         | red to a multiplexed bus mode).                                                      |  |  |  |  |  |
|                |      |            | The following                                       | ng PORT1 pins also serve for alt. functions:                                         |  |  |  |  |  |
| P1L.0          | 117  | I/O        | CC60                                                | CAPCOM6: Input / Output of Channel 0                                                 |  |  |  |  |  |
| P1L.1          | 118  | 0          | COUT60                                              | CAPCOM6: Output of Channel 0                                                         |  |  |  |  |  |
| P1L.2          | 119  | I/O        | CC61                                                | CAPCOM6: Input / Output of Channel 1                                                 |  |  |  |  |  |
| P1L.3          | 120  | 0          | COUT61                                              |                                                                                      |  |  |  |  |  |
| P1L.4          | 121  | I/O        | CC62 CAPCOM6: Input / Output of Channel 2           |                                                                                      |  |  |  |  |  |
| P1L.5          | 122  | 0          | COUT62 CAPCOM6: Output of Channel 2                 |                                                                                      |  |  |  |  |  |
| P1L.6          | 123  | 0          | COUT63 Output of 10-bit Compare Channel             |                                                                                      |  |  |  |  |  |
| P1L.7          | 124  |            | CTRAP                                               | CAPCOM2: CC22 Capture Inp./Compare Outp.                                             |  |  |  |  |  |
|                |      |            |                                                     | CTRAP is an input pin with an internal pullup                                        |  |  |  |  |  |
|                |      |            |                                                     | resistor. A low level on this pin switches the                                       |  |  |  |  |  |
|                |      |            |                                                     | CAPCOM6 compare outputs to the logic level                                           |  |  |  |  |  |
|                |      |            |                                                     | defined by software (if enabled).                                                    |  |  |  |  |  |
|                | 10-  | I/O        | <u>CC22IO</u>                                       | CAPCOM2: CC22 Capture Inp./Compare Outp.                                             |  |  |  |  |  |
| P1H.0          | 127  |            | CC6POS0                                             | CAPCOM6: Position 0 Input,                                                           |  |  |  |  |  |
|                |      |            | EX0IN                                               | Fast External Interrupt 0 Input (alternate pin B),                                   |  |  |  |  |  |
|                | 100  | I/O        | CC23IO                                              | CAPCOM2: CC23 Capture Inp./Compare Outp.                                             |  |  |  |  |  |
| P1H.1          | 128  |            | CC6POS1                                             | CAPCOM6: Position 1 Input,                                                           |  |  |  |  |  |
|                | 100  | I/O        | MRST1 SSC1 Master-Receive/Slave-Transmit In/Out.    |                                                                                      |  |  |  |  |  |
| P1H.2          | 129  |            | CC6POS2 CAPCOM6: Position 2 Input,                  |                                                                                      |  |  |  |  |  |
|                | 120  | 1/0        | MTSR1                                               | SSC1 Master-Transmit/Slave-Receive Out/Inp.                                          |  |  |  |  |  |
| P1H.3          | 130  | I/O        | SCLK1 SSC1 Master Clock Output / Slave Clock Input, |                                                                                      |  |  |  |  |  |
| P1H.4          | 131  | 1<br>1/0   | EX0IN<br>CC24IO                                     | Fast External Interrupt 0 Input (alternate pin A)                                    |  |  |  |  |  |
| P1H.4<br>P1H.5 | 131  | 1/O<br>1/O | CC2410<br>CC2510                                    | CAPCOM2: CC24 Capture Inp./Compare Outp.<br>CAPCOM2: CC25 Capture Inp./Compare Outp. |  |  |  |  |  |
| P1H.5<br>P1H.6 | 132  | 1/O<br>1/O | CC25IO<br>CC26IO                                    |                                                                                      |  |  |  |  |  |
| P1H.6<br>P1H.7 |      |            |                                                     | CAPCOM2: CC26 Capture Inp./Compare Outp.                                             |  |  |  |  |  |
|                | 134  | I/O        | CC27IO                                              | CAPCOM2: CC27 Capture Inp./Compare Outp.                                             |  |  |  |  |  |



#### Table 4XC167 Interrupt Nodes (cont'd)

| Source of Interrupt or PEC | Control    | Vector                 | Trap                              |
|----------------------------|------------|------------------------|-----------------------------------|
| Service Request            | Register   | Location <sup>1)</sup> | Number                            |
| ASC1 Autobaud              | ASC1_ABIC  | xx'0108 <sub>H</sub>   | 42 <sub>H</sub> / 66 <sub>D</sub> |
| End of PEC Subchannel      | EOPIC      | xx'0130 <sub>H</sub>   | 4C <sub>H</sub> / 76 <sub>D</sub> |
| CAPCOM6 Timer T12          | CCU6_T12IC | xx'0134 <sub>H</sub>   | 4D <sub>H</sub> / 77 <sub>D</sub> |
| CAPCOM6 Timer T13          | CCU6_T13IC | xx'0138 <sub>H</sub>   | 4E <sub>H</sub> / 78 <sub>D</sub> |
| CAPCOM6 Emergency          | CCU6_EIC   | xx'013C <sub>H</sub>   | 4F <sub>H</sub> / 79 <sub>D</sub> |
| CAPCOM6                    | CAPCOM6    | xx'0140 <sub>H</sub>   | 50 <sub>H</sub> / 80 <sub>D</sub> |
| SSC1 Transmit              | SSC1_TIC   | xx'0144 <sub>H</sub>   | 51 <sub>H</sub> / 81 <sub>D</sub> |
| SSC1 Receive               | SSC1_RIC   | xx'0148 <sub>H</sub>   | 52 <sub>H</sub> / 82 <sub>D</sub> |
| SSC1 Error                 | SSC1_EIC   | xx'014C <sub>H</sub>   | 53 <sub>H</sub> / 83 <sub>D</sub> |
| CAN0                       | CAN_0IC    | xx'0150 <sub>H</sub>   | 54 <sub>H</sub> / 84 <sub>D</sub> |
| CAN1                       | CAN_1IC    | xx'0154 <sub>H</sub>   | 55 <sub>H</sub> / 85 <sub>D</sub> |
| CAN2                       | CAN_2IC    | xx'0158 <sub>H</sub>   | 56 <sub>H</sub> / 86 <sub>D</sub> |
| CAN3                       | CAN_3IC    | xx'015C <sub>H</sub>   | 57 <sub>H</sub> / 87 <sub>D</sub> |
| CAN4                       | CAN_4IC    | xx'0164 <sub>H</sub>   | 59 <sub>H</sub> / 89 <sub>D</sub> |
| CAN5                       | CAN_5IC    | xx'0168 <sub>H</sub>   | 5A <sub>H</sub> / 90 <sub>D</sub> |
| CAN6                       | CAN_6IC    | xx'016C <sub>H</sub>   | 5B <sub>H</sub> / 91 <sub>D</sub> |
| CAN7                       | CAN_7IC    | xx'0170 <sub>H</sub>   | 5C <sub>H</sub> / 92 <sub>D</sub> |
| RTC                        | RTC_IC     | xx'0174 <sub>H</sub>   | 5D <sub>H</sub> / 93 <sub>D</sub> |
| Unassigned node            | -          | xx'012C <sub>H</sub>   | 3F <sub>H</sub> / 63 <sub>D</sub> |
| Unassigned node            | -          | xx'00FC <sub>H</sub>   | 3F <sub>H</sub> / 63 <sub>D</sub> |
| Unassigned node            | -          | xx'0160 <sub>H</sub>   | 58 <sub>H</sub> / 88 <sub>D</sub> |

 Register VECSEG defines the segment where the vector table is located to. Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table

represents the default setting, with a distance of 4 (two words) between two vectors.



## 3.5 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system provides a broad range of debug and emulation features built into the XC167. The user software running on the XC167 can thus be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface, consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger controls the OCDS via a set of dedicated registers accessible via the JTAG interface. Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

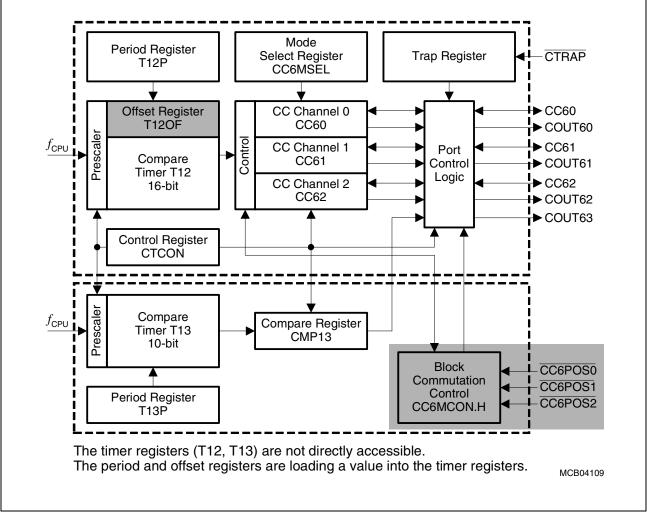
Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported as well as the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the JTAG interface or via the external bus interface for increased performance.

The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 break lines) to communicate with external circuitry. These interface signals use dedicated pins.

Complete system emulation is supported by the New Emulation Technology (NET) interface.




## 3.7 The Capture/Compare Unit CAPCOM6

The CAPCOM6 unit supports generation and control of timing sequences on up to three 16-bit capture/compare channels plus one independent 10-bit compare channel.

In compare mode the CAPCOM6 unit provides two output signals per channel which have inverted polarity and non-overlapping pulse transitions (deadtime control). The compare channel can generate a single PWM output signal and is further used to modulate the capture/compare output signals.

In capture mode the contents of compare timer T12 is stored in the capture registers upon a signal transition at pins CCx.

Compare timers T12 (16-bit) and T13 (10-bit) are free running timers which are clocked by the prescaled system clock.



#### Figure 6 CAPCOM6 Block Diagram

For motor control applications both subunits may generate versatile multichannel PWM signals which are basically either controlled by compare timer T12 or by a typical hall sensor pattern at the interrupt inputs (block commutation).



### 3.11 Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1)

The Asynchronous/Synchronous Serial Interfaces ASC0/ASC1 (USARTs) provide serial communication with other microcontrollers, processors, terminals or external peripheral components. They are upward compatible with the serial ports of the Infineon 8-bit microcontroller families and support full-duplex asynchronous communication and half-duplex synchronous communication. A dedicated baud rate generator with a fractional divider precisely generates all standard baud rates without oscillator tuning. For transmission, reception, error handling, and baudrate detection 5 separate interrupt vectors are provided.

In asynchronous mode, 8- or 9-bit data frames (with optional parity bit) are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake-up bit mode). IrDA data transmissions up to 115.2 kbit/s with fixed or programmable IrDA pulse width are supported.

In synchronous mode, bytes (8 bits) are transmitted or received synchronously to a shift clock which is generated by the ASC0/1. The LSB is always shifted first.

In both modes, transmission and reception of data is FIFO-buffered. An autobaud detection unit allows to detect asynchronous data frames with its baudrate and mode with automatic initialization of the baudrate generator and the mode control bits.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

#### Summary of Features

- Full-duplex asynchronous operating modes
  - 8- or 9-bit data frames, LSB first, one or two stop bits, parity generation/checking
  - Baudrate from 2.5 Mbit/s to 0.6 bit/s (@ 40 MHz)
  - Multiprocessor mode for automatic address/data byte detection
  - Support for IrDA data transmission/reception up to max. 115.2 kbit/s (@ 40 MHz)
  - Loop-back capability
  - Auto baudrate detection
- Half-duplex 8-bit synchronous operating mode at 5 Mbit/s to 406.9 bit/s (@ 40 MHz)
- Buffered transmitter/receiver with FIFO support (8 entries per direction)
- Loop-back option available for testing purposes
- Interrupt generation on transmitter buffer empty condition, last bit transmitted condition, receive buffer full condition, error condition (frame, parity, overrun error), start and end of an autobaud detection



#### 3.19 Instruction Set Summary

 Table 8 lists the instructions of the XC167 in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "**Instruction Set Manual**".

This document also provides a detailed description of each instruction.

| Mnemonic      | Description                                                                                          |     |  |  |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|
| ADD(B)        | Add word (byte) operands                                                                             | 2/4 |  |  |  |  |  |  |
| ADDC(B)       | Add word (byte) operands with Carry                                                                  | 2/4 |  |  |  |  |  |  |
| SUB(B)        | Subtract word (byte) operands                                                                        |     |  |  |  |  |  |  |
| SUBC(B)       | Subtract word (byte) operands with Carry                                                             |     |  |  |  |  |  |  |
| MUL(U)        | L(U) (Un)Signed multiply direct GPR by direct GPR (16- × 16-bit)                                     |     |  |  |  |  |  |  |
| DIV(U)        | (Un)Signed divide register MDL by direct GPR (16-/16-bit)                                            | 2   |  |  |  |  |  |  |
| DIVL(U)       | (Un)Signed long divide reg. MD by direct GPR (32-/16-bit)                                            | 2   |  |  |  |  |  |  |
| CPL(B)        | Complement direct word (byte) GPR                                                                    | 2   |  |  |  |  |  |  |
| NEG(B)        | Negate direct word (byte) GPR                                                                        | 2   |  |  |  |  |  |  |
| AND(B)        | Bitwise AND, (word/byte operands)                                                                    | 2/4 |  |  |  |  |  |  |
| OR(B)         | Bitwise OR, (word/byte operands)                                                                     | 2/4 |  |  |  |  |  |  |
| XOR(B)        | Bitwise exclusive OR, (word/byte operands)                                                           | 2/4 |  |  |  |  |  |  |
| BCLR/BSET     | Clear/Set direct bit                                                                                 | 2   |  |  |  |  |  |  |
| BMOV(N)       | Move (negated) direct bit to direct bit                                                              | 4   |  |  |  |  |  |  |
| BAND/BOR/BXOR | AND/OR/XOR direct bit with direct bit                                                                | 4   |  |  |  |  |  |  |
| BCMP          | Compare direct bit to direct bit                                                                     | 4   |  |  |  |  |  |  |
| BFLDH/BFLDL   | Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data        | 4   |  |  |  |  |  |  |
| CMP(B)        | Compare word (byte) operands                                                                         | 2/4 |  |  |  |  |  |  |
| CMPD1/2       | Compare word data to GPR and decrement GPR by 1/2                                                    | 2/4 |  |  |  |  |  |  |
| CMPI1/2       | Compare word data to GPR and increment GPR by 1/2                                                    | 2/4 |  |  |  |  |  |  |
| PRIOR         | Determine number of shift cycles to normalize direct<br>word GPR and store result in direct word GPR |     |  |  |  |  |  |  |
| SHL/SHR       | Shift left/right direct word GPR                                                                     | 2   |  |  |  |  |  |  |

#### Table 8 Instruction Set Summary



#### **Operating Conditions**

The following operating conditions must not be exceeded to ensure correct operation of the XC167. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

| Parameter                                 | Symbol              | Limi | t Values               | Unit | Notes                                            |
|-------------------------------------------|---------------------|------|------------------------|------|--------------------------------------------------|
|                                           |                     | Min. | Max.                   |      |                                                  |
| Digital supply voltage for the core       | V <sub>DDI</sub>    | 2.35 | 2.7                    | V    | Active mode,<br>$f_{CPU} = f_{CPUmax}^{1)2)}$    |
| Digital supply voltage for IO pads        | V <sub>DDP</sub>    | 4.4  | 5.5                    | V    | Active mode <sup>2)</sup>                        |
| Supply Voltage Difference                 | $\Delta V_{\rm DD}$ | -0.5 | -                      | V    | $V_{\rm DDP}$ - $V_{\rm DDI}^{3)}$               |
| Digital ground voltage                    | V <sub>SS</sub>     | 0    |                        | V    | Reference voltage                                |
| Overload current                          | I <sub>OV</sub>     | -5   | 5                      | mA   | Per IO pin <sup>4)5)</sup>                       |
|                                           |                     | -2   | 5                      | mA   | Per analog input pin <sup>4)5)</sup>             |
| Overload current coupling                 | K <sub>ova</sub>    | -    | 1.0 × 10 <sup>-4</sup> | -    | <i>I</i> <sub>OV</sub> > 0                       |
| factor for analog inputs <sup>6)</sup>    |                     | -    | 1.5 × 10 <sup>-3</sup> | -    | <i>I</i> <sub>OV</sub> < 0                       |
| Overload current coupling                 | K <sub>OVD</sub>    | -    | 5.0 × 10 <sup>-3</sup> | -    | <i>I</i> <sub>OV</sub> > 0                       |
| factor for digital I/O pins <sup>6)</sup> |                     | _    | 1.0 × 10 <sup>-2</sup> | -    | I <sub>OV</sub> < 0                              |
| Absolute sum of overload currents         | $\Sigma  I_{OV} $   | -    | 50                     | mA   | 5)                                               |
| External Load<br>Capacitance              | CL                  | _    | 50                     | pF   | Pin drivers in <b>default</b> mode <sup>7)</sup> |
| Ambient temperature                       | T <sub>A</sub>      | 0    | 70                     | °C   | SAB-XC167                                        |
|                                           |                     | -40  | 85                     | °C   | SAF-XC167                                        |
|                                           |                     | -40  | 125                    | °C   | SAK-XC167                                        |

#### Table 10 Operating Condition Parameters

1)  $f_{\text{CPUmax}}$  = 40 MHz for devices marked ... 40F,  $f_{\text{CPUmax}}$  = 20 MHz for devices marked ... 20F.

2) External circuitry must guarantee low level at the RSTIN pin at least until both power supply voltages have reached their operating range.

3) This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down, and power-save modes.



#### 4.2 DC Parameters

#### Table 11DC Characteristics (Operating Conditions apply)<sup>1)</sup>

| Parameter                                                      | Symbol               |    | Limit                           | Values                          | Unit | Test Condition                                                       |
|----------------------------------------------------------------|----------------------|----|---------------------------------|---------------------------------|------|----------------------------------------------------------------------|
|                                                                |                      |    | Min.                            | Max.                            |      |                                                                      |
| Input low voltage TTL<br>(all except XTAL1,<br>XTAL3)          | V <sub>IL</sub>      | SR | -0.5                            | 0.2 × V <sub>DDP</sub><br>- 0.1 | V    | -                                                                    |
| Input low voltage for XTAL1, XTAL3 <sup>2)3)</sup>             | V <sub>ILC</sub>     | SR | -0.5                            | $0.3 	imes V_{ m DDI}$          | V    | -                                                                    |
| Input low voltage<br>(Special Threshold)                       | V <sub>ILS</sub>     | SR | -0.5                            | $0.45 \times V_{\text{DDP}}$    | V    | 4)                                                                   |
| Input high voltage TTL<br>(all except XTAL1,<br>XTAL3)         | V <sub>IH</sub>      | SR | 0.2 × V <sub>DDP</sub><br>+ 0.9 | V <sub>DDP</sub> + 0.5          | V    | -                                                                    |
| Input high voltage<br>XTAL1, XTAL3 <sup>2)3)</sup>             | V <sub>IHC</sub>     | SR | $0.7 \times V_{\text{DDI}}$     | V <sub>DDI</sub> + 0.5          | V    | -                                                                    |
| Input high voltage<br>(Special Threshold)                      | V <sub>IHS</sub>     | SR | 0.8 × V <sub>DDP</sub><br>- 0.2 | V <sub>DDP</sub> + 0.5          | V    | 4)                                                                   |
| Input Hysteresis<br>(Special Threshold)                        | HYS                  |    | $0.04 \times V_{\text{DDP}}$    | -                               | V    | $V_{\text{DDP}}$ in [V],<br>Series resis-<br>tance = 0 $\Omega^{4)}$ |
| Output low voltage                                             | V <sub>OL</sub>      | CC | -                               | 1.0                             | V    | $I_{\rm OL} \leq {I_{\rm OLmax}}^{5)}$                               |
|                                                                |                      |    | _                               | 0.45                            | V    | $I_{\rm OL} \leq {I_{\rm OLnom}}^{5)6)}$                             |
| Output high voltage <sup>7)</sup>                              | V <sub>OH</sub>      | CC | V <sub>DDP</sub> - 1.0          | _                               | V    | $I_{\rm OH} \ge I_{\rm OHmax}^{5)}$                                  |
|                                                                |                      |    | V <sub>DDP</sub> - 0.45         | -                               | V    | $I_{\rm OH} \ge I_{\rm OHnom}^{5)6)}$                                |
| Input leakage current<br>(Port 5) <sup>8)</sup>                | I <sub>OZ1</sub>     | CC | -                               | ±300                            | nA   | $0 V < V_{IN} < V_{DDP},$<br>$T_A \le 125 \text{ °C}$                |
|                                                                |                      |    |                                 | ±200                            | nA   | $0 V < V_{IN} < V_{DDP},$<br>$T_A \le 85 \ ^{\circ}C^{15)}$          |
| Input leakage current (all other <sup>9)</sup> ) <sup>8)</sup> | I <sub>OZ2</sub>     | CC | -                               | ±500                            | nA   | $0.45 V < V_{IN} < V_{DDP}$                                          |
| Configuration pull-up                                          | $I_{\rm CPUH}^{11)}$ |    | -                               | -10                             | μA   | $V_{\rm IN} = V_{\rm IHmin}$                                         |
| current <sup>10)</sup>                                         | $I_{\rm CPUL}^{12)}$ |    | -100                            | _                               | μA   | $V_{\rm IN} = V_{\rm ILmax}$                                         |



| Parameter                                                  | Symbol                                 |    | Limit | Limit Values |    | <b>Test Condition</b>               |
|------------------------------------------------------------|----------------------------------------|----|-------|--------------|----|-------------------------------------|
|                                                            |                                        |    | Min.  | Max.         |    |                                     |
| Configuration pull-                                        | $I_{\rm CPDL}^{11)}$                   |    | _     | 10           | μA | $V_{\rm IN} = V_{\rm ILmax}$        |
| down current <sup>13)</sup>                                | I <sub>CPDH</sub> <sup>12)</sup>       |    | 120   | -            | μA | $V_{\rm IN} = V_{\rm IHmin}$        |
| Level inactive hold current <sup>14)</sup>                 | <i>I</i> <sub>LHI</sub> <sup>11)</sup> |    | -     | -10          | μA | $V_{\rm OUT}$ = 0.5 × $V_{\rm DDP}$ |
| Level active hold current <sup>14)</sup>                   | $I_{\rm LHA}^{(12)}$                   |    | -100  | -            | μA | V <sub>OUT</sub> = 0.45 V           |
| XTAL1, XTAL3 input current                                 | I <sub>IL</sub>                        | CC | -     | ±20          | μA | $0 V < V_{IN} < V_{DDI}$            |
| Pin capacitance <sup>15)</sup><br>(digital inputs/outputs) | C <sub>IO</sub>                        | CC | -     | 10           | pF | -                                   |

#### Table 11 DC Characteristics (Operating Conditions apply)<sup>1)</sup> (cont'd)

1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current  $I_{OV}$ .

2) If XTAL1 is driven by a crystal, reaching an amplitude (peak to peak) of  $0.4 \times V_{DDI}$  is sufficient.

3) If XTAL3 is driven by a crystal, reaching an amplitude (peak to peak) of  $0.25 \times V_{DDI}$  is sufficient.

4) This parameter is tested for P2, P3, P4, P6, P7, P9.

 The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 12, Current Limits for Port Output Drivers. The limit for pin groups must be respected.

- 6) As a rule, with decreasing output current the output levels approach the respective supply level ( $V_{OL} \rightarrow V_{SS}$ ,  $V_{OH} \rightarrow V_{DDP}$ ). However, only the levels for nominal output currents are guaranteed.
- 7) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- 8) An additional error current ( $I_{INJ}$ ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor  $K_{OV}$ .
- 9) The driver of P3.15 is designed for faster switching, because this pin can deliver the reference clock for the bus interface (CLKOUT). The maximum leakage current for P3.15 is, therefore, increased to 1 μA.
- 10) This specification is valid during Reset for configuration on RD, WR, EA, PORT0. The pull-ups on RD and WR (WRL/WRH) are also active during bus hold.
- 11) The maximum current may be drawn while the respective signal line remains inactive.
- 12) The minimum current must be drawn to drive the respective signal line active.
- 13) This specification is valid during Reset for configuration on ALE. The pull-down on ALE is also active during bus hold.
- 14) This specification is valid during Reset for pins P6.4-0, which can act as CS outputs. The pull-ups on CS outputs are also active during bus hold.

The pull-up on pin HLDA is active when arbitration is enabled and the EBC operates in slave mode.

15) Not subject to production test - verified by design/characterization.



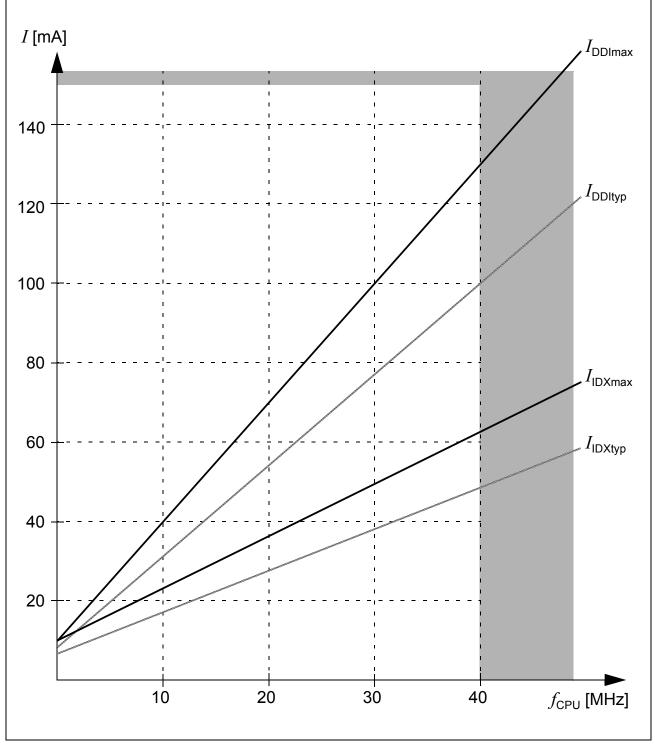



Figure 11 Supply/Idle Current as a Function of Operating Frequency



#### 4.4 AC Parameters

#### 4.4.1 Definition of Internal Timing

The internal operation of the XC167 is controlled by the internal master clock  $f_{MC}$ .

The master clock signal  $f_{\rm MC}$  can be generated from the oscillator clock signal  $f_{\rm OSC}$  via different mechanisms. The duration of master clock periods (TCMs) and their variation (and also the derived external timing) depend on the used mechanism to generate  $f_{\rm MC}$ . This influence must be regarded when calculating the timings for the XC167.

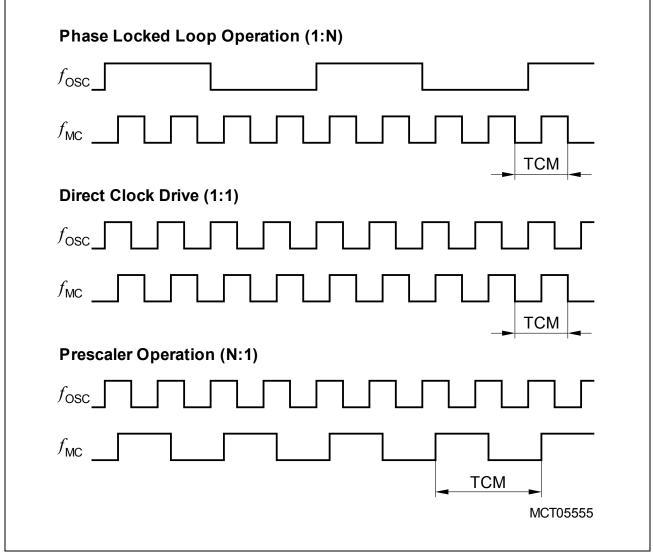


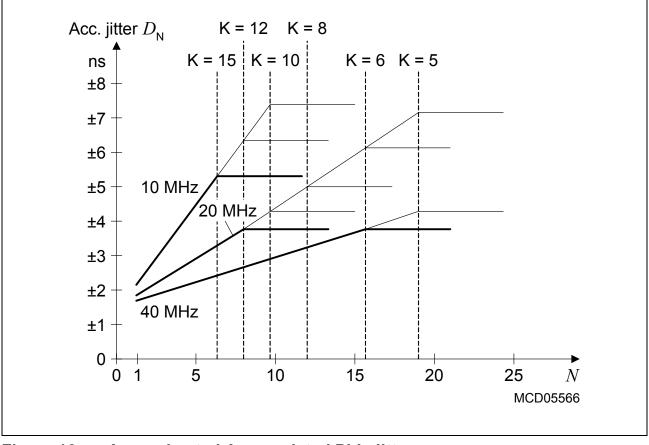

Figure 15 Generation Mechanisms for the Master Clock

Note: The example for PLL operation shown in **Figure 15** refers to a PLL factor of 1:4, the example for prescaler operation refers to a divider factor of 2:1.

The used mechanism to generate the master clock is selected by register PLLCON.



generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.


The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler (K = PLLODIV+1) to generate the master clock signal  $f_{MC}$ . Therefore, the number of VCO cycles can be represented as K × N, where N is the number of consecutive  $f_{MC}$  cycles (TCM).

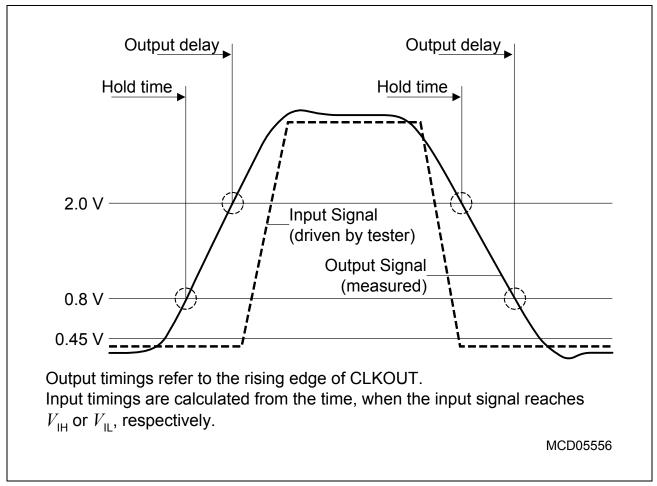
For a period of  $\mathbf{N} \times \text{TCM}$  the accumulated PLL jitter is defined by the deviation  $D_{N}$ :

 $D_N$  [ns] = ±(1.5 + 6.32 × N /  $f_{MC}$ );  $f_{MC}$  in [MHz], N = number of consecutive TCMs.

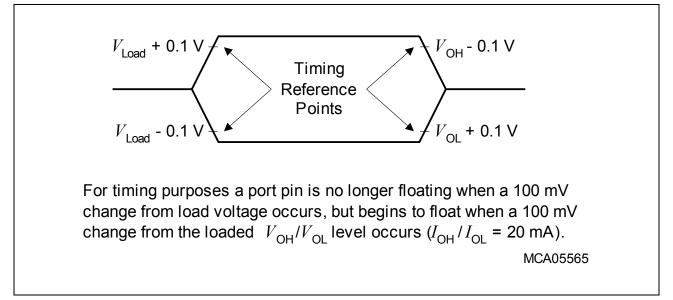
So, for a period of 3 TCMs @ 20 MHz and K = 12:  $D_3 = \pm(1.5 + 6.32 \times 3 / 20) = 2.448$  ns.

This formula is applicable for K × N < 95. For longer periods the K × N = 95 value can be used. This steady value can be approximated by:  $D_{Nmax}$  [ns] = ±(1.5 + 600 / (K ×  $f_{MC}$ )).




#### Figure 16 Approximated Accumulated PLL Jitter

Note: The bold lines indicate the minimum accumulated jitter which can be achieved by selecting the maximum possible output prescaler factor K.


Different frequency bands can be selected for the VCO, so the operation of the PLL can be adjusted to a wide range of input and output frequencies:



#### 4.4.4 Testing Waveforms



#### Figure 18 Input Output Waveforms



#### Figure 19 Float Waveforms



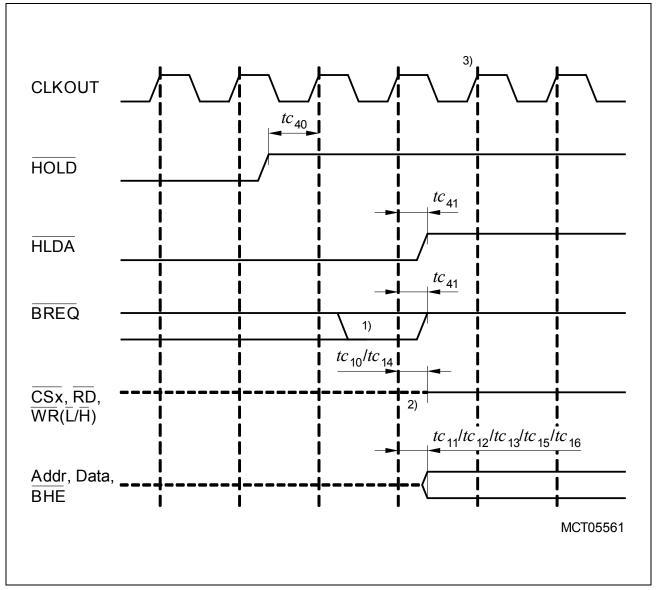



Figure 25 External Bus Arbitration, Regaining the Bus

#### Notes

- This is the last chance for BREQ to trigger the indicated regain-sequence. Even if BREQ is activated earlier, the regain-sequence is initiated by HOLD going high. Please note that HOLD may also be deactivated without the XC167 requesting the bus.
- 2. The control outputs will be resistive high (pull-up) before being driven inactive (ALE will be low).
- 3. The next XC167 driven bus cycle may start here.