

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c752-16-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC17CXXX FAMILY OF DEVICES

Features		PIC17C42A	PIC17C43	PIC17C44	PIC17C752	PIC17C756A	PIC17C762	PIC17C766
Maximum Frequency of Operation		33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz
Operating Voltage	Range	2.5 - 6.0V	2.5 - 6.0V	2.5 - 6.0V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V	3.0 - 5.5V
Program	(EPROM)	2 K	4 K	8 K	8 K	16 K	8 K	16 K
Memory (x16)	(ROM)	_	_	—	_	—	—	_
Data Memory (byte	es)	232	454	454	678	902	678	902
Hardware Multiplie	r (8 x 8)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit posts	scaler)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Timer3 (16-bit)		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Capture inputs (16-	-bit)	2	2	2	4	4	4	4
PWM outputs (up t	o 10-bit)	2	2	2	3	3	3	3
USART/SCI		1	1	1	2	2	2	2
A/D channels (10-bit)				—	12	12	16	16
SSP (SPI/I ² C w/Master mode)		—	—	—	Yes	Yes	Yes	Yes
Power-on Reset		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Watchdog Timer		Yes	Yes	Yes	Yes	Yes	Yes	Yes
External Interrupts		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		11	11	11	18	18	18	18
Code Protect		Yes	Yes	Yes	Yes	Yes	Yes	Yes
Brown-out Reset				_	Yes	Yes	Yes	Yes
In-Circuit Serial Programming		—	—	—	Yes	Yes	Yes	Yes
I/O Pins		33	33	33	50	50	66	66
I/O High	Source	25 mA	25 mA	25 mA	25 mA	25 mA	25 mA	25 mA
Current Capability	Sink	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾
Package Types		40-pin DIP 44-pin PLCC 44-pin MQFP 44-pin TQFP	40-pin DIP 44-pin PLCC 44-pin MOFP	40-pin DIP 44-pin PLCC 44-pin MOFP	64-pin TQFP 68-pin PLCC	64-pin TQFP 68-pin PLCC	80-pin TQFP 84-pin PLCC	80-pin TQFP 84-pin PLCC
			44-pin TQFP	44-pin TQFP				

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

4.1.4 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/ CLKIN pin is hi-impedance and the OSC2/CLKOUT pin is the CLKOUT output (4 Tosc).

4.1.5 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used, or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 4-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 4-5:

EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 4-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 Ω resistors provide the negative feedback to bias the inverters in their linear region.

NOTES:

	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R-1	R-0					
	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF					
	bit 7	·				<u> </u>		bit 0					
bit 7	SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit 1 = The SSP interrupt condition has occurred and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: <u>SPI:</u> A transmission (second tables)												
	<u>I²C Slave/Master:</u> A transmission/reception has taken place.												
<u>I²C Master:</u> The initiated START condition was completed by the SSP module. The initiated STOP condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Acknowledge condition was completed by the SSP module. A START condition occurred while the SSP module was idle (Multi-master system).													
	0 = An SS	P interrupt co	ondition has I	NOT occurre	ed								
bit 6	BCLIF: Bu 1 = A bus 0 = No bus	Is Collision In collision has s collision has	terrupt Flag occurred in t s occurred	bit he SSP, whe	en configure	d for I ² C Maste	er mode						
bit 5	ADIF : A/D 1 = An A/D 0 = An A/D	Module Inter) conversion i) conversion i	rupt Flag bit is complete is not comple	ete									
bit 4	Unimplem	ented: Read	l as '0'										
bit 3	CA4IF : Ca 1 = Captur 0 = Captur	pture4 Interru e event occu e event did n	upt Flag bit rred on RE3 not occur on f	/CAP4 pin RE3/CAP4 p	bin								
bit 2	CA3IF : Ca 1 = Captur 0 = Captur	pture3 Interru e event occu e event did n	upt Flag bit rred on RG4 not occur on 1	//CAP3 pin RG4/CAP3 r	bin								
bit 1	TX2IF :USA 1 = USAR 0 = USAR	ART2 Transm T2 Transmit b T2 Transmit b	nit Interrupt F ouffer is emp ouffer is full	[:] lag bit (state ty	controlled b	oy hardware)							
bit 0	RC2IF : US 1 = USAR 0 = USAR	ART2 Receiv T2 Receive b T2 Receive b	ve Interrupt F uffer is full uffer is empt	⁻lag bit (state ty	e controlled	by hardware)							
l	Legend:												

REGISTER 6-5: PIR2 REGISTER (ADDRESS: 10h, BANK 4)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.1.2 EXTERNAL MEMORY INTERFACE

When either Microprocessor or Extended Microcontroller mode is selected, PORTC, PORTD and PORTE are configured as the system bus. PORTC and PORTD are the multiplexed address/data bus and PORTE<2:0> is for the control signals. External components are needed to demultiplex the address and data. This can be done as shown in Figure 7-4. The waveforms of address and data are shown in Figure 7-3. For complete timings, please refer to the electrical specification section.

FIGURE 7-3: EXTERNAL PROGRAM MEMORY ACCESS

VA	VEFURINIS
. Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1
AD	
<15:0> Address out Data in	Address out Data out
ALE	
OE	
WR	
Read Cycle	Write Cycle

The system bus requires that there is no bus conflict (minimal leakage), so the output value (address) will be capacitively held at the desired value.

As the speed of the processor increases, external EPROM memory with faster access time must be used. Table 7-2 lists external memory speed requirements for a given PIC17C7XX device frequency.

In Extended Microcontroller mode, when the device is executing out of internal memory, the control signals will continue to be active. That is, they indicate the action that is occurring in the internal memory. The external memory access is ignored.

The following selection is for use with Microchip EPROMs. For interfacing to other manufacturers memory, please refer to the electrical specifications of the desired PIC17C7XX device, as well as the desired memory device to ensure compatibility.

TABLE 7-2:EPROM MEMORY ACCESSTIME ORDERING SUFFIX

PIC17C7XX Oscillator Frequency	Instruction Cycle Time (TCY)	EPROM Suffix
8 MHz	500 ns	-25
16 MHz	250 ns	-15
20 MHz	200 ns	-10
25 MHz	160 ns	-70

Note: The access times for this requires the use of fast SRAMs.

The electrical specifications now include timing specifications for the memory interface with PIC17LCXXX devices. These specifications reflect the capability of the device by characterization. Please validate your design with these timings.

NOTES:

10.0 I/O PORTS

PIC17C75X devices have seven I/O ports, PORTA through PORTG. PIC17C76X devices have nine I/O ports, PORTA through PORTJ. PORTB through PORTJ have a corresponding Data Direction Register (DDR), which is used to configure the port pins as inputs or outputs. Some of these ports pins are multiplexed with alternate functions.

PORTC, PORTD, and PORTE are multiplexed with the system bus. These pins are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, these pins are general purpose I/O.

PORTA, PORTB, PORTE<3>, PORTF, PORTG and the upper four bits of PORTH are multiplexed with the peripheral features of the device. These peripheral features are:

- Timer Modules
- Capture Modules
- PWM Modules
- USART/SCI Modules
- SSP Module
- A/D Module
- External Interrupt pin

When some of these peripheral modules are turned on, the port pin will automatically configure to the alternate function. The modules that do this are:

- PWM Module
- SSP Module
- USART/SCI Module

When a pin is automatically configured as an output by a peripheral module, the pins data direction (DDR) bit is unknown. After disabling the peripheral module, the user should re-initialize the DDR bit to the desired configuration.

The other peripheral modules (which require an input) must have their data direction bits configured appropriately.

Note:	A pin that is a peripheral input, can be con-
	figured as an output (DDRx <y> is cleared).</y>
	The peripheral events will be determined
	by the action output on the port pin.

When the device enters the "RESET state", the Data Direction registers (DDR) are forced set, which will make the I/O hi-impedance inputs. The RESET state of some peripheral modules may force the I/O to other operations, such as analog inputs or the system bus.

13.1.2 TIMER1 AND TIMER2 IN 16-BIT MODE

To select 16-bit mode, set the T16 bit. In this mode, TMR2 and TMR1 are concatenated to form a 16-bit timer (TMR2:TMR1). The 16-bit timer increments until it matches the 16-bit period register (PR2:PR1). On the following timer clock, the timer value is reset to 0h, and the TMR1IF bit is set.

When selecting the clock source for the 16-bit timer, the TMR1CS bit controls the entire 16-bit timer and TMR2CS is a "don't care", however, ensure that TMR2ON is set (allows TMR2 to increment). When TMR1CS is clear, the timer increments once every instruction cycle (Fosc/4). When TMR1CS is set, the timer increments on every falling edge of the RB4/TCLK12 pin. For the 16-bit timer to increment, both TMR1ON and TMR2ON bits must be set (Table 13-2).

TABLE 13-2: TURNING ON 16-BIT TIMER

T16	TMR2ON	TMR1ON	Result
1	1	1	16-bit timer (TMR2:TMR1) ON
1	0	1	Only TMR1 increments
1	х	0	16-bit timer OFF
0	1	1	Timers in 8-bit mode

13.1.2.1 External Clock Input for TMR2:TMR1

When TMR1CS is set, the 16-bit TMR2:TMR1 increments on the falling edge of clock input TCLK12. The input on the RB4/TCLK12 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on RB4/TCLK12 to the time TMR2:TMR1 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

13.1.3.3 External Clock Source

The PWMs will operate, regardless of the clock source of the timer. The use of an external clock has ramifications that must be understood. Because the external TCLK12 input is synchronized internally (sampled once per instruction cycle), the time TCLK12 changes to the time the timer increments, will vary by as much as 1TcY (one instruction cycle). This will cause jitter in the duty cycle as well as the period of the PWM output.

This jitter will be \pm 1TCY, unless the external clock is synchronized with the processor clock. Use of one of the PWM outputs as the clock source to the TCLK12 input, will supply a synchronized clock.

In general, when using an external clock source for PWM, its frequency should be much less than the device frequency (Fosc).

13.1.3.4 Maximum Resolution/Frequency for External Clock Input

The use of an external clock for the PWM time base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 13-4 (Standard Resolution mode).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
16h, Bank 7	TCON3		CA4OVF	CA3OVF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
10h, Bank 2	TMR1	Timer1's F	Register				•		•	XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2's F	Register							xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
14h, Bank 2	PR1	Timer1 Pe	Timer1 Period Register								uuuu uuuu
15h, Bank 2	PR2	Timer2 Pe	eriod Registe	r						xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0						—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	—	—	—	—	—	xx0	uu0
10h, Bank 7	PW3DCL	DC1	DC0	TM2PW3	_	—	—	—	—	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
11h, Bank 7	PW3DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 13-5: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on conditions.

Shaded cells are not used by PWM Module.

13.2.3 READING THE CAPTURE REGISTERS

The Capture overflow status flag bits are double buffered. The master bit is set if one captured word is already residing in the Capture register and another "event" has occurred on the CAPx pin. The new event will not transfer the TMR3 value to the capture register, protecting the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture register, the master overflow bit is transferred to the slave overflow bit (CAxOVF) and then the master bit is reset. The user can then read TCONx to determine the value of CAxOVF.

An example of an instruction sequence to read capture registers and capture overflow flag bits is shown in Example 13-1. Depending on the capture source, different registers will need to be read.

EXAMPLE 13-1: SEQUENCE TO READ CAPTURE REGISTERS

; Select Bank 3

```
MOVLB 3
MOVPF CA2L, LO_BYTE
MOVPF CA2H, HI_BYTE
MOVPF TCON2, STAT_VAL
```

; Read Capture2 low byte, store in LO_BYTE ; Read Capture2 high byte, store in HI_BYTE

```
N2, STAT_VAL ; Read TCON2 into file STAT_VAL
```

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
16h, Bank 7	TCON3	—	CA40VF	CA3OVF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000
12h, Bank 2	TMR3L	Holding R	egister for t	he Low Byte	of the 16-bit	TMR3 Reg	jister			xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	Holding R	egister for t	he High Byte	of the 16-bit	TMR3 Reg	gister			XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h, Bank 1	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
16h, Bank 2	PR3L/CA1L	Timer3 Pe	riod Regist	er, Low Byte/	Capture1 Re	gister, Low	/ Byte			XXXX XXXX	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 Pe	riod Regist	er, High Byte	/Capture1 R	egister, Hig	h Byte			XXXX XXXX	uuuu uuuu
14h, Bank 3	CA2L	Capture2	Low Byte							XXXX XXXX	uuuu uuuu
15h, Bank 3	CA2H	Capture2	Capture2 High Byte							XXXX XXXX	uuuu uuuu
12h, Bank 7	CA3L	Capture3	Capture3 Low Byte							XXXX XXXX	uuuu uuuu
13h, Bank 7	CA3H	Capture3	Capture3 High Byte							XXXX XXXX	uuuu uuuu
14h, Bank 7	CA4L	Capture4	Low Byte							xxxx xxxx	uuuu uuuu
15h, Bank 7	CA4H	Capture4	High Byte							XXXX XXXX	uuuu uuuu

TABLE 13-6: REGISTERS ASSOCIATED WITH CAPTURE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition. Shaded cells are not used by Capture.

15.2 MSSP I²C Operation

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine a free bus (multi-master function). The MSSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Refer to Application Note AN578, "Use of the SSP Module in the I^2C Multi-Master Environment."

A "glitch" filter is on the SCL and SDA pins when the pin is an input. This filter operates in both the 100 kHz and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of the pin that is independent of device frequency.

FIGURE 15-11: I²C MASTER MODE

Two pins are used for data transfer. These are the SCL pin, which is the clock and the SDA pin, which is the data. The SDA and SCL pins are automatically configured when the I^2C mode is enabled. The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON1<5>).

The MSSP module has six registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register1 (SSPCON1)
- SSP Control Register2 (SSPCON2)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Master mode, clock = OSC/4 (SSPADD +1)

Before selecting any I^2C mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate DDR bits. Selecting an I^2C mode, by setting the SSPEN bit, enables the SCL and SDA pins to be used as the clock and data lines in I^2C mode.

15.2.5 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 15-17: SSP BLOCK DIAGRAM (I²C MASTER MODE)

CAL	L	Subroutir	Subroutine Call						
Synt	ax:	[label]	CALL k						
Ope	rands:	$0 \le k \le 81$	91						
Ope	ration:	PC+ 1→ 1 k<12:8> – PC<15:13	PC+ 1 \rightarrow TOS, k \rightarrow PC<12:0>, k<12:8> \rightarrow PCLATH<4:0>; PC<15:13> \rightarrow PCLATH<7:5>						
Statu	us Affected:	None							
Enco	oding:	111k	kkkk kk	kk kkkk					
Desc	cription:	Subroutine call within 8K page. First, return address (PC+1) is pushed onto the stack. The 13-bit value is loaded into PC bits<12:0>. Then the upper- eight bits of the PC are copied into PCLATH. CALL is a two-cycle instruction. See LCALL for calls outside 8K memory space							
Word	ds:	1	1						
Cycl	es:	2							
QC	cle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'<7:0>, Push PC to stack	Process Data	Write to PC					
	No	No	No	No					

CLR	F	Clear f							
Synt	ax:	[<i>label</i>] CLI	[<i>label</i>] CLRF f,s						
Ope	rands:	$0 \le f \le 255$	5						
Ope	ration:	$00h \rightarrow f, s$ $00h \rightarrow des$	s ∈ [0,1] st						
State	us Affected:	None							
Enco	oding:	0010	100s	ffff ffff					
Des	cription:	Clears the register(s). s = 0: Data WREG are s = 1: Data cleared.	Clears the contents of the specified register(s). s = 0: Data memory location 'f' and WREG are cleared. s = 1: Data memory location 'f' is cleared.						
Wor	ds:	1							
Cycl	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read register 'f'	Process Data	s Write register 'f' and if specified WREG					
<u>Exa</u>	mple: Before Instru FLAG_RI WREG After Instruct FLAG_R	CLRF E Iction EG = 0x = 0x Cion EG = 0x	5A 50 01	1					
		= ()Y	01						

Example: HERE CALL THERE

operation

operation

operation

Before Instruction

operation

PC = Address (HERE)

After Instruction

PC = Address (THERE)

TOS = Address (HERE + 1)

MO\	/FP	Move f to	р			MOVLB
Synt	ax:	[<i>label</i>] N	/OVFP_f,p)		Syntax:
Ope	rands:	$0 \le f \le 25$	Operands:			
		$0 \le p \le 31$				Operation:
Ope	ration:	$(f) \to (p)$				Status Affe
Statu	us Affected:	None				Encoding:
Enco	oding:	011p	pppp i	fff	ffff	Descriptior
Deso	cription:	Move data to data me can be any space (00h to 1Fh.	from data m mory locatio where in the to FFh), wh	emory n 'p'. L 256 b ile 'p' c	location 'f' .ocation 'f' yte data an be 00h	
		Either 'p' o special situ	r 'f' can be V ation).	/REG ((a useful,	Words:
	Cycles: Q Cycle Ac Q Dec					
Wor	ds:	1				
Cycl	es:	1				
QC	ycle Activity:					Example:
	Q1	Q2	Q3		Q4	Before
	Decode	Read register 'f'	Process Data	re	Write gister 'p'	BS After I

Example:	MOVFP	REG1,	REG2
Before Instruc REG1 REG2	tion = =	0x33, 0x11	
After Instruction	n		
REG1	=	0x33,	
REG2	=	0x33	

Move Literal to low nibble in BSR [label] MOVLB k $0 \leq k \leq 15$ $k \rightarrow (BSR<3:0>)$ ected: None 1011 1000 uuuu kkkk The four-bit literal 'k' is loaded in the ı: Bank Select Register (BSR). Only the low 4-bits of the Bank Select Register are affected. The upper half of the BSR is unchanged. The assembler will encode the "u" fields as '0'. 1 1 ctivity: 1 Q2 Q3 Q4 Write literal ode Read Process literal 'k' Data 'k' to BSR<3:0> MOVLB 5

Before Instruction BSR register	n =	0x22
After Instruction BSR register	=	0x25 (Bank 5)

	MPLAB [®] Integrated Development Environment	MPLAB [®] C17 C Compiler	MPLAB [®] C18 C Compiler	MPASM TM Assembler/ MPLINK TM Object Linker	MPLAB® ICE In-Circuit Emulator	ICEPIC TM In-Circuit Emulator	MPLAB [®] ICD In-Circuit Debugger	PICSTART® Plus Entry Level Development Programmer	PRO MATE® II Universal Device Programmer	PICDEM™ 1 Demonstration 3oard	PICDEM™ 2 Demonstration 3oard	PICDEM™ 3 Demonstration 3oard	PICDEM™ 14A Demonstration Board	PICDEM™ 17 Demonstration 3oard	KEELOQ [®] Evaluation Kit	ΚΕΕ Lοα [®] Transponder Kit	nicrolD™ Programmer's Kit	l25 kHz microlD™ Developer's Kit	125 kHz Anticollision microlD™ Developer's Kit	l3.56 MHz Anticollision microlD™ Developer's Kit	MCP2510 CAN Developer's Kit
PIC12CXXX	>			>	>	>		>	>												
PIC14000	>			>	>			>	>				>								
PIC16C5X	>			>	~	>		>	>	>											
X9291219	>			>	~	>	*	>	>		^ +										
PIC16CXXX	>			>	~	>		>	>	>											
PIC16F62X	>			>	**/			**>	**>												
X7Oðfolg	>			>	>	>	*	>	>	+	4										
XX7381319	>			>	>	>		>	>												
PIC16C8X	>			>	>	>		>	>	>											
PIC16F8XX	>			>	>		>	>	>												
XX6O910I9	>			>	>	>		>	>			>									
X42712I9	~	~		~	~			>	>	>											
XXTOTIOI9	>	>		>	>			>	>					>							
PIC18CXX2	>		>	>	>			>	>		>										
63CXX S2CXX/ S4CXX/		<u> </u>	<u> </u>	>					>												
хххсэн				>					>						>	>					
МСКЕХХХ																	~	>	>	>	
WCP2510																					>

	TABLE 19-1:	DEVELOPMENT TOOLS	FROM MICROCHIE
--	-------------	-------------------	----------------

© 1998-2013 Microchip Technology Inc.

20.2

PIC17C7XX-16 (Commercial, Industrial, Extended) **DC Characteristics:** PIC17C7XX-33 (Commercial, Industrial, Extended) PIC17LC7XX-08 (Commercial, Industrial)

			Standard Operating Conditions (unless otherwise stated)							
			Operating temperature							
DC CHAI	RACTER	ISTICS			-40°C	≤ IA ≤	+125°C for extended			
					-40°C	$\leq IA \leq$	+85°C for industrial			
Operating voltage Voltage and described in Section 20.1										
			Operating vo	nage voo	range as o	Jescribe	a in Section 20.1			
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
		Input Low Voltage								
	VIL	I/O ports								
D030		with TTL buffer (Note 6)	Vss	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
			Vss	-	0.2Vdd	V	$3.0V \leq V\text{DD} \leq 4.5V$			
D031		with Schmitt Trigger buffer								
		RA2, RA3	Vss	_	0.3Vdd	V	I ² C compliant			
		All others	Vss	-	0.2Vdd	V	-			
D032		MCLR, OSC1 (in EC and RC	Vss	-	0.2Vdd	V	(Note 1)			
		mode)								
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	-	V				
		Input High Voltage								
	VIH	I/O ports								
D040		with TTL buffer (Note 6)	2.0	-	Vdd	V	$4.5V \leq VDD \leq 5.5V$			
			1+0.2VDD	-	Vdd	V	$3.0V \leq V\text{DD} \leq 4.5V$			
D041		with Schmitt Trigger buffer								
		RA2, RA3	0.7Vdd	-	Vdd	V	I ² C compliant			
		All others	0.8Vdd	-	Vdd	V				
D042		MCLR	0.8Vdd	-	Vdd	V	(Note 1)			
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	-	V				
D050	VHYS	Hysteresis of	0.15Vdd	-	-	V				
		Schmitt Trigger Inputs								

Data in "Typ" column is at 5V, 25°C unless otherwise stated.

t Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17C7XX Programming Specifications (Literature number DS TBD).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

TABLE 20-9: SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	-	ns	
71A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25 Tcy + 30	_	-	ns	
72A		(Slave mode)	Single Byte	40	—	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to	100	Ι	Ι	ns		
73A	Тв2в	Last clock edge of Byte1 to the of Byte2	1.5Tcy + 40	—	_	ns	(Note 1)	
74	TscH2diL, TscL2diL	Hold time of SDI data input to S	100	_	_	ns		
75	TdoR	SDO data output rise time	_	10	25	ns		
76	TdoF	SDO data output fall time	—	10	25	ns		
78	TscR	SCK output rise time (Master m	node)	—	10	25	ns	
79	TscF	SCK output fall time (Master me	ode)	—	10	25	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		—		50	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to SCK	edge	Тсу	-	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

Param. No.	Sym	Charac	teristic	Min	Тур†	Max	Units	Conditions
A01	Nr	Resolution	—	_	10	bit	VREF+ = VDD = 5.12V, $VSS \le VAIN \le VREF+$	
				—	_	10	bit	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A02	Eabs	Absolute error		—	_	< ±1	LSb	$\label{eq:VREF+} \begin{array}{l} VDD = 5.12V,\\ VSS \leq VAIN \leq VREF+ \end{array}$
				—	_	< ±1	LSb	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A03	EIL	Integral linearity	error	—	_	< ±1	LSb	$\label{eq:VREF+} \begin{array}{l} VDD = 5.12V,\\ VSS \leq VAIN \leq VREF+ \end{array}$
				—	_	< ±1	LSb	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A04	Edl	Differential linea	rity error	—		< ±1	LSb	$\label{eq:VREF+} \begin{array}{l} VDD = 5.12V,\\ VSS \leq VAIN \leq VREF+ \end{array}$
				—		< ±1	LSb	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A05	Efs	Full scale error		—	-	< ±1	LSb	$\label{eq:VREF+} \begin{array}{l} VDD = 5.12V,\\ VSS \leq VAIN \leq VREF+ \end{array}$
				—		< ±1	LSb	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A06	EOFF	Offset error		—		< ±1	LSb	VREF+ = VDD = 5.12V, $VSS \le VAIN \le VREF+$
				—		< ±1	LSb	$(VREF+ - VREF-) \ge 3.0V,$ $VREF- \le VAIN \le VREF+$
A10	_	Monotonicity		_	guaranteed ⁽³⁾		—	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltag	je)	0V	_	_	V	VREF delta when changing voltage levels on VREF inputs
A20A				3V	_	_	V	Absolute minimum electrical spec. to ensure 10-bit accuracy
A21	VREF+	Reference voltag	ge high	Avss + 3.0V	—	Avdd + 0.3V	V	
A22	VREF-	Reference voltag	ge low	Avss - 0.3V		Avdd - 3.0V	V	
A25	Vain	Analog input vol	tage	Avss-	_	Vref +	V	
100	7			0.3V		0.30		
A30	ZAIN	analog voltage s	mpedance of ource	_	—	10.0	KΩ	
A40	IAD	A/D conversion	PIC17CXXX	—	180	_	μA	Average current consumption when
150	1			-	90		μΑ	
A50	IREF	VREF Input curre	nt (Note 2)	10	_	1000	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN
				—	_	10	μA	During A/D conversion cycle

TABLE 20-18: A/D C	ONVERTER CHARA	STERISTICS
--------------------	----------------	------------

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RG0 and RG1 pins or AVDD and AVSS pins, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the Input Voltage and has no missing codes.