

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c752t-16i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	Address	Power-on Reset Brown-out Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through Interrupt
Bank 4		·		·
PIR2	10h	000- 0010	000- 0010	uuu- uuuu (1)
PIE2	11h	000- 0000	000- 0000	uuu- uuuu
Unimplemented	12h			
RCSTA2	13h	x00-0000	0000 -00u	uuuu -uuu
RCREG2	14h	XXXX XXXX	uuuu uuuu	uuuu uuuu
TXSTA2	15h	00001x	00001u	uuuuuu
TXREG2	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
SPBRG2	17h	0000 0000	0000 0000	นนนน นนนน
Bank 5				
DDRF	10h	1111 1111	1111 1111	uuuu uuuu
PORTF ⁽⁴⁾	11h	0000 0000	0000 0000	uuuu uuuu
DDRG	12h	1111 1111	1111 1111	uuuu uuuu
PORTG ⁽⁴⁾	13h	xxxx 0000	uuuu 0000	uuuu uuuu
ADCON0	14h	0000 -0-0	0000 -0-0	uuuu uuuu
ADCON1	15h	000- 0000	000- 0000	uuuu uuuu
ADRESL	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADRESH	17h	xxxx xxxx	uuuu uuuu	นนนน นนนน
Bank 6				
SSPADD	10h	0000 0000	0000 0000	uuuu uuuu
SSPCON1	11h	0000 0000	0000 0000	uuuu uuuu
SSPCON2	12h	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	13h	0000 0000	0000 0000	uuuu uuuu
SSPBUF	14h	XXXX XXXX	uuuu uuuu	นนนน นนนน
Unimplemented	15h			
Unimplemented	16h			
Unimplemented	17h			

TABLE 5-4:	INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS ((CONTINUED)	

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 5-3 for RESET value of specific condition.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

	SEE 3-4. INTRALIZATION CONDITIONS FOR STECRET UNCTION REDISTERS (CONTINUED)								
Register	Address	Power-on Reset Brown-out Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through Interrupt					
Bank 7									
PW3DCL	10h	xx0	uu0	uuu					
PW3DCH	11h	XXXX XXXX	uuuu uuuu	uuuu uuuu					
CA3L	12h	XXXX XXXX	uuuu uuuu	uuuu uuuu					
САЗН	13h	XXXX XXXX	uuuu uuuu	uuuu uuuu					
CA4L	14h	XXXX XXXX	uuuu uuuu	uuuu uuuu					
CA4H	15h	XXXX XXXX	uuuu uuuu	uuuu uuuu					
TCON3	16h	-000 0000	-000 0000	-uuu uuuu					
Unimplemented	17h								
Bank 8									
DDRH	10h	1111 1111	1111 1111	uuuu uuuu					
PORTH ⁽⁴⁾	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu					
DDRJ	12h	1111 1111	1111 1111	uuuu uuuu					
PORTJ ⁽⁴⁾	13h	xxxx xxxx	uuuu uuuu	սսսս սսսս					
Unbanked									
PRODL	18h	XXXX XXXX	uuuu uuuu	uuuu uuuu					
PRODH	19h	xxxx xxxx	uuuu uuuu	uuuu uuuu					

TABLE 5-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented, read as '0', q = value depends on condition

Note 1: One or more bits in INTSTA, PIR1, PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 5-3 for RESET value of specific condition.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

7.2.2.3 TMR0 Status/Control Register (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RA0/INT interrupt flag. The other bits configure Timer0, it's prescaler and clock source.

REGISTER 7-3: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
INTEDG	T0SE	T0CS	T0PS3	T0PS2	T0PS1	T0PS0		
bit 7							bit 0	
INTEDG: RA0/INT Pin Interrupt Edge Select bit								

bit 7 bit 6	This bit selects 1 = Rising edge 0 = Falling edge T0SE : Timer0 E	0/INT Pin Interrupt Edge Select bit ts the edge upon which the interrupt is detected. Ige of RA0/INT pin generates interrupt dge of RA0/INT pin generates interrupt D External Clock Input Edge Select bit ts the edge upon which TMR0 will increment.						
	1 = Rising edge	<u>When T0CS = 0 (External Clock)</u> : 1 = Rising edge of RA1/T0CKI pin increments TMR0 and/or sets the T0CKIF bit 0 = Falling edge of RA1/T0CKI pin increments TMR0 and/or sets a T0CKIF bit						
	<u>When T0CS = 1</u> Don't care	<u>When TOCS = 1 (Internal Clock):</u>						
bit 5	This bit selects 1 = Internal inst	 TOCS: Timer0 Clock Source Select bit This bit selects the clock source for Timer0. 1 = Internal instruction clock cycle (TcY) 0 = External clock input on the T0CKI pin 						
bit 4-1		Timer0 Prescale Selection bits ct the prescale value for Timer0.						
	T0PS3:T0PS0	Prescale Value						
	0000 0001 0010 0011 0100 0101 0110 0111 1xxx	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256						

bit 0

Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.8 Bank Select Register (BSR)

The BSR is used to switch between banks in the data memory area (Figure 7-9). In the PIC17C7XX devices, the entire byte is implemented. The lower nibble is used to select the peripheral register bank. The upper nibble is used to select the general purpose memory bank.

All the Special Function Registers (SFRs) are mapped into the data memory space. In order to accommodate the large number of registers, a banking scheme has been used. A segment of the SFRs, from address 10h to address 17h, is banked. The lower nibble of the bank select register (BSR) selects the currently active "peripheral bank." Effort has been made to group the peripheral registers of related functionality in one bank. However, it will still be necessary to switch from bank to bank in order to address all peripherals related to a single task. To assist this, a MOVLB bank instruction has been included in the instruction set.

The need for a large general purpose memory space dictated a general purpose RAM banking scheme. The upper nibble of the BSR selects the currently active general purpose RAM bank. To assist this, a MOVLR bank instruction has been provided in the instruction set.

If the currently selected bank is not implemented (such as Bank 13), any read will read all '0's. Any write is completed to the bit bucket and the ALU status bits will be set/cleared as appropriate.

Note: Registers in Bank 15 in the Special Function Register area, are reserved for Microchip use. Reading of registers in this bank may cause random values to be read.

FIGURE 7-9: BSR OPERATION

8.1 Table Writes to Internal Memory

A table write operation to internal memory causes a long write operation. The long write is necessary for programming the internal EPROM. Instruction execution is halted while in a long write cycle. The long write will be terminated by any enabled interrupt. To ensure that the EPROM location has been well programmed, a minimum programming time is required (see specification #D114). Having only one interrupt enabled to terminate the long write ensures that no unintentional interrupts will prematurely terminate the long write.

The sequence of events for programming an internal program memory location should be:

- 1. Disable all interrupt sources, except the source to terminate EPROM program write.
- 2. Raise MCLR/VPP pin to the programming voltage.
- 3. Clear the WDT.
- 4. Do the table write. The interrupt will terminate the long write.
- 5. Verify the memory location (table read).
 - Note 1: Programming requirements must be met. See timing specification in electrical specifications for the desired device. Violating these specifications (including temperature) may result in EPROM locations that are not fully programmed and may lose their state over time.
 - 2: If the VPP requirement is not met, the table write is a 2-cycle write and the program memory is unchanged.

8.1.1 TERMINATING LONG WRITES

An interrupt source or RESET are the only events that terminate a long write operation. Terminating the long write from an interrupt source requires that the interrupt enable and flag bits are set. The GLINTD bit only enables the vectoring to the interrupt address.

If the TOCKI, RA0/INT, or TMR0 interrupt source is used to terminate the long write, the interrupt flag of the highest priority enabled interrupt, will terminate the long write and automatically be cleared.

- **Note 1:** If an interrupt is pending, the TABLWT is aborted (a NOP is executed). The highest priority pending interrupt, from the TOCKI, RA0/INT, or TMR0 sources that is enabled, has its flag cleared.
 - 2: If the interrupt is not being used for the program write timing, the interrupt should be disabled. This will ensure that the interrupt is not lost, nor will it terminate the long write prematurely.

If a peripheral interrupt source is used to terminate the long write, the interrupt enable and flag bits must be set. The interrupt flag will not be automatically cleared upon the vectoring to the interrupt vector address.

The GLINTD bit determines whether the program will branch to the interrupt vector when the long write is terminated. If GLINTD is clear, the program will vector, if GLINTD is set, the program will not vector to the interrupt address.

Interrupt Source	GLINTD	Enable Bit	Flag Bit	Action
RA0/INT,	0	1	1	Terminate long table write (to internal program memory),
TMR0,				branch to interrupt vector (branch clears flag bit).
TOCKI	0	1	0	None.
	1	0	x	None.
	1	1	1	Terminate long table write, do not branch to interrupt vector (flag is automatically cleared).
Peripheral	0	1	1	Terminate long table write, branch to interrupt vector.
	0	1	0	None.
	1	0	x	None.
	1	1	1	Terminate long table write, do not branch to interrupt vector (flag remains set).

TABLE 8-1: INTERRUPT - TABLE WRITE INTERACTION

FIGURE 10-7: BLOCK DIAGRAM OF RB6 PORT PIN

FIGURE 10-8: BLOCK DIAGRAM OF RB7 PORT PIN

10.5 PORTE and DDRE Register

PORTE is a 4-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to PORTE will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (OE) and Write (WR). The control signals OE and WR are active low signals. The timing for the system bus is shown in the Electrical Specifications section.

Note: Three pins of this port are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. The other pin is a general purpose I/O or Capture4 pin. In the two other microcontroller modes, RE2:RE0 are general purpose I/O pins. Example 10-5 shows an instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-5: INITIALIZING PORTE

MOVLB	1		;	Select Bank 1
CLRF	PORTE,	F	;	Initialize PORTE data
			;	latches before setting
			;	the data direction
			;	register
MOVLW	0x03		;	Value used to initialize
			;	data direction
MOVWF	DDRE		;	Set RE<1:0> as inputs
			;	RE<3:2> as outputs
			;	RE<7:4> are always
			;	read as '0'

FIGURE 10-11: BLOCK DIAGRAM OF RE2:RE0 (IN I/O PORT MODE)

TABLE 10-9: PORTE FUNCTIONS

Name	Bit	Buffer Type	Function
RE0/ALE	bit0	TTL	Input/output or system bus Address Latch Enable (ALE) control pin.
RE1/OE	bit1	TTL	Input/output or system bus Output Enable (OE) control pin.
RE2/WR	bit2	TTL	Input/output or system bus Write (WR) control pin.
RE3/CAP4	bit3	ST	Input/output or Capture4 input pin.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 10-10: REGISTERS/BITS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
15h, Bank 1	PORTE	—	—	_	_	RE3/CAP4	RE2/WR	RE1/OE	RE0/ALE	xxxx	uuuu
14h, Bank 1	DDRE	Data Dire	Data Direction Register for PORTE								1111
14h, Bank 7	CA4L	Capture4	Capture4 Low Byte xxxx xxxx uuuu uuuu								
15h, Bank 7	CA4H	Capture4	Capture4 High Byte xxxx xxxx uuuu uuuu								uuuu uuuu
16h, Bank 7	TCON3	—	CA4OVF	CA3OVF	CA4ED1	CA4ED0	CA3ED1	CA3ED0	PWM3ON	-000 0000	-000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

10.8 PORTH and DDRH Registers (PIC17C76X only)

PORTH is an 8-bit wide, bi-directional port. The corresponding data direction register is DDRH. A '1' in DDRH configures the corresponding port pin as an input. A '0' in the DDRH register configures the corresponding port pin as an output. Reading PORTH reads the status of the pins, whereas writing to PORTH will write to the respective port latch.

The upper four bits of PORTH are multiplexed with 4 channels of the 10-bit A/D converter.

The remaining bits of PORTH are general purpose I/O.

Upon RESET, RH7:RH4 are automatically configured as analog inputs and must be configured in software to be a digital I/O.

EXAMPLE 10-8: INITIALIZING PORTH

MOVLB	8		;	Select Bank 8
MOVLW	0x0E		;	Configure PORTH as
MOVPF	ADCON1		;	digital
CLRF	PORTH,	F	;	Initialize PORTH data
			;	latches before
			;	the data direction
			;	register
MOVLW	0x03		;	Value used to init
			;	data direction
MOVWF	DDRH		;	Set RH<1:0> as inputs
			;	RH<7:2> as outputs

FIGURE 10-17: BLOCK DIAGRAM OF RH7:RH4

12.3 Read/Write Consideration for TMR0

Although TMR0 is a 16-bit timer/counter, only 8-bits at a time can be read or written during a single instruction cycle. Care must be taken during any read or write.

12.3.1 READING 16-BIT VALUE

The problem in reading the entire 16-bit value is that after reading the low (or high) byte, its value may change from FFh to 00h.

Example 12-1 shows a 16-bit read. To ensure a proper read, interrupts must be disabled during this routine.

EXAMPLE 12-1: 16-BIT READ

MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMROL		;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
RETURN			;return

12.3.2 WRITING A 16-BIT VALUE TO TMR0

Since writing to either TMR0L or TMR0H will effectively inhibit increment of that half of the TMR0 in the next cycle (following write), but not inhibit increment of the other half, the user must write to TMR0L first and TMR0H second, in two consecutive instructions, as shown in Example 12-2. The interrupt must be disabled. Any write to either TMR0L or TMR0H clears the prescaler.

EXAMPLE 12-2: 16-BIT WRITE

BSF	CPUSTA, GLINTD ; Disable interrupts
MOVFP	RAM_L, TMROL ;
MOVFP	RAM_H, TMROH ;
BCF	CPUSTA, GLINTD ; Done, enable
	; interrupts

12.4 Prescaler Assignments

Timer0 has an 8-bit prescaler. The prescaler selection is fully under software control; i.e., it can be changed "on the fly" during program execution. Clearing the prescaler is recommended before changing its setting. The value of the prescaler is "unknown" and assigning a value that is less than the present value, makes it difficult to take this unknown time into account.

13.2.2 FOUR CAPTURE MODE

This mode is selected by setting bit CA1/PR3. A block diagram is shown in Figure 13-6. In this mode, TMR3 runs without a period register and increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt Flag (TMR3IF) is set on this rollover. The TMR3IF bit must be cleared in software.

Registers PR3H/CA1H and PR3L/CA1L make a 16-bit capture register (Capture1). It captures events on pin RB0/CAP1. Capture mode is configured by the CA1ED1 and CA1ED0 bits. Capture1 Interrupt Flag bit (CA1IF) is set upon detection of the capture event. The corresponding interrupt mask bit is CA1IE. The Capture1 Overflow Status bit is CA1OVF.

All the captures operate in the same manner. Refer to Section 13.2.1 for the operation of capture.

FIGURE 13-6: TIMER3 WITH FOUR CAPTURES BLOCK DIAGRAM

15.2.5 MASTER MODE

Master mode of operation is supported by interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle, with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 15-17: SSP BLOCK DIAGRAM (I²C MASTER MODE)

15.3 Connection Considerations for I²C Bus

For standard mode I^2C bus devices, the values of resistors $R_p R_s$ in Figure 15-42 depends on the following parameters:

- Supply voltage
- Bus capacitance
- Number of connected devices (input current + leakage current)

The supply voltage limits the minimum value of resistor R_p due to the specified minimum sink current of 3 mA at VoL max = 0.4V for the specified output stages. For

example, with a supply voltage of VDD = $5V \pm 10\%$ and VOL max = 0.4V at 3 mA, $R_p \min$ = (5.5-0.4)/0.003 = 1.7 k Ω . VDD as a function of R_p is shown in Figure 15-42. The desired noise margin of 0.1 VDD for the low level, limits the maximum value of R_s . Series resistors are optional and used to improve ESD susceptibility.

The bus capacitance is the total capacitance of wire, connections and pins. This capacitance limits the maximum value of R_p due to the specified rise time (Figure 15-42).

The SMP bit is the slew rate control enabled bit. This bit is in the SSPSTAT register and controls the slew rate of the I/O pins when in I^2C mode (master or slave).

FIGURE 15-42: SAMPLE DEVICE CONFIGURATION FOR I²C BUS

MOVPF		Move p t	Move p to f					
Syntax:		[<i>label</i>] N	[<i>label</i>] MOVPF p,f					
Ope	rands:	$0 \le f \le 25$ $0 \le p \le 31$	-					
Ope	ration:	$(p) \to (f)$						
Statu	us Affected:	Z						
Enco	oding:	010p	pppp	ffff	ffff			
Des	cription:	'p' to data u 'f' can be a space (00h to 1Fh. Either 'p' o special situ MOVPF is p ring a perip or an I/O p tion. Both '	Move data from data memory location 'p' to data memory location 'f'. Location 'f' can be anywhere in the 256 byte data space (00h to FFh), while 'p' can be 00h to 1Fh. Either 'p' or 'f' can be WREG (a useful, special situation). MOVPF is particularly useful for transfer- ring a peripheral register (e.g. the timer or an I/O port) to a data memory loca- tion. Both 'f' and 'p' can be indirectly addressed.					
Words:		1						
Cycles:		1	1					
Q Cycle Activity:								
	Q1	Q2 Q3 Q4						
	Decode	Read register 'p'	Proce Dat		Write egister 'f'			

Example:	MOVPF	REG1,	REG2
Before Instruc	tion		
REG1	=	0x11	
REG2	=	0x33	
After Instruction	on		

=

=

0x11

0x11

REG1

REG2

MOVWF	Move WR	EG to f				
Syntax:	[label]	[<i>label</i>] MOVWF f				
Operands:	$0 \le f \le 255$	5				
Operation:	(WREG) -	→ (f)				
Status Affected:	None					
Encoding:	0000	0001	ffff	ffff		
Description:	Move data Location 'f' byte data s	can be an	0			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Proces Data		Write gister 'f'		
Example:	MOVWF	REG	·			

Before Instr	uctio	n
WREG	=	0x4F
REG	=	0xFF
After Instruc	tion	

	lion	
WREG	=	0x4F
REG	=	0x4F

SWA	APF	Swap f						
Syntax:		[label]	SWAPF	f,d				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \left[0,1\right] \end{array}$	5					
Ope	ration:	$f<3:0> \rightarrow f<7:4> \rightarrow$,				
State	us Affected:	None						
Enc	oding:	0001	110d	ffff	ffff			
Description:		'f' are exch placed in V	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in WREG. If 'd' is 1, the result is placed in register 'f'.					
Words:		1	1					
Cycles:		1						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read register 'f'	Proce Dat		Vrite to stination			
<u>Exa</u>	mple: Before Instru REG After Instruct REG	iction = 0x53	REG,	0				

ТАВ	LRD	Tab	Table Read					
Synt	ax:	[<i>la</i>	[label] TABLRD t,i,f					
Operands:		i∈	$0 \le f \le 255$ i $\in [0,1]$ t $\in [0,1]$					
Ope	ration:	TBI If t TBI If i TBI If i	If t = 1, TBLATH \rightarrow f; If t = 0, TBLATL \rightarrow f; Prog Mem (TBLPTR) \rightarrow TBLAT; If i = 1, TBLPTR + 1 \rightarrow TBLPTR If i = 0, TBLPTR is unchanged					
Status Affected:		: No	None					
Encoding:		1	1010 10ti ffff ffff					
Description:		1.	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 1: the high byte is moved; If t = 0: the low byte is moved. 					
		2.	 Then, the contents of the pro- gram memory location pointed to by the 16-bit Table Pointer (TBLPTR) are loaded into the 16-bit Table Latch (TBLAT). 					
		3.	 If i = 1: TBLPTR is incremented; If i = 0: TBLPTR is not incremented. 					
Wor	ds:	1	1					
Cycl	es:	2 (3	2 (3-cycle if f = PCL)					
Q Cycle Activity:		/:						
	Q1	Q	2	Q3	(Q4		
	Decode	Re regi: TBLA	ster	Proces Data	-	/rite ister 'f'		

Decode	Read	Process	Write
	register	Data	register 'f'
	TBLATH or		
	TBLATL		
No	No	No	No
operation	operation	operation	operation
	(Table Pointer		(OE goes low)
	on Address		
	bus)		

TABLE 20-19: A/D CONVERSION REQUIREMENTS

Param. No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
130	TAD	A/D clock period	PIC17CXXX	1.6	—	—	μs	Tosc based, VREF $\geq 3.0V$
			PIC17LCXXX	3.0	—	_	μs	Tosc based, VREF full range
			PIC17CXXX	2.0	4.0	6.0	μs	A/D RC mode
			PIC17LCXXX	3.0	6.0	9.0	μs	A/D RC mode
131	TCNV	Conversion time (not including acquisition time) (Note 1)		11	_	12	Tad	
132	TACQ	Acquisition time		(Note 2)	20		μS	
				10	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to ADCLK start		—	Tosc/2		_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 16.1 for minimum conditions when input voltage has changed more than 1 LSb.

FIGURE 21-17: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

F

Family of Devices PIC17C75X8
FERR
Flowcharts
Acknowledge166
Master Receiver163
Master Transmit
RESTART Condition157
Start Condition 155
STOP Condition 168
FOSC0
FOSC1 191
FS0
FS1
FS2
FS3
FSR0
FSR154 G
GCE
General Call Address Sequence
General Call Enable bit, GCE
General Format for Instructions
General Purpose RAM
General Purpose RAM Bank
General Purpose Register (GPR)
GLINTD
Global Interrupt Disable bit, GLINTD
GOTO
GPR (General Purpose Register) 46
GPR Banks
Graphs
RC Oscillator Frequency vs. VDD (CEXT = 100 pF) 268
RC Oscillator Frequency vs. VDD (CEXT = 22 pF) 268
RC Oscillator Frequency vs. VDD (CEXT = 300 pF)269
Transconductance of LF Oscillator vs.VDD
Transconductance of XT Oscillator vs. VDD
Typical RC Oscillator vs. Temperature
H
Hardware Multiplier
I/O Ports
Bi-directional
I/O Ports71 Programming Considerations
Read-Modify-Write Instructions
Successive Operations
I ² C
I2C Input
I ² C Master Mode Receiver Flow Chart
I ² C Master Mode Reception
I ² C Master Mode RESTART Condition
I ² C Mode Selection
I ² C Module
Acknowledge Flow Chart 166
Acknowledge Sequence Timing165
Addressing145
Baud Rate Generator
Block Diagram151
5
BRG Block Diagram 153
BRG Block Diagram
BRG Block Diagram 153

Bus Collision	170
Acknowledge	
RESTART Condition	
RESTART Condition Timing (Case1)	
RESTART Condition Timing (Case2)	173
START Condition	
START Condition Timing 171,	
STOP Condition	
STOP Condition Timing (Case1)	
STOP Condition Timing (Case2)	
Transmit Timing	
Bus Collision Timing	
Clock Arbitration	
Clock Arbitration Timing (Master Transmit)	169
Conditions to not give ACK Pulse	144
General Call Address Support	149
Master Mode	
Master Mode 7-bit Reception timing	
Master Mode Operation	152
Master Mode Start Condition	
Master Mode Transmission	
Master Mode Transmit Sequence	
Master Transmit Flowchart	
Multi-Master Communication	
Multi-master Mode	
Operation	
Repeat Start Condition timing	156
RESTART Condition Flowchart	
Slave Mode	
Slave Reception	145
Slave Transmission	
SSPBUF	
Start Condition Flowchart	155
Stop Condition Flowchart	
Stop Condition Receive or Transmit timing	167
Stop Condition Receive or Transmit timing Stop Condition timing	167 167
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception	167 167 146
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission	167 167 146 146
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD	167 167 146 146 144
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode	167 167 146 146 144 144
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF	167 167 146 146 144 144 213
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSNZ	167 146 146 144 144 213 214
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ	167 167 146 146 144 144 213 214 213
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSNZ INCFSZ In-Circuit Serial Programming	167 167 146 146 144 213 214 213 196
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ INCFSZ In-Circuit Serial Programming INDF0	167 146 146 144 213 214 213 214 213 . 54
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCF INCFSZ In-Circuit Serial Programming INDF0 INDF1	167 146 146 144 213 214 213 214 213 . 54
Stop Condition Receive or Transmit timing Stop Condition timing	167 146 146 144 213 214 213 196 . 54 . 54
Stop Condition Receive or Transmit timing Stop Condition timing	167 146 146 144 213 214 213 196 . 54 . 54
Stop Condition Receive or Transmit timing Stop Condition timing	167 146 146 144 144 213 214 213 214 213 196 . 54 . 54 . 55
Stop Condition Receive or Transmit timing Stop Condition timing	167 146 146 144 144 213 214 213 214 213 196 . 54 . 54 . 55 . 55
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 196 . 54 . 54 . 55 . 54 . 75
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 78
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 214 213 . 54 . 55 . 54 . 55 . 54 . 75 . 78 . 80
Stop Condition Receive or Transmit timing Stop Condition timing Waveforms for 7-bit Reception Waveforms for 7-bit Transmission I ² C Module Address Register, SSPADD I ² C Slave Mode INCF INCFSZ In-Circuit Serial Programming INDF0 INDF1 Indirect Addressing Indirect Addressing Indirect Addressing Intitializing PORTB Initializing PORTC Initializing PORTE 82, 84	167 167 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 78 . 80 . 86
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 144 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 78 . 80 . 86 . 48
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 144 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 78 . 80 . 86 . 48
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 78 . 80 . 88 . 88 . 88 . 48 . 21
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 75 . 78 . 80 . 88 . 21 202
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 75 . 78 . 80 . 88 . 21 202 202
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 75 . 54 . 75 . 80 . 880 . 880 . 21 202 202 203
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 55 . 55 . 55 . 55
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 196 . 54 . 55 . 54 . 55 . 54 . 75 . 54 . 75 . 80 . 88 . 21 202 203 203 204
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 214 213 214 213 54 54 55 54 55 54 55 55
Stop Condition Receive or Transmit timing Stop Condition timing	167 167 146 146 144 213 214 213 214 213 214 213 214 213 214 213 54 . 54 . 55 . 54 . 55 . 55 . 55 . 55