

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	50
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c752t-33-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
Unbanke	d										
00h	INDF0	Uses conte	ents of FSR	0 to address	Data Memo	ry (not a phy	sical registe	r)			
01h	FSR0	Indirect Da	ata Memory	Address Poi	inter 0					XXXX XXXX	uuuu uuuu
02h	PCL	Low order	8-bits of PC	;						0000 0000	0000 0000
03h ⁽¹⁾	PCLATH	Holding Re	egister for u		0000 0000	uuuu uuuu					
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu
05h	TOSTA	INTEDG	T0SE	TOCS	T0PS3	T0PS2	T0PS1	T0PS0	_	0000 000-	0000 000-
06h ⁽²⁾	CPUSTA	_	_	STKAV	GLINTD	TO	PD	POR	BOR	11 11qq	11 qquu
07h	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
08h	INDF1	Uses conte	ents of FSR	1 to address	Data Memo	ry (not a phy	sical registe	r)			
09h	FSR1	Indirect Da	ata Memory	Address Poi	inter 1					XXXX XXXX	uuuu uuuu
0Ah	WREG	Working R	egister							XXXX XXXX	uuuu uuuu
0Bh	TMR0L	TMR0 Reg	gister; Low E	Byte						XXXX XXXX	uuuu uuuu
0Ch	TMR0H	TMR0 Reg	gister; High I	Byte						XXXX XXXX	uuuu uuuu
0Dh	TBLPTRL	Low Byte of	of Program I	Memory Tab	le Pointer					0000 0000	0000 0000
0Eh	TBLPTRH	High Byte	of Program	Memory Tab	ole Pointer					0000 0000	0000 0000
0Fh	BSR	Bank Sele	ct Register							0000 0000	0000 0000
Bank 0											
10h	PORTA ^(4,6)	RBPU	—	RA5/TX1/ CK1	RA4/RX1/ DT1	RA3/SDI/ SDA	RA2/SS/ SCL	RA1/T0CKI	RA0/INT	0-xx 11xx	0-uu 11uu
11h	DDRB	Data Direc	tion Registe	r for PORTE	3	•	•			1111 1111	1111 1111
106		RB7/	RB6/	RB5/	RB4/	RB3/	RB2/	RB1/	RB0/		
1211	FORTBY /	SDO	SCK	TCLK3	TCLK12	PWM2	PWM1	CAP2	CAP1	****	uuuu uuuu
13h	RCSTA1	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG1	Serial Port	Receive Re	egister						XXXX XXXX	uuuu uuuu
15h	TXSTA1	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
16h	TXREG1	Serial Port	Transmit R	egister (for l	JSART1)					XXXX XXXX	uuuu uuuu
17h	SPBRG1	Baud Rate	Generator	Register (for	USART1)					0000 0000	0000 0000
Bank 1											
10h	DDRC ⁽⁵⁾	Data Direc	tion Registe	er for PORT)					1111 1111	1111 1111
11h	PORTC ^(4,5)	RC7/AD7	RC6/AD6	RC5/AD5	RC4/AD4	RC3/AD3	RC2/AD2	RC1/AD1	RC0/AD0	XXXX XXXX	uuuu uuuu
12h	DDRD ⁽⁵⁾	Data Direc	tion Registe	er for PORTE)	•				1111 1111	1111 1111
13h	PORTD ^(4,5)	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/AD9	RD0/AD8	xxxx xxxx	uuuu uuuu
14h	DDRE ⁽⁵⁾	Data Direc	tion Registe	er for PORTE						1111	1111
15h	PORTE ^(4,5)	—	—	—	—	RE3/ CAP4	RE2/WR	RE1/OE	RE0/ALE	xxxx	uuuu
16h	PIR1	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TX1IF	RC1IF	x000 0010	u000 0010
17h	PIE1	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TX1IE	RC1IE	0000 0000	0000 0000

TABLE 7-3: SPECIAL FUNCTION REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends on condition.

Shaded cells are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from, or transferred to, the upper byte of the program counter.

2: The TO and PD status bits in CPUSTA are not affected by a MCLR Reset.

3: Bank 8 and associated registers are only implemented on the PIC17C76X devices.

4: This is the value that will be in the port output latch.

5: When the device is configured for Microprocessor or Extended Microcontroller mode, the operation of this port does not rely on these registers.

6: On any device RESET, these pins are configured as inputs.

7.8 Bank Select Register (BSR)

The BSR is used to switch between banks in the data memory area (Figure 7-9). In the PIC17C7XX devices, the entire byte is implemented. The lower nibble is used to select the peripheral register bank. The upper nibble is used to select the general purpose memory bank.

All the Special Function Registers (SFRs) are mapped into the data memory space. In order to accommodate the large number of registers, a banking scheme has been used. A segment of the SFRs, from address 10h to address 17h, is banked. The lower nibble of the bank select register (BSR) selects the currently active "peripheral bank." Effort has been made to group the peripheral registers of related functionality in one bank. However, it will still be necessary to switch from bank to bank in order to address all peripherals related to a single task. To assist this, a MOVLB bank instruction has been included in the instruction set.

The need for a large general purpose memory space dictated a general purpose RAM banking scheme. The upper nibble of the BSR selects the currently active general purpose RAM bank. To assist this, a MOVLR bank instruction has been provided in the instruction set.

If the currently selected bank is not implemented (such as Bank 13), any read will read all '0's. Any write is completed to the bit bucket and the ALU status bits will be set/cleared as appropriate.

Note: Registers in Bank 15 in the Special Function Register area, are reserved for Microchip use. Reading of registers in this bank may cause random values to be read.

FIGURE 7-9: BSR OPERATION

8.4 Operation with External Memory Interface

When the table reads/writes are accessing external memory (via the external system interface bus), the table latch for the table reads is different from the table latch for the table writes (see Figure 8-9).

This means that you cannot do a TABLRD instruction, and use the values that were loaded into the table latches for a TABLWT instruction. Any table write sequence should use both the TLWT and then the TABLWT instructions.

10.0 I/O PORTS

PIC17C75X devices have seven I/O ports, PORTA through PORTG. PIC17C76X devices have nine I/O ports, PORTA through PORTJ. PORTB through PORTJ have a corresponding Data Direction Register (DDR), which is used to configure the port pins as inputs or outputs. Some of these ports pins are multiplexed with alternate functions.

PORTC, PORTD, and PORTE are multiplexed with the system bus. These pins are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, these pins are general purpose I/O.

PORTA, PORTB, PORTE<3>, PORTF, PORTG and the upper four bits of PORTH are multiplexed with the peripheral features of the device. These peripheral features are:

- Timer Modules
- Capture Modules
- PWM Modules
- USART/SCI Modules
- SSP Module
- A/D Module
- External Interrupt pin

When some of these peripheral modules are turned on, the port pin will automatically configure to the alternate function. The modules that do this are:

- PWM Module
- SSP Module
- USART/SCI Module

When a pin is automatically configured as an output by a peripheral module, the pins data direction (DDR) bit is unknown. After disabling the peripheral module, the user should re-initialize the DDR bit to the desired configuration.

The other peripheral modules (which require an input) must have their data direction bits configured appropriately.

Note:	A pin that is a peripheral input, can be con-
	figured as an output (DDRx <y> is cleared).</y>
	The peripheral events will be determined
	by the action output on the port pin.

When the device enters the "RESET state", the Data Direction registers (DDR) are forced set, which will make the I/O hi-impedance inputs. The RESET state of some peripheral modules may force the I/O to other operations, such as analog inputs or the system bus.

10.5 PORTE and DDRE Register

PORTE is a 4-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to PORTE will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (OE) and Write (WR). The control signals OE and WR are active low signals. The timing for the system bus is shown in the Electrical Specifications section.

Note: Three pins of this port are configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. The other pin is a general purpose I/O or Capture4 pin. In the two other microcontroller modes, RE2:RE0 are general purpose I/O pins. Example 10-5 shows an instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized. The following example uses the MOVLB instruction to load the BSR register for bank selection.

EXAMPLE 10-5: INITIALIZING PORTE

MOVLB	1		;	Select Bank 1
CLRF	PORTE,	F	;	Initialize PORTE data
			;	latches before setting
			;	the data direction
			;	register
MOVLW	0x03		;	Value used to initialize
			;	data direction
MOVWF	DDRE		;	Set RE<1:0> as inputs
			;	RE<3:2> as outputs
			;	RE<7:4> are always
			;	read as '0'

FIGURE 10-11: BLOCK DIAGRAM OF RE2:RE0 (IN I/O PORT MODE)

FIGURE 10-18: RH3:RH0 BLOCK DIAGRAM

TABLE 10-15: PORTH FUNCTIONS

Name	Bit	Buffer Type	Function
RH0	bit0	ST	Input/output.
RH1	bit1	ST	Input/output.
RH2	bit2	ST	Input/output.
RH3	bit3	ST	Input/output.
RH4/AN12	bit4	ST	Input/output or analog input 12.
RH5/AN13	bit5	ST	Input/output or analog input 13.
RH6/AN14	bit6	ST	Input/output or analog input 14.
RH7/AN15	bit7	ST	Input/output or analog input 15.

Legend: ST = Schmitt Trigger input

TABLE 10-16: REGISTERS/BITS ASSOCIATED WITH PORTH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
10h, Bank 8	DDRH	Data Dire	Data Direction Register for PORTH							1111 1111	1111 1111
11h, Bank 8	PORTH	RH7/ AN15	RH6/ AN14	RH5/ AN13	RH4/ AN12	RH3	RH2	RH1	RH0	0000 xxxx	0000 uuuu
15h, Bank 5	ADCON1	ADCS1	ADCS0	ADFM	_	PCFG3	PCFG2	PCFG1	PCFG0	000- 0000	000- 0000

Legend: x = unknown, u = unchanged

NOTES:

14.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. Table 14-2 shows the formula for computation of the baud rate for different USART modes. These only apply when the USART is in Synchronous Master mode (internal clock) and Asynchronous mode.

Given the desired baud rate and Fosc, the nearest integer value between 0 and 255 can be calculated using the formula below. The error in baud rate can then be determined.

TABLE 14-2: BAUD RATE FORMULA

SYNC	Mode	Baud Rate
0	Asynchronous	Fosc/(64(X+1))
1	Synchronous	Fosc/(4(X+1))

X = value in SPBRG (0 to 255)

Example 14-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 SYNC = 0

EXAMPLE 14-1: CALCULATING BAUD RATE ERROR

Writing a new value to the SPBRG, causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

Effects of Reset

After any device RESET, the SPBRG register is cleared. The SPBRG register will need to be loaded with the desired value after each RESET.

	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	MCLR, WDT
-	13h, Bank 0	RCSTA1	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
SART	15h, Bank 0	TXSTA1	CSRC	TX9	TXEN	SYNC	-	-	TRMT	TX9D	00001x	00001u
SU	17h, Bank 0	SPBRG1	Baud Rat	e Generat	tor Registe	r					0000 0000	0000 0000
2	13h, Bank 4	RCSTA2	SPEN	RX9	SREN	CREN	-	FERR	OERR	RX9D	0000 -00x	0000 -00u
ART	15h, Bank 4	TXSTA2	CSRC	TX9	TXEN	SYNC	-	-	TRMT	TX9D	00001x	0000lu
SU	17h, Bank 4	SPBRG2	Baud Rat	e Generat	tor Registe	r					0000 0000	0000 0000

TABLE 14-3: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Baud Rate Generator.

15.2.3 SLEEP OPERATION

While in SLEEP mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from SLEEP (if the SSP interrupt is enabled).

15.2.4 EFFECTS OF A RESET

A RESET disables the SSP module and terminates the current transfer.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	T0IE	INTE	0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	—	CA4IF	CA3IF	TX2IF	RC2IF	000- 0000	000- 0000
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	—	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
10h. Bank 6	SSPADD	Synchro	nous Serial P	ort (I ² C mo	de) Addres	s Register				0000 0000	0000 0000
14h, Bank 6	SSPBUF	Synchro	nous Serial P	ort Receive	Buffer/Tra	insmit Reg	ister			xxxx xxxx	uuuu uuuu
11h, Bank 6	SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
12h, Bank 6	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
13h, Bank 6	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 15-3: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in I²C mode.

15.2.14 STOP CONDITION TIMING

A STOP bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit PEN (SSPCON2<2>). At the end of a receive/ transmit the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is reloaded and counts down to '0'. When the baud rate generator times out, the SCL pin will be brought high and one TBRG (baud rate generator rollover count) later, the SDA pin will be de-asserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-31).

Whenever the firmware decides to take control of the bus, it will first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. If the bus is busy, then the CPU can be interrupted (notified) when a STOP bit is detected (i.e., bus is free).

15.2.14.1 WCOL Status Flag

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 15-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

15.2.18.1 Bus Collision During a START Condition

During a START condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the START condition (Figure 15-35).
- b) SCL is sampled low before SDA is asserted low (Figure 15-36).

During a START condition, both the SDA and the SCL pins are monitored.

<u>lf:</u>

the SDA pin is already low or the SCL pin is already low,

then:

the START condition is aborted, and the BCLIF flag is set, and the SSP module is reset to its IDLE state (Figure 15-35).

The START condition begins with the SDA and SCL pins de-asserted. When the SDA pin is sampled high, the baud rate generator is loaded from SSPADD<6:0> and counts down to '0'. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the START condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 15-37). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The baud rate generator is then reloaded and counts down to 0 and during this time, if the SCL pin is sampled as '0', a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a START condition is that no two bus masters can assert a START condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the START condition and if the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start, or Stop conditions.

FIGURE 15-35: BUS COLLISION DURING START CONDITION (SDA ONLY)

FIGURE 16-3: ANALOG INPUT MODEL

16.10 References

A good reference for understanding A/D converter is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

TABLE 16-3:	REGISTERS/BITS ASSOCIATED WITH A	/D

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
06h, unbanked	CPUSTA	_		STAKAV	GLINTD	TO	PD	POR	BOR	11 1100	11 qq11
07h, unbanked	INTSTA	PEIF	T0CKIF	TOIF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
10h, Bank 4	PIR2	SSPIF	BCLIF	ADIF	_	CA4IF	CA3IF	TX2IF	RC2IF	000- 0010	000- 0010
11h, Bank 4	PIE2	SSPIE	BCLIE	ADIE	_	CA4IE	CA3IE	TX2IE	RC2IE	000- 0000	000- 0000
10h, Bank 5	DDRF	Data Direc	tion Regist	er for POR	ΓF					1111 1111	1111 1111
11h, Bank 5	PORTF	RF7/ AN11	RF6/ AN10	RF5/ AN9	RF4/ AN8	RF3/ AN7	RF2/ AN6	RF1/ AN5	RF0/ AN4	0000 0000	0000 0000
12h, Bank 5	DDRG	Data Direc	tion registe	r for PORT	G					1111 1111	1111 1111
13h, Bank 5	PORTG	RG7/ TX2/CK2	RG6/ RX2/DT2	RG5/ PWM3	RG4/ CAP3	RG3/ AN0/VREF+	RG2/ AN1/VREF-	RG1/ AN2	RG0/ AN3	xxxx 0000	uuuu 0000
14h, Bank 5	ADCON0	CHS3	CHS2	CHS1	CHS0	_	GO/DONE	_	ADON	0000 -0-0	0000 -0-0
15h, Bank 5	ADCON1	ADCS1	ADCS0	ADFM	_	PCFG3	PCFG2	PCFG1	PCFG0	000- 0000	000- 0000
16h, Bank 5	ADRESL	A/D Result Low Register xxxx xxxx								uuuu uuuu	
17h, Bank 5	ADRESH	A/D Resu	It High Reg	ister						XXXX XXXX	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note: Other (non power-up) RESETS include: external RESET through MCLR and Watchdog Timer Reset.

IORWF	Inclusive	Inclusive OR WREG with f							
Syntax:	[label]	IORWF	f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$	5							
Operation:	(WREG) .	OR. (f) \rightarrow	(dest)						
Status Affected:	Z								
Encoding:	0000	100d	ffff	ffff					
Description:	Inclusive O 'd' is 0, the 'd' is 1, the register 'f'.	R WREG v result is pl result is pl	with regis aced in \ aced bac	ster 'f'. If NREG. If ck in					
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proces Data	s V de:	Vrite to stination					
Example: Before Instruct RESULT WREG After Instructi RESULT WREG	IORWF RJ ction = 0x13 = 0x91 on = 0x13 = 0x93	ESULT, O							

LCA	LL	Long Cal	I					
Synt	ax:	[label]	LCALL	k				
Ope	rands:	$0 \le k \le 25$	5					
Ope	ration:	$\begin{array}{l} PC + 1 \rightarrow \\ k \rightarrow PCL, \end{array}$	TOS; (PCLAT	⁻ H) → I	РСН			
Status Affected:		None	None					
Enco	oding:	1011	0111	kkkk	kkkk			
Des	cription:	LCALL allows an unconditional subro tine call to anywhere within the 64K program memory space. First, the return address (PC + 1) is pushed onto the stack. A 16-bit desti- nation address is then loaded into the program counter. The lower 8-bits of the destination address are embedde in the instruction. The upper 8-bits of PC are loaded from PC high holding latch. PCI ATH.						
Wor	ds:	1	1					
Cycl	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Proce Dat	ess a ro	Write egister PCL			
	No operation	No operation	No opera	tion	No operation			
<u>Exa</u>	<u>mple</u> : Before lostri	MOVLW H MOVPF W LCALL L	MOVLW HIGH(SUBROUTINE) MOVPF WREG, PCLATH LCALL LOW(SUBROUTINE)					
SUBROUTINE = 16-bit Address PC = ?								
After Instruction PC = Address (SUBROUTINE)								

TABLRD	Table Read			
Example1:	TABLRD	1, 1,	REG ;	
Before Instruc REG TBLATH TBLATL TBLPTR MEMORY(tion TBLPTR)	= = = =	0x53 0xAA 0x55 0xA356 0x1234	
After Instruction REG TBLATH TBLATL TBLPTR MEMORY(on (table v TBLPTR)	vrite con = = = = =	mpletion) 0xAA 0x12 0x34 0xA357 0x5678	
Example2:	TABLRD	0, 0,	REG ;	
Before Instruc REG TBLATH TBLATL TBLPTR MEMORY(tion TBLPTR)	= = = =	0x53 0xAA 0x55 0xA356 0x1234	
After Instructio REG TBLATH TBLATL TBLPTR MEMORY(n (table v	vrite coi = = = =	mpletion) 0x55 0x12 0x34 0xA356 0x1234	

TAB	TABLWT Table Write							
Synt	ax:	[label]	TABLWT t,	i,f				
Ope	rands:	$0 \le f \le 25$	5					
		i ∈ [0,1] t ∈ [0,1]	$i \in [0,1]$ t $\in [0,1]$					
Ope	ration:	lf t = 0.						
000		$f \rightarrow TBLA$	$f \rightarrow TBLATL;$					
		If $t = 1$,	τц.					
		$T \rightarrow TBLA$ TBLAT \rightarrow	Prog Men	n (TBLPTR);				
		If i = 1,	.					
		IBLPIR · If i – 0	$+1 \rightarrow IBL$	PIR				
		TBLPTR i	s unchang	ed				
Statu	us Affected	: None						
Enco	oding:	1010	11ti i	fff ffff				
Des	cription:	1. Load	value in 'f' ir	nto 16-bit table				
		latch (If t = 1	(TBLAT) I: load into h	niah byte:				
		If $t = 0$): load into l	ow byte				
		2. The c	ontents of T	BLAT are writ-				
		locatio	on pointed to	by TBLPTR.				
		If TB	LPTR point	ts to external				
		the in:	the instruction takes two-cycle.					
		If TBL	If TBLPTR points to an internal FPROM location, then the					
		instru	ction is ter	minated when				
	an interrupt is received.							
INC	volta	ige for success	ful program	ming of internal				
	men	ory.						
	the p	programming se	equence of i	nternal memory				
	will Toy)	be interrupted.	A short wri	te will occur (2				
	affeo	ted.	nemery loo					
		3. The T	BLPTR car	n be automati-				
		cally i If i = 1	ncremented	is not				
		11 : 0	incremen	ted				
Wor	do.	IT I = C	; IBLPIR	is incremented				
Cycl	us.	ı 2 (many if	writa is to	on chin				
Cyci	63.	EPROM p	program m	emory)				
QC	Q Cycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read	Read Process Wr					
		register T	Data	TBLATH or				
				TBLATL				
	No operation	No operation	No operation	No operation				
		(Table Pointer		(Table Latch on				
		on Address bus)		Address bus, WR goes low)				
	No operation	No operation (Table Pointer on Address bus)	No operation	No operation (Table Latch on <u>Add</u> ress bus, WR goes low)				

TABLWT	Table Write					
Example1:	TABLWT	1, 1,	REG			
Before Instruc	tion					
REG		=	0x53			
TBLATH		=	0xAA			
TBLATL		=	0x55			
TBLPTR		=	0xA356			
MEMORY(TBLPTR)	=	0xFFFF			
After Instruction	on (table w	vrite cor	npletion)			
REG		=	0x53			
TBLATH		=	0x53			
TBLATL		=	0x55			
TBLPTR		=	0xA357			
MEMORY(TBLPTR -	1) =	0x5355			
Example 2:	TABLWT	0, 0,	REG			
Before Instruc	tion					
REG		=	0x53			
TBLATH		=	0xAA			
TBLATL		=	0x55			
TBLPTR		=	0xA356			
MEMORY(TBLPTR)	=	0xFFFF			
After Instruction	on (table w	vrite cor	npletion)			
REG		=	0x53			
TBLATH		=	0xAA			
TBLATL		=	0x53			
TBLPTR		=	0xA356			
MEMORY(TBLPTR)	=	0xAA53			
Program			Det			
15 0			0 Da			

TLR	D	Table	Table Latch Read						
Syntax:		[labe	/] TL	_RD t,f					
Operands:		0 ≤ f ≤ t ∈ [0,	$\begin{array}{l} 0 \leq f \leq 255 \\ t \in [0,1] \end{array}$						
Ope	ration:	lf t = (TBLA lf t = ^ TBLA	If t = 0, TBLATL \rightarrow f; If t = 1, TBLATH \rightarrow f						
Statu	us Affected:	None							
Enco	oding:	101	1010 OOtx ffff ffff						
Des	cription:	Read (TBLA is unat	Read data from 16-bit table latch (TBLAT) into file register 'f'. Table Latch is unaffected.						
		If $t = 1$ If $t = 0$; nign · low h	byte is r	ead				
		This in with T gram r	structi ABLRD	ion is us to trans ry to dat	sed in sfer da a mer	conj ata f nory	unction rom pro-		
Wor	ds:	1							
Cycl	es:	1							
QC	ycle Activity:								
	Q1	Q2		Q3	5		Q4		
	Decode	Read regist TBLATI TBLA	1 er H or TL	Process Data		Write register 'f'			
<u>Exar</u>	<u>mple</u> :	TLRD	t	, RAM					
	Before Instru	uction							
	t DAM	= 0							
	TBLAT	= ? = 0x)0AF	(TBLA (TBLA	TH = (0x00 0xAF)) ⁻)		
	After Instruc	tion							
	RAM TBLAT	= 0x/ = 0x/	AF DOAF	(TBLA (TBLA	TH = (0x00 0xAF)) ⁻)		
	Before Instru	uction							
	t	= 1							
	RAM TBLAT	= ? = 0x()0AF	(TBLA (TBLA	TH = (0x00 0xAF)) ⁻)		
	After Instruc	tion							
	RAM TBLAT	= 0x0 = 0x0	00 00AF	(TBLA (TBLA	TH = TL = (0x00 0xAF)) -)		
	Program Memory		5 TBL	.PTR		M	Data emory		
			5 8				·		
	16 bits		TB			8	3 bits		

© 1998-2013 Microchip Technology Inc.

19.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC[™] In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD for PIC16F87X
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

19.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

19.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

19.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

20.4 Timing Diagrams and Specifications

TABLE 20-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN	DC	_	8	MHz	EC osc mode - 08 devices (8 MHz devices)
		Frequency (Note 1)	DC	—	16	MHz	- 16 devices (16 MHz devices)
			DC	—	33	MHz	- 33 devices (33 MHz devices)
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	2	—	8	MHz	XT osc mode - 08 devices (8 MHz devices)
			2	_	16	MHz	 16 devices (16 MHz devices)
			2	—	33	MHz	- 33 devices (33 MHz devices)
			DC	—	2	MHz	LF osc mode
1	Tosc	External CLKIN Period	125	—	—	ns	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	62.5	_	—	ns	 16 devices (16 MHz devices)
			30.3	—	—	ns	- 33 devices (33 MHz devices)
		Oscillator Period	250	Ι		ns	RC osc mode
		(Note 1)	125	_	1,000	ns	XT osc mode - 08 devices (8 MHz devices)
			62.5	—	1,000	ns	 16 devices (16 MHz devices)
			30.3	—	1,000	ns	- 33 devices (33 MHz devices)
			500	-	—	ns	LF osc mode
2	TCY	Instruction Cycle Time	121.2	4/Fosc	DC	ns	
		(Note 1)					
3	TosL,	Clock in (OSC1)	10			ns	EC oscillator
	TosH	High or Low Time					
4	TosR,	Clock in (OSC1)		_	5	ns	EC oscillator
	TosF	Rise or Fall Time					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

TABLE 20-11:	SPI MODE REQUIREMENTS (SLAVE MO	ODE, CKE = 1)
--------------	---------------------------------	---------------

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсу	—		ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	_	_	ns	
71A		(Slave mode)	Single Byte	40	_	_	ns	(Note 1)
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	_	ns	
72A		(Slave mode)	Single Byte	40	—	_	ns	(Note 1)
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	—	_	ns	(Note 1)
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	_	ns	
75	TdoR	SDO data output rise time		_	10	25	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance		10	_	50	ns	
80	TscH2doV, TscL2doV	SDO data output valid after SCK edge		_	_	50	ns	
82	TssL2doV	SDO data output valid after SS	_	-	50	ns		
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	_		ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.